1 Purpose

`nag_dopgtr (f08gfc)` generates the real orthogonal matrix Q, which was determined by `nag_dsptrd (f08gec)` when reducing a symmetric matrix to tridiagonal form.

2 Specification

```c
void nag_dopgtr (Nag_OrderType order, Nag_UploType uplo, Integer n,
                 const double ap[], const double tau[], double q[], Integer pdq,
                 NagError *fail)
```

3 Description

`nag_dopgtr (f08gfc)` is intended to be used after a call to `nag_dsptrd (f08gec)`, which reduces a real symmetric matrix A to symmetric tridiagonal form T by an orthogonal similarity transformation: $A = Q^T Q$. `nag_dsptrd (f08gec)` represents the orthogonal matrix Q as a product of $n - 1$ elementary reflectors.

This function may be used to generate Q explicitly as a square matrix.

4 References

5 Parameters

1: `order` – Nag_OrderType

 Input

 On entry: the `order` parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by `order = Nag_RowMajor`. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

 Constraint: `order = Nag_RowMajor` or `Nag_ColMajor`.

2: `uplo` – Nag_UploType

 Input

 On entry: this must be the same parameter `uplo` as supplied to `nag_dsptrd (f08gec)`.

 Constraint: `uplo = Nag_Upper` or `Nag_Lower`.

3: `n` – Integer

 Input

 On entry: n, the order of the matrix Q.

 Constraint: $n \geq 0$.

4: `ap[dim]` – const double

 Input

 Note: the dimension, `dim`, of the array `ap` must be at least $\max(1, n \times (n + 1)/2)$.

 On entry: details of the vectors which define the elementary reflectors, as returned by `nag_dsptrd (f08gec)`.

5: `tau[dim]` – const double

 Input

 Note: the dimension, `dim`, of the array `tau` must be at least $\max(1, n - 1)$.
On entry: further details of the elementary reflectors, as returned by nag_dsptrd (f08gec).

6: \[q[dim]\] – double

Output

Note: the dimension, \textit{dim}, of the array \textit{q} must be at least \(\max(1, \text{pdq} \times n)\).

If \textit{order} = Nag_ColMajor, the \((i,j)\)th element of the matrix \(Q\) is stored in \(q[(j-1) \times \text{pdq} + i - 1]\)
and if \textit{order} = Nag_RowMajor, the \((i,j)\)th element of the matrix \(Q\) is stored in
\(q[(i-1) \times \text{pdq} + j - 1]\).

On exit: the \(n\) by \(n\) orthogonal matrix \(Q\).

7: \textit{pdq} – Integer

Input

On entry: the stride separating matrix row or column elements (depending on the value of \textit{order}) in the array \textit{q}.

Constraint: \(\text{pdq} \geq \max(1, n)\).

8: \textit{fail} – NagError \(*\)

Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, \(n = \langle value\rangle\).

Constraint: \(n \geq 0\).

On entry, \(\text{pdq} = \langle value\rangle\).

Constraint: \(\text{pdq} > 0\).

NE_INT_2

On entry, \(\text{pdq} = \langle value\rangle, n = \langle value\rangle\).

Constraint: \(\text{pdq} \geq \max(1, n)\).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter \(\langle value\rangle\) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that

\[\|E\|_2 = O(\epsilon),\]

where \(\epsilon\) is the \textit{machine precision}.

8 Further Comments

The total number of floating-point operations is approximately \(\frac{4}{3} n^3\).

The complex analogue of this function is nag_zupgtr (f08gtc).
9 Example

To compute all the eigenvalues and eigenvectors of the matrix A, where

$$A = \begin{pmatrix} 2.07 & 3.87 & 4.20 & -1.15 \\ 3.87 & -0.21 & 1.87 & 0.63 \\ 4.20 & 1.87 & 1.15 & 2.06 \\ -1.15 & 0.63 & 2.06 & -1.81 \end{pmatrix}.$$

using packed storage. Here A is symmetric and must first be reduced to tridiagonal form by nag_dsptrd (f08gec). The program then calls nag_dopgtr (f08gfc) to form Q, and passes this matrix to nag_dsteqr (f08jec) which computes the eigenvalues and eigenvectors of A.

9.1 Program Text

/* nag_dopgtr (f08gfc) Example Program. */
/* Copyright 2001 Numerical Algorithms Group. */
/* Mark 7, 2001. */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
 /* Scalars */
 Integer ap_len, i, j, n, pdz, d_len, e_len, tau_len;
 Integer exit_status=0;
 NagError fail;
 Nag_UploType uplo;
 Nag_OrderType order;
 /* Arrays */
 char uplo_char[2];
 double *ap=0, *d=0, *e=0, *tau=0, *z=0;

 INIT_FAIL(fail);
 Vprintf("f08gfc Example Program Results\n\n");

 /* Skip heading in data file */
 Vscanf("%*[\n] ");
 Vscanf("%d%*[\n] ", &n);

 ifdef NAG_COLUMN_MAJOR
 #define A_UPPER(I,J) ap[(J-I)*(I-1)/2 + I - 1]
 #define A_LOWER(I,J) ap[I*(I-1)/2 + J - 1]
 order = Nag_ColMajor;
 #else
 #define A_LOWER(I,J) ap[I*(I-1)/2 + J - 1]
 #define A_UPPER(I,J) ap[(2*n-I)*(I-1)/2 + J - 1]
 order = Nag_RowMajor;
 #endif

 INIT_FAIL(fail);
 Vprintf("f08gfc Example Program Results\n\n");

 /* Skip heading in data file */
 Vscanf("%*[\n] ");
 Vscanf("%d%*[\n] ", &n);

 ifdef NAG_COLUMN_MAJOR
 pdz = n;
 #else
 pdz = n;
 #endif

 if (!(ap = NAG_ALLOC(ap_len, double)) |
 !(d = NAG_ALLOC(d_len, double)) |
 !(e = NAG_ALLOC(e_len, double)) |
 !(tau = NAG_ALLOC(tau_len, double)) |
 !(z = NAG_ALLOC(n, double)))
 return -1;

 /* Allocate storage for A in packed form */
 if (!(ap = NAG_ALLOC(n*(n+1)/2, double)))
 return -2;

 /* Set up the input matrix A */
 for (i=0; i<n; i++)
 for (j=0; j<i+1; j++)
 ap[i*(i+1)/2 + j] = input[i][j];

 uplo_char[0] = 'L';
 uplo = Nag_Lower;
 order = Nag_RowMajor;

 /* Reduce A to tridiagonal form */

 /* Form Q */
 if (!(d = NAG_ALLOC(n, double)))
 return -3;

!(tau = NAG_ALLOC(tau_len, double)) ||
!(z = NAG_ALLOC(n * n, double))
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Read A from data file */
Vscanf(" ' %ls ' %*[\n] " , uplo_char);
if (*(*(unsigned char *)uplo_char == 'L')
 uplo = Nag_Lower;
else if (*(*(unsigned char *)uplo_char == 'U')
 uplo = Nag_Upper;
else
{ Vprintf("Unrecognised character for Nag_UploType type\n");
 exit_status = -1;
 goto END;
}
if (uplo == Nag_Upper)
{ for (i = 1; i <= n; ++i)
 { for (j = i; j <= n; ++j)
 Vscanf("%lf", &A_UPPER(i,j));
 }
 Vscanf("%*[\n] ");
}
else
{ for (i = 1; i <= n; ++i)
 { for (j = 1; j <= i; ++j)
 Vscanf("%lf", &A_LOWER(i,j));
 }
 Vscanf("%*[\n] ");
}

/* Reduce A to tridiagonal form T = (Q**T)*A*Q */
f08gec(order, uplo, n, ap, d, e, tau, &fail);
if (fail.code != NE_NOERROR)
{ Vprintf("Error from f08gec.\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Form Q explicitly, storing the result in Z */
f08gfc(order, uplo, n, ap, tau, z, pdz, &fail);
if (fail.code != NE_NOERROR)
{ Vprintf("Error from f08gfc.\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Calculate all the eigenvalues and eigenvectors of A */
f08jec(order, Nag_UpdateZ, n, d, e, z, pdz, &fail);
if (fail.code != NE_NOERROR)
{ Vprintf("Error from f08jec.\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Print eigenvalues and eigenvectors */
Vprintf("Eigenvalues\n");
for (i = 1; i <= n; ++i)
 Vprintf("%8.4f%s", d[i-1], i%8==0 ?"\n":" ");
Vprintf("\n");
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, z, pdz,
 "Eigenvectors", 0, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from x04cac.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

END:
if (ap) NAG_FREE(ap);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
if (tau) NAG_FREE(tau);
if (z) NAG_FREE(z);

return exit_status;
}

9.2 Program Data

f08gfc Example Program Data
4 :Value of N
'L' :Value of UPLO
2.07
3.87 -0.21
4.20 1.87 1.15
-1.15 0.63 2.06 -1.81 :End of matrix A

9.3 Program Results

f08gfc Example Program Results

Eigenvalues
-5.0034 -1.9987 0.2013 8.0008

Eigenvectors

1 2 3 4
1 0.5658 -0.2328 -0.3965 0.6845
2 -0.3478 0.7994 -0.1780 0.4564
3 -0.4740 -0.4087 0.5381 0.5645
4 0.5781 0.3737 0.7221 0.0676