NAG C Library Function Document

nag_zunglq (f08awc)

1 Purpose

nag_zunglq (f08awc) generates all or part of the complex unitary matrix Q from an LQ factorization computed by nag_zgelqf (f08avc).

2 Specification

void nag_zunglq (Nag_OrderType order, Integer m, Integer n, Integer k, Complex a[], Integer pda, const Complex tau[], NagError *fail)

3 Description

nag_zunglq (f08awc) is intended to be used after a call to nag_zgelqf (f08avc), which performs an LQ factorization of a complex matrix A. The unitary matrix Q is represented as a product of elementary reflectors.

This function may be used to generate Q explicitly as a square matrix, or to form only its leading rows. Usually Q is determined from the LQ factorization of a p by n matrix A with $p \leq n$. The whole of Q may be computed by:

\[
\text{nag_zunglq (order,n,n,p,&a,pda,tau,&fail)}
\]

(note that the array a must have at least n rows) or its leading p rows by:

\[
\text{nag_zunglq (order,p,n,p,&a,pda,tau,&fail)}
\]

The rows of Q returned by the last call form an orthonormal basis for the space spanned by the rows of A; thus nag_zgelqf (f08avc) followed by nag_zunglq (f08awc) can be used to orthogonalise the rows of A.

The information returned by the LQ factorization functions also yields the LQ factorization of the leading k rows of A, where $k < p$. The unitary matrix arising from this factorization can be computed by:

\[
\text{nag_zunglq (order,n,n,k,&a,pda,tau,&fail)}
\]

or its leading k rows by:

\[
\text{nag_zunglq (order,k,n,k,&a,pda,tau,&fail)}
\]

4 References

5 Parameters

1: order – Nag_OrderType

Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: m – Integer

Input

On entry: m, the number of rows of the matrix Q.

Constraint: $m \geq 0$.

3: \(n \) – Integer

Input

On entry: \(n \), the number of columns of the matrix \(Q \).

Constraint: \(n \geq m \).

4: \(k \) – Integer

Input

On entry: \(k \), the number of elementary reflectors whose product defines the matrix \(Q \).

Constraint: \(m \geq k \geq 0 \).

5: \(a[dim] \) – Complex

Input/Output

Note: the dimension, \(dim \), of the array \(a \) must be at least \(\max(1, pda \times n) \) when \(order = \text{Nag_ColMajor} \) and at least \(\max(1, pda \times m) \) when \(order = \text{Nag_RowMajor} \).

If \(order = \text{Nag_ColMajor} \), the \((i, j)\)th element of the matrix \(A \) is stored in \(a[(j - 1) \times pda + i - 1] \) and if \(order = \text{Nag_RowMajor} \), the \((i, j)\)th element of the matrix \(A \) is stored in \(a[(i - 1) \times pda + j - 1] \).

On entry: details of the vectors which define the elementary reflectors, as returned by nag_zgelqf (f08avc).

On exit: the \(m \) by \(n \) matrix \(Q \).

6: \(pda \) – Integer

Input

On entry: the stride separating matrix row or column elements (depending on the value of \(order \)) in the array \(a \).

Constraints:

\[
\begin{align*}
&\text{if } order = \text{Nag_ColMajor}, pda \geq \max(1, m); \\
&\text{if } order = \text{Nag_RowMajor}, pda \geq \max(1, n).
\end{align*}
\]

7: \(\tau[dim] \) – const Complex

Input

Note: the dimension, \(dim \), of the array \(\tau \) must be at least \(\max(1, k) \).

On entry: further details of the elementary reflectors, as returned by nag_zgelqf (f08avc).

8: \(\text{fail} \) – NagError *

Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, \(m = \langle \text{value} \rangle \).

Constraint: \(m \geq 0 \).

On entry, \(pda = \langle \text{value} \rangle \).

Constraint: \(pda > 0 \).

NE_INT_2

On entry, \(n = \langle \text{value} \rangle, m = \langle \text{value} \rangle \).

Constraint: \(n \geq m \).

On entry, \(m = \langle \text{value} \rangle, k = \langle \text{value} \rangle \).

Constraint: \(m \geq k \geq 0 \).

On entry, \(pda = \langle \text{value} \rangle, m = \langle \text{value} \rangle \).

Constraint: \(pda \geq \max(1, m) \).

On entry, \(pda = \langle \text{value} \rangle, n = \langle \text{value} \rangle \).

Constraint: \(pda \geq \max(1, n) \).
NE_ALLOC_FAIL
Memory allocation failed.

NE_BAD_PARAM
On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy
The computed matrix Q differs from an exactly unitary matrix by a matrix E such that

$$
||E||_2 = O(\epsilon),
$$

where ϵ is the machine precision.

8 Further Comments
The total number of real floating-point operations is approximately $16mnk - 8(m + n)k^2 + \frac{16}{3}k^3$; when $m = k$, the number is approximately $\frac{8}{3}m^2(3n - m)$.

The real analogue of this function is nag_dorglq (f08ajc).

9 Example
To form the leading 4 rows of the unitary matrix Q from the LQ factorization of the matrix A, where

$$
A = \begin{pmatrix}
0.28 - 0.36i & 0.50 - 0.86i & -0.77 - 0.48i & 1.58 + 0.66i \\
-0.50 - 1.10i & -1.21 + 0.76i & -0.32 - 0.24i & -0.27 - 1.15i \\
0.36 - 0.51i & -0.07 + 1.33i & -0.75 + 0.47i & -0.08 + 1.01i \\
\end{pmatrix},
$$

The rows of Q form an orthonormal basis for the space spanned by the rows of A.

9.1 Program Text
/* nag_zunglq (f08awc) Example Program. *
 * Copyright 2001 Numerical Algorithms Group. *
 * Mark 7, 2001. */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
 /* Scalars */
 Integer i, j, m, n, pda, tau_len;
 Integer exit_status=0;
 NagError fail;
 Nag_OrderType order;
 /* Arrays */
 char *title=0;
 Complex *a=0, *tau=0;

 #ifdef NAG_COLUMN_MAJOR
 #define A(I,J) a[(J-1)*pda + I-1]
 #else
 #define A(I,J) a[(I-1)*pda + J-1]
 #endif


```c
order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08awc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[\n ]");
Vscanf("%ld%ld%*[\n ]", &m, &n);
#ifdef NAG_COLUMN_MAJOR
pda = m;
#else
pda = n;
#endif
tau_len = m;

/* Allocate memory */
if (!(title = NAG_ALLOC(31, char)) ||
    !(a = NAG_ALLOC(m * n, Complex)) ||
    !(tau = NAG_ALLOC(tau_len, Complex)) )
{
    Vprintf("Allocation failure\n");
    exit_status = -1;
    goto END;
}

/* Read A from data file */
for (i = 1; i <= m; ++i)
{
    for (j = 1; j <= n; ++j)
        Vscanf(" ( %lf , %lf )", &A(i,j).re, &A(i,j).im);
Vscanf("%*[\n ]");

/* Compute the LQ factorization of A */
f08avc(order, m, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)
{
    Vprintf("Error from f08avc.\n%s\n", fail.message);
    exit_status = 1;
    goto END;
}

/* Form the leading M rows of Q explicitly */
f08awc(order, m, n, m, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)
{
    Vprintf("Error from f08awc.\n%s\n", fail.message);
    exit_status = 1;
    goto END;
}

/* Print the leading M rows of Q only */
Vsprintf(title, "The leading %2ld rows of Q\n", m);
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, m, n,
        a, pda, Nag_BracketForm, "%7.4f", title,
        Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR)
{
    Vprintf("Error from x04dbc.\n%s\n", fail.message);
    exit_status = 1;
    goto END;
}
END:
if (title) NAG_FREE(title);
if (a) NAG_FREE(a);
if (tau) NAG_FREE(tau);
```
return exit_status;
}

9.2 Program Data

f08awc Example Program Data

3 4
(0.28,-0.36) (0.50,-0.86) (-0.77,-0.48) (1.58, 0.66)
(-0.50,-1.10) (-1.21, 0.76) (-0.32,-0.24) (-0.27,-1.15)
(0.36,-0.51) (-0.07, 1.33) (-0.75, 0.47) (-0.08, 1.01)

:Values of M and N

End of matrix A

9.3 Program Results

f08awc Example Program Results

The leading 3 rows of Q

1 2 3 4
1 (-0.1258, 0.1618) (-0.2247, 0.3864) (0.3460, 0.2157) (-0.7099,-0.2966)
2 (-0.1163,-0.6380) (-0.3240, 0.4272) (-0.1995,-0.5009) (-0.0323,-0.0162)
3 (-0.4607, 0.1090) (0.2171,-0.4062) (0.2733,-0.6106) (-0.0994,-0.3261)