NAG C Library Function Document

nag_zgeqrf (f08asc)

1 Purpose

nag_zgeqrf (f08asc) computes the QR factorization of a complex \(m \times n \) matrix.

2 Specification

void nag_zgeqrf (Nag_OrderType order, Integer m, Integer n, Complex a[], Integer pda, Complex tau[], NagError *fail)

3 Description

nag_zgeqrf (f08asc) forms the QR factorization of an arbitrary rectangular complex \(m \times n \) matrix. No pivoting is performed.

If \(m \geq n \), the factorization is given by:

\[
A = QR
\]

where \(R \) is an \(n \times n \) upper triangular matrix (with real diagonal elements) and \(Q \) is an \(m \times m \) unitary matrix. It is sometimes more convenient to write the factorization as:

\[
A = (Q_1 \quad Q_2) \begin{pmatrix} R \cr 0 \end{pmatrix}
\]

which reduces to

\[
A = Q_1 R,
\]

where \(Q_1 \) consists of the first \(n \) columns of \(Q \), and \(Q_2 \) the remaining \(m - n \) columns.

If \(m < n \), \(R \) is trapezoidal, and the factorization can be written

\[
A = Q(R_1 \quad R_2),
\]

where \(R_1 \) is upper triangular and \(R_2 \) is rectangular.

The matrix \(Q \) is not formed explicitly but is represented as a product of \(\min(m, n) \) elementary reflectors (see the f08 Chapter Introduction for details). Functions are provided to work with \(Q \) in this representation (see Section 8).

Note also that for any \(k < n \), the information returned in the first \(k \) columns of the array \(a \) represents a QR factorization of the first \(k \) columns of the original matrix \(A \).

4 References

5 Parameters

1: order – Nag_OrderType

\textit{Input}

\textit{On entry:} the order parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

\textit{Constraint:} order = Nag_RowMajor or Nag_ColMajor.
2: \(m \) – Integer \hspace{1cm} \text{Input}

\textit{On entry}: \(m \), the number of rows of the matrix \(A \).
\textit{Constraint}: \(m \geq 0 \).

3: \(n \) – Integer \hspace{1cm} \text{Input}

\textit{On entry}: \(n \), the number of columns of the matrix \(A \).
\textit{Constraint}: \(n \geq 0 \).

4: \(a[\text{dim}] \) – Complex \hspace{1cm} \text{Input/Output}

\textit{Note}: the dimension, \(\text{dim} \), of the array \(a \) must be at least \(\max(1, \text{pda} \times n) \) when \(\text{order} = \text{Nag_ColMajor} \) and at least \(\max(1, \text{pda} \times m) \) when \(\text{order} = \text{Nag_RowMajor} \).

If \(\text{order} = \text{Nag_ColMajor} \), the \((i, j)\)th element of the matrix \(A \) is stored in \(a[(j-1) \times \text{pda} + i - 1] \) and if \(\text{order} = \text{Nag_RowMajor} \), the \((i, j)\)th element of the matrix \(A \) is stored in \(a[(i-1) \times \text{pda} + j - 1] \).

\textit{On entry}: the \(m \) by \(n \) matrix \(A \).

\textit{On exit}: if \(m \geq n \), the elements below the diagonal are overwritten by details of the unitary matrix \(Q \) and the upper triangle is overwritten by the corresponding elements of the \(n \) by \(n \) upper triangular matrix \(R \).

If \(m < n \), the strictly lower triangular part is overwritten by details of the unitary matrix \(Q \) and the remaining elements are overwritten by the corresponding elements of the \(m \) by \(n \) upper trapezoidal matrix \(R \).

The diagonal elements of \(R \) are real.

5: \(\text{pda} \) – Integer \hspace{1cm} \text{Input}

\textit{On entry}: the stride separating matrix row or column elements (depending on the value of \text{order}) in the array \(a \).

\textit{Constraints}:

\begin{align*}
\text{if} & \ \text{order} = \text{Nag_ColMajor}, & \text{pda} & \geq \max(1, m); \\
\text{if} & \ \text{order} = \text{Nag_RowMajor}, & \text{pda} & \geq \max(1, n).
\end{align*}

6: \(\text{tau}[\text{dim}] \) – Complex \hspace{1cm} \text{Output}

\textit{Note}: the dimension, \(\text{dim} \), of the array \(\text{tau} \) must be at least \(\min(1, \min(m, n)) \).

\textit{On exit}: further details of the unitary matrix \(Q \).

7: \(\text{fail} \) – NagError * \hspace{1cm} \text{Output}

The NAG error parameter (see the Essential Introduction).

6 \hspace{0.5cm} \textbf{Error Indicators and Warnings}

\textbf{NE_INT}

\textit{On entry}, \(m = \langle \text{value} \rangle \).
\textit{Constraint}: \(m \geq 0 \).

\textit{On entry}, \(n = \langle \text{value} \rangle \).
\textit{Constraint}: \(n \geq 0 \).

\textit{On entry}, \(\text{pda} = \langle \text{value} \rangle \).
\textit{Constraint}: \(\text{pda} > 0 \).
On entry, \(pda = \langle \text{value} \rangle, m = \langle \text{value} \rangle \).
Constraint: \(pda \geq \max(1, m) \).

On entry, \(pda = \langle \text{value} \rangle, n = \langle \text{value} \rangle \).
Constraint: \(pda \geq \max(1, n) \).

NE_ALLOC_FAIL
Memory allocation failed.

NE_BAD_PARAM
On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix \(A + E \), where
\[
\| E \|_2 = O(\epsilon)\| A \|_2,
\]
and \(\epsilon \) is the *machine precision*.

8 Further Comments

The total number of real floating-point operations is approximately \(\frac{8}{3} n^2 (3m - n) \) if \(m \geq n \) or \(\frac{8}{3} m^2 (3n - m) \) if \(m < n \).

To form the unitary matrix \(Q \) this function may be followed by a call to \texttt{nag_zungqr} (f08atc):
\[
\texttt{nag_zungqr}(\text{order},m,m,\text{MIN}(m,n),&a,pda,\tau,&\text{fail})
\]
but note that the second dimension of the array \(a \) must be at least \(m \), which may be larger than was required by \texttt{nag_zgeqrf} (f08asc).

When \(m \geq n \), it is often only the first \(n \) columns of \(Q \) that are required, and they may be formed by the call:
\[
\texttt{nag_zungqr}(\text{order},m,n,n,&a,pda,\tau,&\text{fail})
\]
To apply \(Q \) to an arbitrary complex rectangular matrix \(C \), this function may be followed by a call to \texttt{nag_zunmqr} (f08auc).
\[
\texttt{nag_zunmqr}(\text{order},\text{Nag_LeftSide},\text{Nag_ConjTrans},m,p,\text{MIN}(m,n),&a,pda,\tau,c,c,\text{pdc},&\text{fail})
\]
forms \(C = Q^H C \), where \(C \) is \(m \) by \(p \).

To compute a \(QR \) factorization with column pivoting, use \texttt{nag_zgeqpf} (f08bsc).

The real analogue of this function is \texttt{nag_dgeqrf} (f08aec).

9 Example

To solve the linear least-squares problem
\[
\minimize \| Ax_i - b_i \|_2, \quad i = 1, 2
\]
where \(b_1 \) and \(b_2 \) are the columns of the matrix \(B \),
\[
A = \begin{pmatrix}
0.96 - 0.81i & -0.03 + 0.96i & -0.91 + 2.06i & -0.05 + 0.41i \\
-0.98 + 1.98i & -1.20 + 0.19i & -0.66 + 0.42i & -0.81 + 0.56i \\
0.62 - 0.46i & 1.01 + 0.02i & 0.63 - 0.17i & -1.11 + 0.60i \\
-0.37 + 0.38i & 0.19 - 0.54i & -0.98 - 0.36i & 0.22 - 0.20i \\
0.83 + 0.51i & 0.20 + 0.01i & -0.17 - 0.46i & 1.47 + 1.59i \\
1.08 - 0.28i & 0.20 - 0.12i & -0.07 + 1.23i & 0.26 + 0.26i
\end{pmatrix}
\]

and

\[
B = \begin{pmatrix}
-1.54 + 0.76i & 3.17 - 2.09i \\
0.12 - 1.92i & -6.53 + 4.18i \\
-9.08 - 4.31i & 7.28 + 0.73i \\
7.49 + 3.65i & 0.91 - 3.97i \\
-5.63 - 2.12i & -5.46 - 1.64i \\
2.37 + 8.03i & -2.84 - 5.86i
\end{pmatrix}
\]

9.1 Program Text

/* nag_zgeqrf (f08asc) Example Program.
 * Copyright 2001 Numerical Algorithms Group.
 */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
 /* Scalars */
 Integer i, j, m, n, nrhs, pda, pdb, tau_len;
 Integer exit_status=0;
 NagError fail;
 Nag_OrderType order;
 /* Arrays */
 Complex *a=0, *b=0, *tau=0;

 #ifdef NAG_COLUMN_MAJOR
 #define A(I,J) a[(J-1)*pda+I-1]
 #define B(I,J) b[(J-1)*pdb+I-1]
 order = Nag_ColMajor;
 #else
 #define A(I,J) a[(I-1)*pda+J-1]
 #define B(I,J) b[(I-1)*pdb+J-1]
 order = Nag_RowMajor;
 #endif

 INIT_FAIL(fail);
 Vprintf("f08asc Example Program Results\n");
 /* Skip heading in data file */
 Vscanf("%*[\n"]");
 Vscanf("%ld%ld%ld%*[\n"] , &m, &n, &nrhs);

 #ifdef NAG_COLUMN_MAJOR
 pda = m;
 pdb = m;
 #else
 pda = n;
 pdb = nrhs;
 #endif
 tau_len = MIN(m,n);
}
/* Allocate memory */
if (!(a = NAG_ALLOC(m * n, Complex)) ||
 !(b = NAG_ALLOC(m * nrhs, Complex)) ||
 !(tau = NAG_ALLOC(tau_len, Complex)))
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Read A and B from data file */
for (i = 1; i <= m; ++i)
{
 for (j = 1; j <= n; ++j)
 Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
}
Vscanf("%*[\n]");
for (i = 1; i <= m; ++i)
{
 for (j = 1; j <= nrhs; ++j)
 Vscanf(" (%lf , %lf)", &B(i,j).re, &B(i,j).im);
}
Vscanf("%*[\n]");

/* Compute the QR factorization of A */
f08asc(order, m, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08asc.\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Compute C = (Q**H)*B, storing the result in B */
f08auc(order, Nag_LeftSide, Nag_ConjTrans, m, nrhs, n, a, pda,
 tau, b, pdb, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f08auc.\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Compute least-squares solution by backsubstitution in R*X = C */
f07tsc(order, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, n, nrhs,
 a, pda, b, pdb, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f07tsc.\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Print least-squares solution(s) */
Vprintf("\n");
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b, pdb,
 Nag_BracketForm, "%7.4f", "Least-squares solution(s)",
 Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, 0, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from x04dbc.\n", fail.message);
 exit_status = 1;
 goto END;
}
END:
if (a) NAG_FREE(a);
if (b) NAG_FREE(b);
if (tau) NAG_FREE(tau);
return exit_status;
}
9.2 Program Data

f08asc Example Program Data

Values of M, N and NRHS

<table>
<thead>
<tr>
<th>M</th>
<th>N</th>
<th>NRHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

```
( 0.96, -0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62, -0.46) ( 1.01, 0.02) ( 0.63, -0.17) (-1.11, 0.60)
(-0.37, 0.38) ( 0.19, -0.54) (-0.98, -0.36) ( 0.22, -0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17, -0.46) ( 1.47, 1.59)
( 1.08, -0.28) ( 0.20, -0.12) (-0.07, 1.23) ( 0.26, 0.26)
( 0.62, -0.46) ( 1.01, 0.02) ( 0.63, -0.17) (-1.11, 0.60)
(-0.37, 0.38) ( 0.19, -0.54) (-0.98, -0.36) ( 0.22, -0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17, -0.46) ( 1.47, 1.59)
( 1.08, -0.28) ( 0.20, -0.12) (-0.07, 1.23) ( 0.26, 0.26)
( 0.62, -0.46) ( 1.01, 0.02) ( 0.63, -0.17) (-1.11, 0.60)
(-0.37, 0.38) ( 0.19, -0.54) (-0.98, -0.36) ( 0.22, -0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17, -0.46) ( 1.47, 1.59)
( 1.08, -0.28) ( 0.20, -0.12) (-0.07, 1.23) ( 0.26, 0.26)
```

9.3 Program Results

f08asc Example Program Results

Least-squares solution(s)

```
1  1 (-0.4936, -1.1993) ( 0.7535, 1.4404)
2 (-2.4708, 2.8373) ( 5.1726, -3.6235)
3 ( 1.5060, -2.1830) (-2.6609, 2.1334)
4 ( 0.4459, 2.6848) (-2.6966, 0.2711)
```