NAG C Library Function Document

nag_dgebrd (f08kec)

1 Purpose

nag_dgebrd (f08kec) reduces a real matrix to bidiagonal form.

2 Specification

void nag_dgebrd (Nag_OrderType order, Integer m, Integer n, double a[],
 Integer pda, double d[], double e[], double tauq[], double taup[],
 NagError *fail)

3 Description

nag_dgebrd (f08kec) reduces a real matrix A to bidiagonal form B by an orthogonal transformation:

\[A = QBP^T, \]

where Q and P are orthogonal matrices of order m and n respectively.

If \(m \geq n \), the reduction is given by:

\[A = Q \begin{pmatrix} B_1 & 0 \\ 0 & 0 \end{pmatrix} P^T = Q_1 B_1 P_1^T, \]

where \(B_1 \) is an \(n \times n \) upper bidiagonal matrix and \(Q_1 \) consists of the first \(n \) columns of \(Q \).

If \(m < n \), the reduction is given by:

\[A = Q \begin{pmatrix} B_1 & 0 \\ 0 & 0 \end{pmatrix} P^T = Q B_1 P_1^T, \]

where \(B_1 \) is an \(m \times m \) lower bidiagonal matrix and \(P_1^T \) consists of the first \(m \) rows of \(P^T \).

The orthogonal matrices Q and P are not formed explicitly but are represented as products of elementary reflectors (see the f08 Chapter Introduction for details). Functions are provided to work with Q and P in this representation (see Section 8).

4 References

5 Parameters

1: \(\text{order} \) -- Nag_OrderType

\[\text{Input} \]

On entry: the \text{order} parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by \text{order} = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: \(\text{order} = \text{Nag_RowMajor} \) or \(\text{Nag_ColMajor} \).

2: \(m \) -- Integer

\[\text{Input} \]

On entry: \(m \), the number of rows of the matrix \(A \).

Constraint: \(m \geq 0 \).
3: \(n \) – Integer

\textit{Input}

\textit{On entry:} \(n \), the number of columns of the matrix \(A \).

\textit{Constraint:} \(n \geq 0 \).

4: \(a \) [\(dim \)] – double

\textit{Input/Output}

\textit{Note:} the dimension, \(dim \), of the array \(a \) must be at least \(\max(1, pda \times n) \) when \(order = \text{Nag_ColMajor} \) and at least \(\max(1, pda \times m) \) when \(order = \text{Nag_RowMajor} \).

On entry: if \(order = \text{Nag_ColMajor} \), the \((i,j)\)th element of the matrix \(A \) is stored in \(a[(j-1) \times pda + i - 1] \) and if \(order = \text{Nag_RowMajor} \), the \((i,j)\)th element of the matrix \(A \) is stored in \(a[(i-1) \times pda + j - 1] \).

\textit{On exit:} the \(m \) by \(n \) matrix \(A \).

On exit: if \(m \geq n \), the diagonal and first super-diagonal are overwritten by the upper bidiagonal matrix \(B \), elements below the diagonal are overwritten by details of the orthogonal matrix \(Q \) and elements above the first super-diagonal are overwritten by details of the orthogonal matrix \(P \).

If \(m < n \), the diagonal and first sub-diagonal are overwritten by the lower bidiagonal matrix \(B \), elements below the first sub-diagonal are overwritten by details of the orthogonal matrix \(Q \) and elements above the diagonal are overwritten by details of the orthogonal matrix \(P \).

5: \(pda \) – Integer

\textit{Input}

\textit{On entry:} the stride separating matrix row or column elements (depending on the value of \(order \)) in the array \(a \).

\textit{Constraints:}

\begin{align*}
\text{if} \; & order = \text{Nag_ColMajor}, \; pda \geq \max(1, m); \\
\text{if} \; & order = \text{Nag_RowMajor}, \; pda \geq \max(1, n).
\end{align*}

6: \(d \) [\(dim \)] – double

\textit{Output}

\textit{Note:} the dimension, \(dim \), of the array \(d \) must be at least \(\max(1, \min(m, n)) \).

\textit{On exit:} the diagonal elements of the bidiagonal matrix \(B \).

7: \(e \) [\(dim \)] – double

\textit{Output}

\textit{Note:} the dimension, \(dim \), of the array \(e \) must be at least \(\max(1, \min(m, n) - 1) \).

\textit{On exit:} the off-diagonal elements of the bidiagonal matrix \(B \).

8: \(tauq \) [\(dim \)] – double

\textit{Output}

\textit{Note:} the dimension, \(dim \), of the array \(tauq \) must be at least \(\max(1, \min(m, n)) \).

\textit{On exit:} further details of the orthogonal matrix \(Q \).

9: \(taup \) [\(dim \)] – double

\textit{Output}

\textit{Note:} the dimension, \(dim \), of the array \(taup \) must be at least \(\max(1, \min(m, n)) \).

\textit{On exit:} further details of the orthogonal matrix \(P \).

10: \(fail \) – NagError *

\textit{Output}

The NAG error parameter (see the Essential Introduction).

6 \textbf{Error Indicators and Warnings}

\textbf{NE_INT}

\textit{On entry,} \(m = \langle \text{value} \rangle \).

\textit{Constraint:} \(m \geq 0 \).
On entry, \(n = \langle \text{value} \rangle \).
Constraint: \(n \geq 0 \).

On entry, \(pda = \langle \text{value} \rangle \).
Constraint: \(pda > 0 \).

NE_INT_2

On entry, \(pda = \langle \text{value} \rangle \), \(m = \langle \text{value} \rangle \).
Constraint: \(pda \geq \max(1, m) \).

On entry, \(pda = \langle \text{value} \rangle \), \(n = \langle \text{value} \rangle \).
Constraint: \(pda \geq \max(1, n) \).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

The computed bidiagonal form \(B \) satisfies \(QB^T P = A + E \), where
\[
\|E\|_2 \leq c(n)\epsilon\|A\|_2,
\]
c\((n)\) is a modestly increasing function of \(n \), and \(\epsilon \) is the **machine precision**.

The elements of \(B \) themselves may be sensitive to small perturbations in \(A \) or to rounding errors in the computation, but this does not affect the stability of the singular values and vectors.

8 Further Comments

The total number of floating-point operations is approximately \(\frac{2}{3}n^2(3m - n) \) if \(m \geq n \) or \(\frac{4}{3}m^2(3n - m) \) if \(m < n \).

If \(m \gg n \), it can be more efficient to first call \nag_dgeqrf (f08aec) to perform a \(QR \) factorization of \(A \), and then to call this function to reduce the factor \(R \) to bidiagonal form. This requires approximately \(2n^2(m + n) \) floating-point operations.

If \(m \ll n \), it can be more efficient to first call \nag_dgelqf (f08ahc) to perform an \(LQ \) factorization of \(A \), and then to call this function to reduce the factor \(L \) to bidiagonal form. This requires approximately \(2m^2(m + n) \) operations.

To form the orthogonal matrices \(P^T \) and/or \(Q \), this function may be followed by calls to \nag_dorgbr (f08kfc):

- to form the \(m \) by \(m \) orthogonal matrix \(Q \)
 \[
 \text{nag_dorgbr (order, Nag_FormQ, m, m, &a, pda, tauq, &fail)}
 \]
 but note that the second dimension of the array \(a \) must be at least \(m \), which may be larger than was required by \nag_dgebrd (f08kec);

- to form the \(n \) by \(n \) orthogonal matrix \(P^T \)
 \[
 \text{nag_dorgbr (order, Nag_FormP, n, n, &a, pda, taup, &fail)}
 \]
but note that the first dimension of the array a, specified by the parameter pda, must be at least n, which may be larger than was required by nag_dgebrd (f08kec).

To apply Q or P to a real rectangular matrix C, this function may be followed by a call to nag_dormbr (f08kgc).

The complex analogue of this function is nag_zgebrd (f08ksc).

9 Example

To reduce the matrix A to bidiagonal form, where

\[
A = \begin{pmatrix}
-0.57 & -1.28 & -0.39 & 0.25 \\
-1.93 & 1.08 & -0.31 & -2.14 \\
2.30 & 0.24 & 0.40 & -0.35 \\
-1.93 & 0.64 & -0.66 & 0.08 \\
0.15 & 0.30 & 0.15 & -2.13 \\
-0.02 & 1.03 & -1.43 & 0.50
\end{pmatrix}
\]

9.1 Program Text

/* nag_dgebrd (f08kec) Example Program. *
 * Copyright 2001 Numerical Algorithms Group.
 * * Mark 7, 2001.
 */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>

int main(void)
{
 /* Scalars */
 Integer i, j, m, n, pda, d_len, e_len, tauq_len, taup_len;
 Integer exit_status=0;
 NagError fail;
 Nag_OrderType order;
 /* Arrays */
 double *a=0, *d=0, *e=0, *taup=0, *tauq=0;

 INIT_FAIL(fail);
 Vprintf("f08kec Example Program Results
") ;

 /* Skip heading in data file */
 Vscanf("%*[^
"]");
 Vscanf("\%d\%d*[^\n] ", &m, &n);
 #ifdef NAG_COLUMN_MAJOR
 pda = m;
 #else
 pda = n;
 #endif
 d_len = MIN(m,n);
 e_len = MIN(m,n)-1;
 tauq_len = MIN(m,n);
 taup_len = MIN(m,n);

 /* Allocate memory */
if (!(a = NAG_ALLOC(m * n, double)) ||
! (d = NAG_ALLOC(d_len, double)) ||
! (e = NAG_ALLOC(e_len, double)) ||
! (taup = NAG_ALLOC(taup_len, double)) ||
! (tauq = NAG_ALLOC(tauq_len, double)))
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Read A from data file */
for (i = 1; i <= m; ++i)
{
 for (j = 1; j <= n; ++j)
 Vscanf("%lf", &A(i,j));

Vscanf("%*[\n\n]");

/* Reduce A to bidiagonal form */
f08kec(order, m, n, a, pda, d, e, tauq, taup, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08kec.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Print bidiagonal form */
Vprintf("\nDiagonal\n");
for (i = 1; i <= MIN(m,n); ++i)
 Vprintf("%9.4f%s", d[i-1], i%8==0 ?"\n":" ");
if (m >= n)
 Vprintf("\nSuper-diagonal\n");
else
 Vprintf("\nSub-diagonal\n");
for (i = 1; i <= MIN(m,n) - 1; ++i)
 Vprintf("%9.4f%s", e[i-1], i%8==0 ?"\n":" ");
Vprintf("\n");

END:
if (a) NAG_FREE(a);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
if (taup) NAG_FREE(taup);
if (tauq) NAG_FREE(tauq);
return exit_status;
}

9.2 Program Data
f08kec Example Program Data
6 4 :Values of M and N
-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35
-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 -2.13
-0.02 1.03 -1.43 0.50 :End of matrix A

9.3 Program Results
f08kec Example Program Results

Diagonal
 3.6177 2.4161 -1.9213 -1.4265
Super-diagonal
 1.2587 1.5262 -1.1895 -1.4395

[NP3645/7]