NAG C Library Function Document

nag_zhbtrd (f08hsc)

1 Purpose

nag_zhbtrd (f08hsc) reduces a complex Hermitian band matrix to tridiagonal form.

2 Specification

```c
void nag_zhbtrd (Nag_OrderType order, Nag_VectType vect, Nag_UploType uplo,
                Integer n, Integer kd, Complex ab[], Integer pdab, double d[], double e[],
                Complex q[], Integer pdq, NagError *fail)
```

3 Description

The Hermitian band matrix A is reduced to real symmetric tridiagonal form T by a unitary similarity transformation: $T = Q^H A Q$. The unitary matrix Q is determined as a product of Givens rotation matrices, and may be formed explicitly by the function if required.

The function uses a vectorisable form of the reduction, due to Kaufman (1984).

4 References

5 Parameters

1: `order` – Nag_OrderType

Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: `vect` – Nag_VectType

Input

On entry: indicates whether Q is to be returned as follows:

- if vect = Nag_FormQ, Q is returned (and the array q must contain a matrix on entry);
- if vect = Nag_UpdateQ, Q is updated (and the array q must contain a matrix on entry);
- if vect = Nag_DoNotForm, Q is not required.

Constraint: vect = Nag_FormQ, Nag_UpdateQ or Nag_DoNotForm.

3: `uplo` – Nag_UploType

Input

On entry: indicates whether the upper or lower triangular part of A is stored as follows:

- if uplo = Nag_Upper, then the upper triangular part of A is stored;
- if uplo = Nag_Lower, then the lower triangular part of A is stored.

Constraint: uplo = Nag_Upper or Nag_Lower.
On entry: \(n \), the order of the matrix \(A \).

Constraint: \(n \geq 0 \).

5: \(k \) – Integer

On entry: \(k \), the number of super-diagonals of the matrix \(A \) if \(\text{uplo} = \text{Nag_Upper} \), or the number of sub-diagonals if \(\text{uplo} = \text{Nag_Lower} \).

Constraint: \(k \geq 0 \).

6: \(ab[\text{dim}] \) – Complex

Note: the dimension, \(\text{dim} \), of the array \(ab \) must be at least \(\max(1, \text{pdab} \times n) \).

On entry: the \(n \) by \(n \) Hermitian band matrix \(A \) with \(k \) sub or super-diagonals. This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. Just the upper or lower triangular part of the array is held depending on the value of \(\text{uplo} \). The storage of elements \(a_{ij} \) depends on the \(\text{order} \) and \(\text{uplo} \) parameters as follows:

- if \(\text{order} = \text{Nag_ColMajor} \) and \(\text{uplo} = \text{Nag_Upper} \),
 \(a_{ij} \) is stored in \(ab[k + i - j + (j - 1) \times \text{pdab}] \), for \(i = 1, \ldots, n \) and \(j = i, \ldots, \min(n, i + k) \);
- if \(\text{order} = \text{Nag_ColMajor} \) and \(\text{uplo} = \text{Nag_Lower} \),
 \(a_{ij} \) is stored in \(ab[i - j + (j - 1) \times \text{pdab}] \), for \(i = 1, \ldots, n \) and \(j = \max(1,i-k), \ldots, i \);
- if \(\text{order} = \text{Nag_RowMajor} \) and \(\text{uplo} = \text{Nag_Upper} \),
 \(a_{ij} \) is stored in \(ab[j - i + (i - 1) \times \text{pdab}] \), for \(i = 1, \ldots, n \) and \(j = i, \ldots, \min(n, i + k) \);
- if \(\text{order} = \text{Nag_RowMajor} \) and \(\text{uplo} = \text{Nag_Lower} \),
 \(a_{ij} \) is stored in \(ab[k + j - i + (i - 1) \times \text{pdab}] \), for \(i = 1, \ldots, n \) and \(j = \max(1,i-k), \ldots, i \).

On exit: \(A \) is overwritten.

7: \(\text{pdab} \) – Integer

On entry: the stride separating row or column elements (depending on the value of \(\text{order} \)) of the matrix \(A \) in the array \(ab \).

Constraint: \(\text{pdab} \geq \max(1, k + 1) \).

8: \(d[\text{dim}] \) – double

Note: the dimension, \(\text{dim} \), of the array \(d \) must be at least \(\max(1, n) \).

On exit: the diagonal elements of the tridiagonal matrix \(T \).

9: \(e[\text{dim}] \) – double

Note: the dimension, \(\text{dim} \), of the array \(e \) must be at least \(\max(1, n - 1) \).

On exit: the off-diagonal elements of the tridiagonal matrix \(T \).

10: \(q[\text{dim}] \) – Complex

Note: the dimension, \(\text{dim} \), of the array \(q \) must be at least \(\max(1, \text{pdq} \times n) \) when \(\text{vect} = \text{Nag_FormQ} \) or \(\text{Nag_UpdateQ} \); 1 when \(\text{vect} = \text{Nag_DoNotForm} \).

If \(\text{order} = \text{Nag_ColMajor} \), the \((i,j)\)th element of the matrix \(Q \) is stored in \(q[(j - 1) \times \text{pdq} + i - 1] \) and if \(\text{order} = \text{Nag_RowMajor} \), the \((i,j)\)th element of the matrix \(Q \) is stored in \(q[(i - 1) \times \text{pdq} + j - 1] \).
On entry: if \(\text{vect} = \text{Nag_UpdateQ} \), \(q \) must contain the matrix formed in a previous stage of the reduction (for example, the reduction of a banded Hermitian-definite generalized eigenproblem); otherwise \(q \) need not be set.

On exit: if \(\text{vect} = \text{Nag_FormQ} \) or \(\text{Nag_UpdateQ} \), the \(n \) by \(n \) matrix \(Q \).

\(q \) is not referenced if \(\text{vect} = \text{Nag_DoNotForm} \).

11: \(pdq \) – Integer
Input

On entry: the stride separating matrix row or column elements (depending on the value of \(\text{order} \)) in the array \(q \).

Constraints:
- if \(\text{vect} = \text{Nag_FormQ} \) or \(\text{Nag_UpdateQ} \), \(pdq \geq \max(1, n) \);
- if \(\text{vect} = \text{Nag_DoNotForm} \), \(pdq \geq 1 \).

12: \(\text{fail} \) – NagError *
Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

\textbf{NE_INT}

On entry, \(n = \langle \text{value} \rangle \).
Constraint: \(n \geq 0 \).

On entry, \(kd = \langle \text{value} \rangle \).
Constraint: \(kd \geq 0 \).

On entry, \(pdab = \langle \text{value} \rangle \).
Constraint: \(pdab > 0 \).

On entry, \(pdq = \langle \text{value} \rangle \).
Constraint: \(pdq > 0 \).

\textbf{NE_INT_2}

On entry, \(pdab = \langle \text{value} \rangle \), \(kd = \langle \text{value} \rangle \).
Constraint: \(pdab \geq \max(1, kd + 1) \).

\textbf{NE_ENUM_INT_2}

On entry, \(\text{vect} = \langle \text{value} \rangle \), \(n = \langle \text{value} \rangle \), \(pdq = \langle \text{value} \rangle \).
Constraint: if \(\text{vect} = \text{Nag_FormQ} \) or \(\text{Nag_UpdateQ} \), \(pdq \geq \max(1, n) \);
if \(\text{vect} = \text{Nag_DoNotForm} \), \(pdq \geq 1 \).

\textbf{NE_ALLOC_FAIL}

Memory allocation failed.

\textbf{NE_BAD_PARAM}

On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.

\textbf{NE_INTERNAL_ERROR}

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.
7 Accuracy

The computed tridiagonal matrix \(T \) is exactly similar to a nearby matrix \(A + E \), where
\[
\|E\|_2 \leq c(n)\epsilon\|A\|_2,
\]
c\((n) \) is a modestly increasing function of \(n \), and \(\epsilon \) is the machine precision.

The elements of \(T \) themselves may be sensitive to small perturbations in \(A \) or to rounding errors in the computation, but this does not affect the stability of the eigenvalues and eigenvectors.

The computed matrix \(Q \) differs from an exactly unitary matrix by a matrix \(E \) such that
\[
\|E\|_2 = O(\epsilon),
\]
where \(\epsilon \) is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately \(20n^2k \) if \(\text{vect} = \text{Nag_DoNotForm} \) with \(10n^3(k - 1)/k \) additional operations if \(\text{vect} = \text{Nag_FormQ} \).

The real analogue of this function is nag_dsbrd (f08hec).

9 Example

To compute all the eigenvalues and eigenvectors of the matrix \(A \), where
\[
A = \begin{pmatrix}
-3.13 + 0.00i & 1.94 - 2.10i & -3.40 + 0.25i & 0.00 + 0.00i \\
1.94 + 2.10i & -1.91 + 0.00i & -0.82 - 0.89i & -0.67 + 0.34i \\
-3.40 - 0.25i & -0.82 + 0.89i & -2.87 + 0.00i & -2.10 - 0.16i \\
0.00 + 0.00i & -0.67 - 0.34i & -2.10 + 0.16i & 0.50 + 0.00i
\end{pmatrix},
\]
Here \(A \) is Hermitian and is treated as a band matrix. The program first calls nag_zhbtrd (f08hsc) to reduce \(A \) to tridiagonal form \(T \), and to form the unitary matrix \(Q \); the results are then passed to nag_zsteqr (f08jsc) which computes the eigenvalues and eigenvectors of \(A \).

9.1 Program Text

/* nag_zhbtrd (f08hsc) Example Program.
 * Copyright 2001 Numerical Algorithms Group.
 */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
 /* Scalars */
 Integer i, j, k, kd, n, pdab, pdz, d_len, e_len;
 Integer exit_status=0;
 NagError fail;
 Nag_UploType uplo;
 Nag_OrderType order;
 /* Arrays */
 char uplo_char[2];
 Complex *ab=0, *z=0;
 double *d=0, *e=0;
 #ifdef NAG_COLUMN_MAJOR
 #define AR_UPPER(I,J) ab[(J-1)*pdab + k + I - J - 1]
 #else
 #define AR_UPPER(I,J) ab[(J-1)*pdab + k + I - J - 1]
 #endif
 /* ...
*/
#define AB_LOWER(I,J) ab[(J-1)*pdab + I - J]
order = Nag_ColMajor;
#else
#define AB_UPPER(I,J) ab[(I-1)*pdab + J - I]
#define AB_LOWER(I,J) ab[(I-1)*pdab + k + J - I - 1]
#endif

INIT_FAIL(fail);
Vprintf("f08hsc Example Program Results\n\n");
/* Skip heading in data file */
Vscanf("%*[\n \n]");
Vscanf("%ld%ld%*[\n \n] \n", &n, &kd);
pdab = kd + 1;

/* Allocate memory */
if (!(ab = NAG_ALLOC(pdab * n, Complex)) ||
 !(d = NAG_ALLOC(d_len, double)) ||
 !(e = NAG_ALLOC(e_len, double)) ||
 !(z = NAG_ALLOC(pdz* n, Complex)))
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}
/* Read A from data file */
Vscanf(" ' %1s '%*[\n \n]", uplo_char);
if (*(unsigned char *)uplo_char == 'L')
 uplo = Nag_Lower;
else if (*(unsigned char *)uplo_char == 'U')
 uplo = Nag_Upper;
else
{
 Vprintf("Unrecognised character for Nag_UploType type\n");
 exit_status = -1;
 goto END;
}
k = kd + 1;
/* Reduce A to tridiagonal form */
f08hsc(order, Nag_FormQ, uplo, n, kd, ab, pdab, d, e,
z, pdz, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08hsc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
/* Calculate all the eigenvalues and eigenvectors of A */
fo8jsc(order, Nag_UpdateZ, n, d, e, z, pdz, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08jsc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
/* Print eigenvalues and eigenvectors */
Vprintf(" Eigenvalues\n");
for (i = 1; i <= n; ++i)
 Vprintf("%8.4f%s", d[i-1], i%8==0 ?"\n":" ");
Vprintf("\n\n");
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
z, pdz, Nag_BracketForm, "%7.4f", "Eigenvectors",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80,
0, 0, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from x04dbc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
END:
if (ab) NAG_FREE(ab);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
if (z) NAG_FREE(z);
return exit_status;
}

9.2 Program Data

f08hsc Example Program Data

4 2
[L]
(-3.13, 0.00)
(1.94, 2.10) (-1.91, 0.00)
(-3.40,-0.25) (-0.82, 0.89) (-2.87, 0.00)
(-0.67,-0.34) (-2.10, 0.16) (0.50, 0.00) :End of matrix A

9.3 Program Results

f08hsc Example Program Results

Eigenvalues
-7.0042 -4.0038 0.5968 3.0012

Eigenvectors

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(0.7293, 0.0000) (-0.2128, 0.1511) (-0.3354,-0.1604) (-0.5114,-0.0163)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(-0.1654,-0.2046) (0.7316, 0.0000) (-0.2804,-0.3413) (-0.2374,-0.3796)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(0.6081, 0.0301) (0.3910,-0.3843) (-0.0144, 0.1532) (0.5523, 0.0000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(0.1653,-0.0303) (0.2775,-0.1378) (0.8019, 0.0000) (-0.4517, 0.1693)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>