1 Purpose

nag_zungtr (f08ftc) generates the complex unitary matrix Q, which was determined by nag_zhetrd (f08fsc) when reducing a Hermitian matrix to tridiagonal form.

2 Specification

```c
void nag_zungtr (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex a[],
                 Integer pda, const Complex tau[], NagError *fail)
```

3 Description

nag_zungtr (f08ftc) is intended to be used after a call to nag_zhetrd (f08fsc), which reduces a complex Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity transformation:

$$A = QTQ^H.$$

nag_zhetrd (f08fsc) represents the unitary matrix Q as a product of $n - 1$ elementary reflectors.

This function may be used to generate Q explicitly as a square matrix.

4 References

5 Parameters

1: order – Nag_OrderType

 Input

 On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

 Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: uplo – Nag_UploType

 Input

 On entry: this must be the same parameter uplo as supplied to nag_zhetrd (f08fsc).

 Constraint: uplo = Nag_Upper or Nag_Lower.

3: n – Integer

 Input

 On entry: n, the order of the matrix Q.

 Constraint: $n \geq 0$.

4: a[dim] – Complex

 Input/Output

 Note: the dimension, dim, of the array a must be at least max(1, pda \times n).

 If order = Nag_ColMajor, the (i,j)th element of the matrix A is stored in $a[(j - 1) \times pda + i - 1]$ and if order = Nag_RowMajor, the (i,j)th element of the matrix A is stored in $a[(i - 1) \times pda + j - 1]$.

 On entry: details of the vectors which define the elementary reflectors, as returned by nag_zhetrd (f08fsc).

 On exit: the n by n unitary matrix Q.
5: \textbf{pda} – Integer \hspace{1cm} \textit{Input}

On entry: the stride separating row or column elements (depending on the value of \texttt{order}) of the matrix A in the array \texttt{a}.

\textit{Constraint: pda} \geq \max(1, \texttt{n}).

6: \textbf{tau}[extit{dim}] – const Complex \hspace{1cm} \textit{Input}

\textit{Note:} the dimension, \textit{dim}, of the array \texttt{tau} must be at least \max(1, \texttt{n} - 1).

On entry: further details of the elementary reflectors, as returned by \texttt{nag_zhetrd (f08fsc)}.

7: \textbf{fail} – NagError * \hspace{1cm} \textit{Output}

The NAG error parameter (see the Essential Introduction).

\section{Error Indicators and Warnings}

\textbf{NE_INT}

On entry, $\texttt{n} = \langle\text{value}\rangle$.

\textit{Constraint: n} \geq 0.

On entry, \texttt{pda} = \langle\text{value}\rangle.

\textit{Constraint: pda} \geq 0.

\textbf{NE_INT_2}

On entry, \texttt{pda} = \langle\text{value}\rangle, \texttt{n} = \langle\text{value}\rangle.

\textit{Constraint: pda} \geq \max(1, \texttt{n}).

\textbf{NE_ALLOC_FAIL}

Memory allocation failed.

\textbf{NE_BAD_PARAM}

On entry, parameter \texttt{h_value} had an illegal value.

\textbf{NE_INTERNAL_ERROR}

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

\section{Accuracy}

The computed matrix Q differs from an exactly unitary matrix by a matrix E such that

$$||E||_2 = O(\epsilon),$$

where ϵ is the \textit{machine precision}.

\section{Further Comments}

The total number of real floating-point operations is approximately $\frac{16}{3} n^3$.

The real analogue of this function is \texttt{nag_dorgtr (f08ffc)}.
9 Example

To compute all the eigenvalues and eigenvectors of the matrix A, where

$$
A = \begin{pmatrix}
-2.28 + 0.00i & 1.78 - 2.03i & 2.26 + 0.10i & -0.12 + 2.53i \\
1.78 + 2.03i & -1.12 + 0.00i & 0.01 + 0.43i & -1.07 + 0.86i \\
2.26 - 0.10i & 0.01 - 0.43i & -0.37 + 0.00i & 2.31 - 0.92i \\
-0.12 - 2.53i & -1.07 - 0.86i & 2.31 + 0.92i & -0.73 + 0.00i \\
\end{pmatrix}
$$

Here A is Hermitian and must first be reduced to tridiagonal form by nag_zhetrd (f08fsc). The program then calls nag_zungtr (f08ftc) to form Q, and passes this matrix to nag_zsteqr (f08jsc) which computes the eigenvalues and eigenvectors of A.

9.1 Program Text

```c
/* nag_zungtr (f08ftc) Example Program.  
* Copyright 2001 Numerical Algorithms Group.  
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>
int main(void)
{
    /* Scalars */
    Integer i, j, n, pda, pdz, d_len, e_len, tau_len;
    Integer exit_status=0;
    NagError fail;
    Nag_UploType uplo;
    Nag_OrderType order;
    /* Arrays */
    char uplo_char[2];
    Complex *a=0, *tau=0, *z=0;
    double *d=0, *e=0;
    #ifdef NAG_COLUMN_MAJOR
    #define A(I,J) a[(J-1)*pda+I-1]
    #define Z(I,J) z[(J-1)*pdz+I-1]
    order = Nag_ColMajor;
    #else
    #define A(I,J) a[(I-1)*pda+J-1]
    #define Z(I,J) z[(I-1)*pdz+J-1]
    order = Nag_RowMajor;
    #endif
    INIT_FAIL(fail);
    Vprintf("f08ftc Example Program Results\n");
    /* Skip heading in data file */
    Vscanf("%*[^
" ");
    Vscanf("%ld%*[^
"");
    #ifdef NAG_COLUMN_MAJOR
    pda = n;
    pdz = n;
    #else
    pda = n;
    pdz = n;
    #endif
    tau_len = n-1;
    d_len = n;
    e_len = n-1;
    /* Allocate memory */
```
if (!(a = NAG_ALLOC(n * n, Complex)) ||
 !(tau = NAG_ALLOC(tau_len, Complex)) ||
 !(z = NAG_ALLOC(n * n, Complex)) ||
 !(d = NAG_ALLOC(d_len, double)) ||
 !(e = NAG_ALLOC(e_len, double)))
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Read A from data file */
Vscanf(" ' %1s '%*\[\n\] ", uplo_char);
if (*((unsigned char *)uplo_char == 'L')
 uplo = Nag_Lower;
else if (*((unsigned char *)uplo_char == 'U')
 uplo = Nag_Upper;
else
{
 Vprintf("Unrecognised character for Nag_UploType type\n");
 exit_status = -1;
 goto END;
}
if (uplo == Nag_Upper)
{
 for (i = 1; i <= n; ++i)
 {
 for (j = i; j <= n; ++j)
 Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
 }
}
else
{
 for (i = 1; i <= n; ++i)
 {
 for (j = 1; j <= i; ++j)
 Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
 }
}

/* Reduce A to tridiagonal form T = (Q**H)*A*Q */
f08fsc(order, uplo, n, a, pda, d, e, tau, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08fsc.\n%s
", fail.message);
 exit_status = 1;
 goto END;
}

/* Copy A into Z */
if (uplo == Nag_Upper)
{
 for (i = 1; i <= n; ++i)
 {
 for (j = i; j <= n; ++j)
 {
 Z(i,j).re = A(i,j).re;
 Z(i,j).im = A(i,j).im;
 }
 }
}
else
{
 for (i = 1; i <= n; ++i)
 {
 for (j = 1; j <= i; ++j)
 {
 Z(i,j).re = A(i,j).re;
 Z(i,j).im = A(i,j).im;
 }
 }
}
/* Form Q explicitly, storing the result in Z */
f08ftc(order, uplo, n, z, pdz, tau, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08ftc.\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Calculate all the eigenvalues and eigenvectors of A */
f08jsc(order, Nag_UpdateZ, n, d, e, z, pdz, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08jsc.\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Print eigenvalues and eigenvectors */
Vprintf("\nEigenvalues\n");
for (i = 1; i <= n; ++i)
 Vprintf("%9.4f%s", d[i-1], i%4==0 ?"\n":" ");
Vprintf("\n");
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
 z, pdz, Nag_BracketForm, "%7.4f", "Eigenvectors",
 Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0,
 0, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from x04dbc.\n", fail.message);
 exit_status = 1;
 goto END;
}

END:
if (a) NAG_FREE(a);
if (tau) NAG_FREE(tau);
if (z) NAG_FREE(z);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
return exit_status;

9.2 Program Data

f08ftc Example Program Data

4 :Value of N
'L' :Value of UPLO
(-2.28, 0.00)
(1.78, 2.03) (-1.12, 0.00)
(2.26,-0.10) (0.01,-0.43) (-0.37, 0.00)
(-0.12,-2.53) (-1.07,-0.86) (2.31, 0.92) (-0.73, 0.00) :End of matrix A

9.3 Program Results

f08ftc Example Program Results

Eigenvalues

-6.0002 -3.0030 0.5036 3.9996

Eigenvectors

\n
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7299</td>
<td>-0.2120</td>
<td>0.1000</td>
<td>0.1991</td>
</tr>
<tr>
<td>2</td>
<td>-0.1663</td>
<td>0.7307</td>
<td>0.2863</td>
<td>-0.2467</td>
</tr>
<tr>
<td>3</td>
<td>-0.4165</td>
<td>-0.3291</td>
<td>0.6890</td>
<td>0.4468</td>
</tr>
<tr>
<td>4</td>
<td>0.1743</td>
<td>0.5200</td>
<td>0.0662</td>
<td>0.5612</td>
</tr>
</tbody>
</table>