NAG C Library Function Document

nag_zgelqf (f08avc)

1 Purpose

nag_zgelqf (f08avc) computes the LQ factorization of a complex m by n matrix.

2 Specification

```c
void nag_zgelqf (Nag_OrderType order, Integer m, Integer n, Complex a[],
                   Integer pda, Complex tau[], NagError *fail)
```

3 Description

nag_zgelqf (f08avc) forms the LQ factorization of an arbitrary rectangular complex m by n matrix. No pivoting is performed.

If $m \leq n$, the factorization is given by:

$$A = (L \ 0)Q$$

where L is an m by m lower triangular matrix (with real diagonal elements) and Q is an n by n unitary matrix. It is sometimes more convenient to write the factorization as

$$A = (L \ 0) \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix}$$

which reduces to

$$A = LQ_1,$$

where Q_1 consists of the first m rows of Q, and Q_2 the remaining $n - m$ rows.

If $m > n$, L is trapezoidal, and the factorization can be written

$$A = \begin{pmatrix} L_1 \\ L_2 \end{pmatrix} Q$$

where L_1 is lower triangular and L_2 is rectangular.

The LQ factorization of A is essentially the same as the QR factorization of A^H, since

$$A = (L \ 0)Q \iff A^H = Q^H \begin{pmatrix} L^H \\ 0 \end{pmatrix}.$$

The matrix Q is not formed explicitly but is represented as a product of $\min(m, n)$ elementary reflectors (see the f08 Chapter Introduction for details). Functions are provided to work with Q in this representation (see Section 8).

Note also that for any $k < m$, the information returned in the first k rows of the array a represents an LQ factorization of the first k rows of the original matrix A.

4 References

None.

5 Parameters

1: **order** – Nag_OrderType

 Input

 On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by
\textbf{order} = \texttt{Nag_RowMajor}. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

\textit{Constraint: order} = \texttt{Nag_RowMajor} or \texttt{Nag_ColMajor}.

2: \hspace{1cm} \texttt{m} – Integer \hspace{1cm} \textit{Input}

\textit{On entry:} \texttt{m}, the number of rows of the matrix \texttt{A}.

\textit{Constraint:} \texttt{m} \geq 0.

3: \hspace{1cm} \texttt{n} – Integer \hspace{1cm} \textit{Input}

\textit{On entry:} \texttt{n}, the number of columns of the matrix \texttt{A}.

\textit{Constraint:} \texttt{n} \geq 0.

4: \hspace{1cm} \texttt{a}[\dim] – Complex \hspace{1cm} \textit{Input/Output}

\textit{Note:} the dimension, \texttt{dim}, of the array \texttt{a} must be at least \(\max(1, \texttt{pda} \times \texttt{n})\) when \texttt{order} = \texttt{Nag_ColMajor} and at least \(\max(1, \texttt{pda} \times \texttt{m})\) when \texttt{order} = \texttt{Nag_RowMajor}.

If \texttt{order} = \texttt{Nag_ColMajor}, the \((i,j)\)th element of the matrix \texttt{A} is stored in \texttt{a}[(\texttt{j} - 1) \times \texttt{pda} + i - 1] and if \texttt{order} = \texttt{Nag_RowMajor}, the \((i,j)\)th element of the matrix \texttt{A} is stored in \texttt{a}[(\texttt{i} - 1) \times \texttt{pda} + \texttt{j} - 1].

\textit{On entry:} the \texttt{m} by \texttt{n} matrix \texttt{A}.

\textit{On exit:} if \texttt{m} \leq \texttt{n}, the elements above the diagonal are overwritten by details of the unitary matrix \texttt{Q} and the lower triangle is overwritten by the corresponding elements of the \texttt{m} by \texttt{m} lower triangular matrix \texttt{L}.

If \texttt{m} > \texttt{n}, the strictly upper triangular part is overwritten by details of the unitary matrix \texttt{Q} and the remaining elements are overwritten by the corresponding elements of the \texttt{m} by \texttt{n} lower trapezoidal matrix \texttt{L}.

The diagonal elements of \texttt{L} are real.

5: \hspace{1cm} \texttt{pda} – Integer \hspace{1cm} \textit{Input}

\textit{On entry:} the stride separating matrix row or column elements (depending on the value of \texttt{order}) in the array \texttt{a}.

\textit{Constraints:}

\begin{align*}
\text{if} \hspace{0.1cm} \texttt{order} = \texttt{Nag_ColMajor}, \hspace{0.1cm} \texttt{pda} \geq \max(1, \texttt{m}); \\
\text{if} \hspace{0.1cm} \texttt{order} = \texttt{Nag_RowMajor}, \hspace{0.1cm} \texttt{pda} \geq \max(1, \texttt{n}).
\end{align*}

6: \hspace{1cm} \texttt{tau}[\dim] – Complex \hspace{1cm} \textit{Output}

\textit{Note:} the dimension, \texttt{dim}, of the array \texttt{tau} must be at least \(\max(1, \min(\texttt{m}, \texttt{n}))\).

\textit{On exit:} further details of the unitary matrix \texttt{Q}.

7: \hspace{1cm} \texttt{fail} – \texttt{NagError} * \hspace{1cm} \textit{Output}

The NAG error parameter (see the Essential Introduction).

6 \hspace{1cm} \textbf{Error Indicators and Warnings}

\textbf{NE_INT}

\textit{On entry,} \texttt{m} = \langle \textit{value} \rangle.

\textit{Constraint:} \texttt{m} \geq 0.

\textit{On entry,} \texttt{n} = \langle \textit{value} \rangle.

\textit{Constraint:} \texttt{n} \geq 0.
On entry, \(pda = \langle \text{value} \rangle \).
Constraint: \(pda > 0 \).

NE_INT_2

On entry, \(pda = \langle \text{value} \rangle \), \(m = \langle \text{value} \rangle \).
Constraint: \(pda \geq \text{max}(1, m) \).

On entry, \(pda = \langle \text{value} \rangle \), \(n = \langle \text{value} \rangle \).
Constraint: \(pda \geq \text{max}(1, n) \).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 **Accuracy**

The computed factorization is the exact factorization of a nearby matrix \(A + E \), where
\[
\|E\|_2 = O(\epsilon)\|A\|_2,
\]
and \(\epsilon \) is the *machine precision*.

8 **Further Comments**

The total number of real floating-point operations is approximately \(\frac{4}{3}m^2(3n-m) \) if \(m \leq n \) or \(\frac{4}{3}n^2(3m-n) \) if \(m > n \).

To form the unitary matrix \(Q \) this function may be followed by a call to nag_zunglq (f08awc):
\[
\text{nag_zunglq} (\text{order}, n, n, \text{MIN}(m, n), &a, pda, tau, &\text{fail})
\]
but note that the first dimension of the array \(a \), specified by the parameter \(pda \), must be at least \(n \), which may be larger than was required by nag_zgelqf (f08avc).

When \(m \leq n \), it is often only the first \(m \) rows of \(Q \) that are required, and they may be formed by the call:
\[
\text{nag_zunglq} (\text{order}, m, n, m, &a, pda, tau, &\text{fail})
\]

To apply \(Q \) to an arbitrary complex rectangular matrix \(C \), this function may be followed by a call to nag_zunmlq (f08axc). For example,
\[
\text{nag_zunmlq} (\text{order}, \text{Nag_LeftSide}, \text{Nag_ConjTrans}, m, p, \text{MIN}(m, n), &a, pda, tau, &c, pdc, &\text{fail})
\]
forms the matrix product \(C = Q^H C \), where \(C \) is \(m \) by \(p \).

The real analogue of this function is nag_dgelqf (f08ahc).

9 **Example**

To find the minimum-norm solutions of the under-determined systems of linear equations
\[
Ax_1 = b_1 \quad \text{and} \quad Ax_2 = b_2
\]
where \(b_1 \) and \(b_2 \) are the columns of the matrix \(B \),
\[A = \begin{pmatrix}
0.28 - 0.36i & 0.50 - 0.86i & -0.77 - 0.48i & 1.58 + 0.66i \\
-0.50 - 1.10i & -1.21 + 0.76i & -0.32 - 0.24i & -0.27 - 1.15i \\
0.36 - 0.51i & -0.07 + 1.33i & -0.75 + 0.47i & -0.08 + 1.01i \\
\end{pmatrix} \]

and

\[B = \begin{pmatrix}
-1.35 + 0.19i & 4.83 - 2.67i \\
9.41 - 3.56i & -7.28 + 3.34i \\
-7.57 + 6.93i & 0.62 + 4.53i \\
\end{pmatrix}. \]

9.1 Program Text

/* nag_zgelqf (f08avc) Example Program. *
 * Copyright 2001 Numerical Algorithms Group.
 * Mark 7, 2001. */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf07.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
 /* Scalars */
 Integer i, j, m, n, nrhs, pda, pdb, tau_len;
 Integer exit_status=0;
 NagError fail;
 Nag_OrderType order;
 /* Arrays */
 Complex *a=0, *b=0, *tau=0;

 #ifdef NAG_COLUMN_MAJOR
 #define A(I,J) a[(J-1)*pda+I-1]
 #define B(I,J) b[(J-1)*pdb+I-1]
 order = Nag_ColMajor;
 #else
 #define A(I,J) a[(I-1)*pda+J-1]
 #define B(I,J) b[(I-1)*pdb+J-1]
 order = Nag_RowMajor;
 #endif

 INIT_FAIL(fail);
 Vprintf("f08avc Example Program Results\n\n");

 /* Skip heading in data file */
 Vscanf("%*[\n"]);
 Vscanf("%ld%ld%ld%*[\n"] , &m, &n, &nrhs);

 #ifdef NAG_COLUMN_MAJOR
 pda = m;
 pdb = n;
 #else
 pda = n;
 pdb = nrhs;
 #endif

 tau_len = MIN(m,n);

 /* Allocate memory */
 if (!(a = NAG_ALLOC(m * n, Complex)) ||
 !(b = NAG_ALLOC(n * nrhs, Complex)) ||
 !(tau = NAG_ALLOC(tau_len, Complex)))
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;
}

/* Read A and B from data file */
for (i = 1; i <= m; ++i)
{
 for (j = 1; j <= n; ++j)
 Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
}
Vscanf("%*[\n] ");
for (i = 1; i <= m; ++i)
{
 for (j = 1; j <= nrhs; ++j)
 Vscanf(" (%lf , %lf)", &B(i,j).re, &B(i,j).im);
}
Vscanf("%*[\n] ");

/* Compute the LQ factorization of A */
f08avc(order, m, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08avc.\n", fail.message);
 exit_status = 1;
goto END;
}

/* Solve L*Y = B, storing the result in B */
f07tsc(order, Nag_Lower, Nag_NoTrans, Nag_NonUnitDiag, m, nrhs, a, pda, b, pdb, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f07tsc.\n", fail.message);
 exit_status = 1;
goto END;
}

/* Set rows (M+1) to N of B to zero */
if (m < n)
{
 for (i = m + 1; i <= n; ++i)
 {
 for (j = 1; j <= nrhs; ++j)
 {
 B(i,j).re = 0.0;
 B(i,j).im = 0.0;
 }
 }
}

/* Compute minimum-norm solution X = (Q**H)*B in B */
f08axc(order, Nag_LeftSide, Nag_ConjTrans, n, nrhs, m, a, pda, tau, b, pdb, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08axc.\n", fail.message);
 exit_status = 1;
goto END;
}

/* Print minimum-norm solution(s) */
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b, pdb, Nag_GeneralMatrix, "%7.4f", "Minimum-norm solution(s)", Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from x04dbc.\n", fail.message);
 exit_status = 1;
goto END;
}

END:
if (a) NAG_FREE(a);
if (b) NAG_FREE(b);
if (tau) NAG_FREE(tau);
return exit_status;
}

9.2 Program Data

f08avc Example Program Data

3 4 2 :Values of M, N and NRHS
(0.28,-0.36) (0.50,-0.86) (-0.77,-0.48) (1.58, 0.66)
(-0.50,-1.10) (-1.21, 0.76) (-0.32,-0.24) (-0.27,-1.15)
(0.36,-0.51) (-0.07, 1.33) (-0.75, 0.47) (-0.08, 1.01) :End of matrix A
(-1.35, 0.19) (4.83,-2.67)
(9.41,-3.56) (-7.28, 3.34)
(-7.57, 6.93) (0.62, 4.53) :End of matrix B

9.3 Program Results

f08avc Example Program Results

Minimum-norm solution(s)

1 2
1 (-2.8501, 6.4683) (-1.1682,-1.8886)
2 (1.6264,-0.7799) (2.8377, 0.7654)
3 (6.9290, 4.6481) (-1.7610,-0.7041)
4 (1.4048, 3.2400) (1.0518,-1.6365)