NAG C Library Function Document

nag_dgeqrf (f08aec)

1 Purpose

nag_dgeqrf (f08aec) computes the QR factorization of a real m by n matrix.

2 Specification

void nag_dgeqrf (Nag_OrderType order, Integer m, Integer n, double a[],
 Integer pda, double tau[], NagError *fail)

3 Description

nag_dgeqrf (f08aec) forms the QR factorization of an arbitrary rectangular real m by n matrix. No pivoting is performed.

If \(m \geq n \), the factorization is given by:

\[
A = Q \left(\begin{array}{c} R \\ 0 \end{array} \right),
\]

where \(R \) is an \(n \) by \(n \) upper triangular matrix and \(Q \) is an \(m \) by \(m \) orthogonal matrix. It is sometimes more convenient to write the factorization as

\[
A = (Q_1 \quad Q_2) \left(\begin{array}{c} R \\ 0 \end{array} \right),
\]

which reduces to

\[
A = Q_1 R,
\]

where \(Q_1 \) consists of the first \(n \) columns of \(Q \), and \(Q_2 \) the remaining \(m - n \) columns.

If \(m < n \), \(R \) is trapezoidal, and the factorization can be written

\[
A = Q(R_1 \quad R_2),
\]

where \(R_1 \) is upper triangular and \(R_2 \) is rectangular.

The matrix \(Q \) is not formed explicitly but is represented as a product of \(\min(m, n) \) elementary reflectors (see the f08 Chapter Introduction for details). Functions are provided to work with \(Q \) in this representation (see Section 8).

Note also that for any \(k < n \), the information returned in the first \(k \) columns of the array \(a \) represents a QR factorization of the first \(k \) columns of the original matrix \(A \).

4 References

5 Parameters

1: \(\text{order} \) – Nag_OrderType

 \textit{Input}

 On entry: the \text{order} parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by \text{order} = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

 \textit{Constraint}: \text{order} = Nag_RowMajor or Nag_ColMajor.
2: \(m \) – Integer
Input

On entry: \(m \), the number of rows of the matrix \(A \).

Constraint: \(m \geq 0 \).

3: \(n \) – Integer
Input

On entry: \(n \), the number of columns of the matrix \(A \).

Constraint: \(n \geq 0 \).

4: \(a[dim] \) – double
Input/Output

Note: the dimension, \(dim \), of the array \(a \) must be at least \(\max(1, pda \times n) \) when \(order = Nag_{\text{ColMajor}} \) and at least \(\max(1, pda \times m) \) when \(order = Nag_{\text{RowMajor}} \).

If \(order = Nag_{\text{ColMajor}} \), the \((i,j)\)th element of the matrix \(A \) is stored in \(a[(j-1) \times pda + i - 1] \) and if \(order = Nag_{\text{RowMajor}} \), the \((i,j)\)th element of the matrix \(A \) is stored in \(a[(i-1) \times pda + j - 1] \).

On entry: the \(m \) by \(n \) matrix \(A \).

On exit: if \(m \geq n \), the elements below the diagonal are overwritten by details of the orthogonal matrix \(Q \) and the upper triangle is overwritten by the corresponding elements of the \(n \) by \(n \) upper triangular matrix \(R \).

If \(m < n \), the strictly lower triangular part is overwritten by details of the orthogonal matrix \(Q \) and the remaining elements are overwritten by the corresponding elements of the \(m \) by \(n \) upper trapezoidal matrix \(R \).

5: \(\text{pda} \) – Integer
Input

On entry: the stride separating matrix row or column elements (depending on the value of \(order \)) in the array \(a \).

Constraints:

- if \(order = Nag_{\text{ColMajor}} \), \(\text{pda} \geq \max(1, m) \);
- if \(order = Nag_{\text{RowMajor}} \), \(\text{pda} \geq \max(1, n) \).

6: \(\text{tau[dim]} \) – double
Output

Note: the dimension, \(dim \), of the array \(\text{tau} \) must be at least \(\max(1, \min(m, n)) \).

On exit: further details of the orthogonal matrix \(Q \).

7: \(\text{fail} \) – NagError *
Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, \(m = \langle \text{value} \rangle \).

Constraint: \(m \geq 0 \).

On entry, \(n = \langle \text{value} \rangle \).

Constraint: \(n \geq 0 \).

On entry, \(\text{pda} = \langle \text{value} \rangle \).

Constraint: \(\text{pda} > 0 \).

NE_INT_2

On entry, \(\text{pda} = \langle \text{value} \rangle, m = \langle \text{value} \rangle \).

Constraint: \(\text{pda} \geq \max(1, m) \).
On entry, \(pda = \langle \text{value} \rangle, \ n = \langle \text{value} \rangle \).
Constraint: \(pda \geq \max(1, n) \).

NE_ALLOC_FAIL
Memory allocation failed.

NE_BAD_PARAM
On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy
The computed factorization is the exact factorization of a nearby matrix \(A + E \), where
\[
\|E\|_2 = O(\epsilon)\|A\|_2,
\]
and \(\epsilon \) is the *machine precision*.

8 Further Comments
The total number of floating-point operations is approximately \(\frac{2}{3} n^2(3m - n) \) if \(m \geq n \) or \(\frac{2}{3} m^2(3n - m) \) if \(m < n \).
To form the orthogonal matrix \(Q \) this function may be followed by a call to \(\text{nag_dorgqr} \) (f08afc):
\[
\text{nag_dorgqr}(\text{order}, m, m, \text{MIN}(m, n), &a, pda, tau, &fail)
\]
but note that the second dimension of the array \(a \) must be at least \(m \), which may be larger than was required by \(\text{nag_dgeqrf} \) (f08aec).
When \(m \geq n \), it is often only the first \(n \) columns of \(Q \) that are required, and they may be formed by the call:
\[
\text{nag_dorgqr}(\text{order}, m, n, n, &a, pda, tau, &fail)
\]
To apply \(Q \) to an arbitrary real rectangular matrix \(C \), this function may be followed by a call to \(\text{nag_dormqr} \) (f08agc). For example,
\[
\text{nag_dormqr}(\text{order}, \text{Nag_LeftSide}, \text{Nag_Trans}, m, p, \text{MIN}(m, n), &a, pda, tau, &c, pdc, &fail)
\]
forms \(C = Q^T C \), where \(C \) is \(m \) by \(p \).
To compute a \(QR \) factorization with column pivoting, use \(\text{nag_dgeqpf} \) (f08bec).
The complex analogue of this function is \(\text{nag_zgeqrf} \) (f08asc).

9 Example
To solve the linear least-squares problem
\[
\text{minimize } \|Ax_i - b_i\|_2, \quad i = 1, 2
\]
where \(b_1 \) and \(b_2 \) are the columns of the matrix \(B \),
\[
A = \begin{pmatrix}
-0.57 & -1.28 & -0.39 & 0.25 \\
-1.93 & 1.08 & -0.31 & -2.14 \\
2.30 & 0.24 & 0.40 & -0.35 \\
-1.93 & 0.64 & -0.66 & 0.08 \\
0.15 & 0.30 & 0.15 & -2.13 \\
-0.02 & 1.03 & -1.43 & 0.50
\end{pmatrix}
\quad \text{and} \quad
B = \begin{pmatrix}
-3.15 & 2.19 \\
-0.11 & -3.64 \\
1.99 & 0.57 \\
-2.70 & 8.23 \\
0.26 & -6.35 \\
4.50 & -1.48
\end{pmatrix}
\]
9.1 Program Text

/* nag_dgeqrf (f08aec) Example Program. */
* Copyright 2001 Numerical Algorithms Group.
* Mark 7, 2001. */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
 /* Scalars */
 Integer i, j, m, n, nrhs, pda, pdb, tau_len;
 Integer exit_status=0;
 NagError fail;
 Nag_OrderType order;
 /* Arrays */
 double *a=0, *b=0, *tau=0;

 #ifdef NAG_COLUMN_MAJOR
 #define A(I,J) a[(J-1)*pda+I-1]
 #define B(I,J) b[(J-1)*pdb+I-1]
 order = Nag_ColMajor;
 #else
 #define A(I,J) a[(I-1)*pda+J-1]
 #define B(I,J) b[(I-1)*pdb+J-1]
 order = Nag_RowMajor;
 #endif

 INIT_FAIL(fail);
 Vprintf("f08aec Example Program Results

");
 /* Skip heading in data file */
 Vscanf("%*\n");
 Vscanf("%ld%ld%ld%*\n", &m, &n, &nrhs);
 #ifdef NAG_COLUMN_MAJOR
 pda = m;
 pdb = m;
 #else
 pda = n;
 pdb = nrhs;
 #endif
 tau_len = MIN(m,n);

 /* Allocate memory */
 if (!(a = NAG_ALLOC(m * n, double)) ||
 !(b = NAG_ALLOC(m * nrhs, double)) ||
 !(tau = NAG_ALLOC(tau_len, double)))
 {
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 /* Read A and B from data file */
 for (i = 1; i <= m; ++i)
 {
 for (j = 1; j <= n; ++j)
 Vscanf("%lf", &A(i,j));
 }
 Vscanf("%*\n");
 for (i = 1; i <= m; ++i)
 {
 for (j = 1; j <= nrhs; ++j)
 Vscanf("%lf", &B(i,j));
 }

 /* Call nag_dgeqrf */
 /* Call nag_dorgqr */

 /* Postprocess results */
 /* Clean up */
}

END:
exit_status = -1;
return exit_status;
"
```c
Vscanf("%*[\n] ");
/* Compute the QR factorization of A */
f08aec(order, m, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)
{
  Vprintf("Error from f08aec.\n%s\n", fail.message);
  exit_status = 1;
  goto END;
}
/* Compute C = (Q**T)*B, storing the result in B */
f08agc(order, Nag_LeftSide, Nag_Trans, m, nrhs, n, a, tau, b, pdb, &fail);
if (fail.code != NE_NOERROR)
{
  Vprintf("Error from f08agc.\n%s\n", fail.message);
  exit_status = 1;
  goto END;
}
/* Compute least-squares solution by backsubstitution in R*X = C */
f07tec(order, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, n, nrhs, a, pda, b, pdb, &fail);
if (fail.code != NE_NOERROR)
{
  Vprintf("Error from f07tec.\n%s\n", fail.message);
  exit_status = 1;
  goto END;
}
/* Print least-squares solution(s) */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b, pdb,
       "Least-squares solution(s)", 0, &fail);
if (fail.code != NE_NOERROR)
{
  Vprintf("Error from x04cac.\n%s\n", fail.message);
  exit_status = 1;
  goto END;
}
END:
if (a) NAG_FREE(a);
if (b) NAG_FREE(b);
if (tau) NAG_FREE(tau);
return exit_status;
```

9.2 Program Data

f08aec Example Program Data

```plaintext
6 4 2 :Values of M, N and NRHS
-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
 2.30 0.24 0.40 -0.35
-1.93 0.64 -0.66 0.08
 0.15 0.30 0.15 -2.13
-0.02 1.03 -1.43 0.50 :End of matrix A
-3.15 2.19
-0.11 -3.64
 1.99 0.57
-2.70 8.23
 0.26 -6.35
 4.50 -1.48 :End of matrix B
```
9.3 Program Results

f08aec Example Program Results

Least-squares solution(s)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5146</td>
<td>-1.5838</td>
</tr>
<tr>
<td>2</td>
<td>1.8621</td>
<td>0.5536</td>
</tr>
<tr>
<td>3</td>
<td>-1.4467</td>
<td>1.3491</td>
</tr>
<tr>
<td>4</td>
<td>0.0396</td>
<td>2.9600</td>
</tr>
</tbody>
</table>