NAG C Library Function Document

nag_dorglq (f08ajc)

1 Purpose
nag_dorglq (f08ajc) generates all or part of the real orthogonal matrix Q from an LQ factorization computed by nag_dgelqf (f08ahc).

2 Specification

```c
void nag_dorglq (Nag_OrderType order, Integer m, Integer n, Integer k, double a[],
                Integer pda, const double tau[], NagError *fail)
```

3 Description

nag_dorglq (f08ajc) is intended to be used after a call to nag_dgelqf (f08ahc), which performs an LQ factorization of a real matrix A. The orthogonal matrix Q is represented as a product of elementary reflectors.

This function may be used to generate Q explicitly as a square matrix, or to form only its leading rows. Usually Q is determined from the LQ factorization of a p by n matrix A with $p \leq n$. The whole of Q may be computed by:

```
nag_dorglq (order,n,n,p,&a,pda,tau,&fail)
```

(note that the array a must have at least n rows) or its leading p rows by:

```
nag_dorglq (order,p,n,p,&a,pda,tau,&fail)
```

The rows of Q returned by the last call form an orthonormal basis for the space spanned by the rows of A; thus nag_dgelqf (f08ahc) followed by nag_dorglq (f08ajc) can be used to orthogonalise the rows of A.

The information returned by the LQ factorization functions also yields the LQ factorization of the leading k rows of A, where $k < p$. The orthogonal matrix arising from this factorization can be computed by:

```
nag_dorglq (order,n,n,k,&a,pda,tau,&fail)
```

or its leading k rows by:

```
nag_dorglq (order,k,n,k,&a,pda,tau,&fail)
```

4 References

5 Parameters

1: `order` – Nag_OrderType

 Input

 On entry: the `order` parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by `order = Nag_RowMajor`. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

 Constraint: `order = Nag_RowMajor` or `Nag_ColMajor`.

2: `m` – Integer

 Input

 On entry: m, the number of rows of the matrix Q.

 Constraint: $m \geq 0$.

[NP3645/7]

f08ajc
3: \textbf{n} – Integer \hspace{1cm} \textit{Input}

\textit{On entry:} \textbf{n}, the number of columns of the matrix \(Q\).

\textit{Constraint:} \textbf{n} \geq \textbf{m}.

4: \textbf{k} – Integer \hspace{1cm} \textit{Input}

\textit{On entry:} \textbf{k}, the number of elementary reflectors whose product defines the matrix \(Q\).

\textit{Constraint:} \textbf{m} \geq \textbf{k} \geq 0.

5: \textit{a[dim]} – double \hspace{1cm} \textit{Input/Output}

\textbf{Note:} the dimension, \textit{dim}, of the array \textit{a} must be at least \(\max(1, \textbf{pda} \times \textbf{n})\) when \textit{order} = \texttt{Nag_ColMajor} and at least \(\max(1, \textbf{pda} \times \textbf{m})\) when \textit{order} = \texttt{Nag_RowMajor}.

If \textit{order} = \texttt{Nag_ColMajor}, the \((i, j)\)th element of the matrix \(A\) is stored in \(\textit{a}[\textbf{pda} \times \textbf{i} + \textbf{j} - 1]\) and if \textit{order} = \texttt{Nag_RowMajor}, the \((i, j)\)th element of the matrix \(A\) is stored in \(\textit{a}[\textbf{i} \times \textbf{pda} + \textbf{j} - 1]\).

\textit{On entry:} details of the vectors which define the elementary reflectors, as returned by nag_dgelqf (f08ahc).

\textit{On exit:} the \textbf{m} by \textbf{n} matrix \(Q\).

6: \textbf{pda} – Integer \hspace{1cm} \textit{Input}

\textit{On entry:} the stride separating matrix row or column elements (depending on the value of \textit{order}) in the array \textit{a}.

\textit{Constraints:}

\begin{align*}
\text{if } \textit{order} = \texttt{Nag_ColMajor}, & \quad \textbf{pda} \geq \max(1, \textbf{m}); \\
\text{if } \textit{order} = \texttt{Nag_RowMajor}, & \quad \textbf{pda} \geq \max(1, \textbf{n}).
\end{align*}

7: \textit{tau[dim]} – const double \hspace{1cm} \textit{Input}

\textbf{Note:} the dimension, \textit{dim}, of the array \textit{tau} must be at least \(\max(1, \textbf{k})\).

\textit{On entry:} further details of the elementary reflectors, as returned by nag_dgelqf (f08ahc).

8: \textbf{fail} – NagError * \hspace{1cm} \textit{Output}

The NAG error parameter (see the Essential Introduction).

6 \hspace{0.5cm} \textbf{Error Indicators and Warnings}

\textbf{NE_INT}

\textit{On entry,} \textbf{m} = \langle \text{value} \rangle.

\textit{Constraint:} \textbf{m} \geq 0.

\textit{On entry,} \textbf{pda} = \langle \text{value} \rangle.

\textit{Constraint:} \textbf{pda} > 0.

\textbf{NE_INT_2}

\textit{On entry,} \textbf{n} = \langle \text{value} \rangle, \textbf{m} = \langle \text{value} \rangle.

\textit{Constraint:} \textbf{n} \geq \textbf{m}.

\textit{On entry,} \textbf{m} = \langle \text{value} \rangle, \textbf{k} = \langle \text{value} \rangle.

\textit{Constraint:} \textbf{m} \geq \textbf{k} \geq 0.

\textit{On entry,} \textbf{pda} = \langle \text{value} \rangle, \textbf{m} = \langle \text{value} \rangle.

\textit{Constraint:} \textbf{pda} \geq \max(1, \textbf{m}).

\textit{On entry,} \textbf{pda} = \langle \text{value} \rangle, \textbf{n} = \langle \text{value} \rangle.

\textit{Constraint:} \textbf{pda} \geq \max(1, \textbf{n}).
NE_ALLOC_FAIL
Memory allocation failed.

NE_BAD_PARAM
On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy
The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that
$$
\|E\|_2 = O(\epsilon),
$$
where ϵ is the machine precision.

8 Further Comments
The total number of floating-point operations is approximately $4mnk - 2(m+n)k^2 + \frac{4}{3}k^3$; when $m = k$,
the number is approximately $\frac{2}{3}m^2(3n - m)$.
The complex analogue of this function is nag_zunglq (f08awc).

9 Example
To form the leading 4 rows of the orthogonal matrix Q from the LQ factorization of the matrix A, where
$$
A = \begin{pmatrix}
-5.42 & 3.28 & -3.68 & 0.27 & 2.06 & 0.46 \\
-1.65 & -3.40 & -3.20 & -1.03 & -4.06 & -0.01 \\
-0.37 & 2.35 & 1.90 & 4.31 & -1.76 & 1.13 \\
-3.15 & -0.11 & 1.99 & -2.70 & 0.26 & 4.50
\end{pmatrix}.
$$
The rows of Q form an orthonormal basis for the space spanned by the rows of A.

9.1 Program Text
/* nag_dorglq (f08ajc) Example Program. *
* Copyright 2001 Numerical Algorithms Group.
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
 /* Scalars */
 Integer i, j, m, n, pda, tau_len;
 Integer exit_status=0;
 NagError fail;
 Nag_OrderType order;
 /* Arrays */
 char *title=
 double *a=0, *tau=0;

 /* Other code... */
}
```c
#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I-1]
order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J-1]
order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08ajc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[\n] ");
Vscanf("%ld%ld%*[\n] ", &m, &n);
#ifdef NAG_COLUMN_MAJOR
pda = m;
#else
pda = n;
#endif
tau_len = m;

/* Allocate memory */
if ( !(title = NAG_ALLOC(31, char)) ||
    !(a = NAG_ALLOC(m * n, double)) ||
    !(tau = NAG_ALLOC(m, double)) )
{
    Vprintf("Allocation failure\n");
    exit_status = -1;
    goto END;
}

/* Read A from data file */
for (i = 1; i <= m; ++i)
{
    for (j = 1; j <= n; ++j)
        Vscanf("%lf", &A(i,j));
}
Vscanf("%*[\n] ");

/* Compute the LQ factorization of A */
f08ahc(order, m, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)
{
    Vprintf("Error from f08ahc.\n%s\n", fail.message);
    exit_status = 1;
    goto END;
}

/* Form the leading M rows of Q explicitly */
f08ajc(order, m, n, m, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)
{
    Vprintf("Error from f08ajc.\n%s\n", fail.message);
    exit_status = 1;
    goto END;
}

/* Print the leading M rows of Q only */
Vsprintf(title, "The leading %ld rows of Q\n", m);
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, m, n,
a, pda, title, 0, &fail);
if (fail.code != NE_NOERROR)
{
    Vprintf("Error from x04cac.\n%s\n", fail.message);
    exit_status = 1;
    goto END;
}

END:
if (title) NAG_FREE(title);
if (a) NAG_FREE(a);
```
if (tau) NAG_FREE(tau);

return exit_status;
}

9.2 Program Data

f08ajc Example Program Data
4 6 ;Values of M and N
-5.42 3.28 -3.68 0.27 2.06 0.46
-1.65 -3.40 -3.20 -1.03 -4.06 -0.01
-0.37 2.35 1.90 4.31 -1.76 1.13
-3.15 -0.11 1.99 -2.70 0.26 4.50 ;End of matrix A

9.3 Program Results

f08ajc Example Program Results

The leading 4 rows of Q

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.7104</td>
<td>0.4299</td>
<td>-0.4824</td>
<td>0.0354</td>
<td>0.2700</td>
<td>0.0603</td>
</tr>
<tr>
<td>2</td>
<td>-0.2412</td>
<td>-0.5323</td>
<td>-0.4845</td>
<td>-0.1595</td>
<td>-0.6311</td>
<td>-0.0027</td>
</tr>
<tr>
<td>3</td>
<td>0.1287</td>
<td>-0.2619</td>
<td>-0.2108</td>
<td>-0.7447</td>
<td>0.5227</td>
<td>-0.2063</td>
</tr>
<tr>
<td>4</td>
<td>-0.3403</td>
<td>-0.0921</td>
<td>0.4546</td>
<td>-0.3869</td>
<td>-0.0465</td>
<td>0.7191</td>
</tr>
</tbody>
</table>