NAG C Library Function Document

nag_dtbtrs (f07vec)

1 Purpose

nag_dtbtrs (f07vec) solves a real triangular band system of linear equations with multiple right-hand sides,

\[AX = B \] or \[A^T X = B \].

2 Specification

```c
void nag_dtbtrs (Nag_OrderType order, Nag_UploType uplo, Nag_TransType trans,
                Nag_DiagType diag, Integer n, Integer kd, Integer nrhs,
                const double ab[], Integer pdab, double b[], Integer pdb, NagError *fail)
```

3 Description

nag_dtbtrs (f07vec) solves a real triangular band system of linear equations \(AX = B \) or \(A^T X = B \).

4 References

5 Parameters

1: `order` – Nag_OrderType

 On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

 Constraint: `order` = Nag_RowMajor or Nag_ColMajor.

2: `uplo` – Nag_UploType

 On entry: indicates whether \(A \) is upper or lower triangular as follows:

 if uplo = Nag_Upper, \(A \) is upper triangular;

 if uplo = Nag_Lower, \(A \) is lower triangular.

 Constraint: `uplo` = Nag_Upper or Nag_Lower.

3: `trans` – Nag_TransType

 On entry: indicates the form of the equations as follows:

 if trans = Nag_NoTrans, the equations are of the form \(AX = B \);

 if trans = Nag_Trans or Nag_ConjTrans, the equations are of the form \(A^T X = B \).

 Constraint: `trans` = Nag_NoTrans, Nag_Trans or Nag_ConjTrans.

4: `diag` – Nag_DiagType

 On entry: indicates whether \(A \) is a non-unit or unit triangular matrix as follows:
if \(\text{diag} = \text{Nag_NonUnitDiag} \), \(A \) is a non-unit triangular matrix;

if \(\text{diag} = \text{Nag_UnitDiag} \), \(A \) is a unit triangular matrix; the diagonal elements are not referenced and are assumed to be 1.

Constraint: \(\text{diag} = \text{Nag_NonUnitDiag} \) or \(\text{Nag_UnitDiag} \).

5: \(n \) – Integer

\text{Input}

On entry: \(n \), the order of the matrix \(A \).

Constraint: \(n \geq 0 \).

6: \(kd \) – Integer

\text{Input}

On entry: \(k \), the number of super-diagonals of the matrix \(A \) if \(\text{uplo} = \text{Nag_Upper} \) or the number of sub-diagonals if \(\text{uplo} = \text{Nag_Lower} \).

Constraint: \(kd \geq 0 \).

7: \(nrhs \) – Integer

\text{Input}

On entry: \(r \), the number of right-hand sides.

Constraint: \(nrhs \geq 0 \).

8: \(ab[dim] \) – const double

\text{Input}

Note: the dimension, \(dim \), of the array \(ab \) must be at least max(1, \(pdab \times n \)).

On entry: the \(n \) by \(n \) triangular matrix \(A \). This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements \(a_{ij} \) depends on the \textbf{order} and \textbf{uplo} parameters as follows:

- if \(\text{order} = \text{Nag_ColMajor} \) and \(\text{uplo} = \text{Nag_Upper} \),
 \(a_{ij} \) is stored in \(ab[k + i - j + (j - 1) \times pdab], \) for \(i = 1, \ldots, n \) and \(j = i, \ldots, \min(n, i + k) \);

- if \(\text{order} = \text{Nag_ColMajor} \) and \(\text{uplo} = \text{Nag_Lower} \),
 \(a_{ij} \) is stored in \(ab[i - j + (j - 1) \times pdab], \) for \(i = 1, \ldots, n \) and \(j = \max(1, i - k), \ldots, i \);

- if \(\text{order} = \text{Nag_RowMajor} \) and \(\text{uplo} = \text{Nag_Upper} \),
 \(a_{ij} \) is stored in \(ab[j - i + (i - 1) \times pdab], \) for \(i = 1, \ldots, n \) and \(j = i, \ldots, \min(n, i + k) \);

- if \(\text{order} = \text{Nag_RowMajor} \) and \(\text{uplo} = \text{Nag_Lower} \),
 \(a_{ij} \) is stored in \(ab[k + j - i + (i - 1) \times pdab], \) for \(i = 1, \ldots, n \) and \(j = \max(1, i - k), \ldots, i \).

9: \(pdab \) – Integer

\text{Input}

On entry: the stride separating row or column elements (depending on the value of \textbf{order}) of the matrix \(A \) in the array \(ab \).

Constraint: \(pdab \geq kd + 1 \).

10: \(b[dim] \) – double

\text{Input/Output}

Note: the dimension, \(dim \), of the array \(b \) must be at least max(1, \(pdab \times nrhs \)) when \(\text{order} = \text{Nag_ColMajor} \) and at least max(1, \(pdb \times n \)) when \(\text{order} = \text{Nag_RowMajor} \).

If \(\text{order} = \text{Nag_ColMajor} \), the \((i, j) \)th element of the matrix \(B \) is stored in \(b[(j - 1) \times pdb + i - 1] \) and

If \(\text{order} = \text{Nag_RowMajor} \), the \((i, j) \)th element of the matrix \(B \) is stored in \(b[(i - 1) \times pdb + j - 1] \).

On entry: the \(n \) by \(r \) right-hand side matrix \(B \).

On exit: the \(n \) by \(r \) solution matrix \(X \).
11: \(\texttt{pdb} \) – Integer

\textit{Input}

\textit{On entry}: the stride separating matrix row or column elements (depending on the value of \texttt{order}) in the array \(\texttt{b} \).

\textit{Constraints}:

\begin{align*}
\text{if } \texttt{order} = \text{Nag_ColMajor}, & \quad \texttt{pdb} \geq \max(1, \texttt{n}); \\
\text{if } \texttt{order} = \text{Nag_RowMajor}, & \quad \texttt{pdb} \geq \max(1, \texttt{nrhs}).
\end{align*}

12: \(\texttt{fail} \) – NagError *

\textit{Output}

The NAG error parameter (see the Essential Introduction).

6 \quad \textbf{Error Indicators and Warnings}

\textbf{NE_INT}

\textit{On entry}, \(\texttt{n} = \langle \text{value} \rangle \).

\textit{Constraint}: \(\texttt{n} \geq 0 \).

\textit{On entry}, \(\texttt{kd} = \langle \text{value} \rangle \).

\textit{Constraint}: \(\texttt{kd} \geq 0 \).

\textit{On entry}, \(\texttt{nrhs} = \langle \text{value} \rangle \).

\textit{Constraint}: \(\texttt{nrhs} \geq 0 \).

\textit{On entry}, \(\texttt{pdb} = \langle \text{value} \rangle \).

\textit{Constraint}: \(\texttt{pdb} > 0 \).

\textbf{NE_INT_2}

\textit{On entry}, \(\texttt{pdb} = \langle \text{value} \rangle \), \(\texttt{kd} = \langle \text{value} \rangle \).

\textit{Constraint}: \(\texttt{pdb} \geq \texttt{kd} + 1 \).

\textit{On entry}, \(\texttt{pdb} = \langle \text{value} \rangle \), \(\texttt{n} = \langle \text{value} \rangle \).

\textit{Constraint}: \(\texttt{pdb} \geq \max(1, \texttt{n}) \).

\textit{On entry}, \(\texttt{pdb} = \langle \text{value} \rangle \), \(\texttt{nrhs} = \langle \text{value} \rangle \).

\textit{Constraint}: \(\texttt{pdb} \geq \max(1, \texttt{nrhs}) \).

\textbf{NE_SINGULAR}

The matrix \(A \) is singular.

\textbf{NE_ALLOC_FAIL}

Memory allocation failed.

\textbf{NE_BAD_PARAM}

On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.

\textbf{NE_INTERNAL_ERROR}

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 \quad \textbf{Accuracy}

The solutions of triangular systems of equations are usually computed to high accuracy. See Higham (1989).
For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of equations $(A + E)x = b$, where

$$|E| \leq c(k)\epsilon|A|,$$

$c(k)$ is a modest linear function of k, and ϵ is the machine precision.

If \hat{x} is the true solution, then the computed solution x satisfies a forward error bound of the form

$$\frac{\|x - \hat{x}\|_\infty}{\|x\|_\infty} \leq c(k)\text{cond}(A, x)\epsilon, \quad \text{provided} \quad c(k)\text{cond}(A, x)\epsilon < 1,$$

where $\text{cond}(A, x) = \|A^{-1}\|_\infty \|x\|_\infty / \|x\|_\infty$. Note that $\text{cond}(A, x) \leq \text{cond}(A) = \|A^{-1}\|_\infty \|A\|_\infty \leq \kappa_\infty(A)$; $\text{cond}(A, x)$ can be much smaller than $\text{cond}(A)$ and it is also possible for $\text{cond}(A^T)$ to be much larger (or smaller) than $\text{cond}(A)$.

Forward and backward error bounds can be computed by calling nag_dtbrfs (f07vhc), and an estimate for $\kappa_\infty(A)$ can be obtained by calling nag_dtbcn (f07vgc) with $\text{norm} = \text{Nag InfNorm}$.

8 Further Comments

The total number of floating-point operations is approximately $2nk^r$ if $k \ll n$.

The complex analogue of this function is nag_ztbtrs (f07vsc).

9 Example

To solve the system of equations $AX = B$, where

$$A = \begin{pmatrix} -4.16 & 0.00 & 0.00 & 0.00 \\ -2.25 & 4.78 & 0.00 & 0.00 \\ 0.00 & 5.86 & 6.32 & 0.00 \\ 0.00 & 0.00 & -4.82 & 0.16 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} -16.64 & -4.16 \\ -13.78 & -16.59 \\ 13.10 & -4.94 \\ -14.14 & -9.96 \end{pmatrix}.$$

Here A is treated as a lower triangular band matrix with 1 sub-diagonal.

9.1 Program Text

```c
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{
    /* Scalars */
    Integer i, j, k, kd, n, nrhs, pdab, pdb;
    Integer exit_status=0;
    Nag_UploType uplo_enum;
    NagError fail;
    Nag_OrderType order;

    /* Arrays */
    char uplo[2];
    double *ab=0, *b=0;

    #ifdef NAG_COLUMN_MAJOR
    #define AB_UPPER(I,J) ab[(J-1)*pdab + k + I - J - 1]
    #else
    #define AB_UPPER(I,J) ab[(J-1)*pdab + I + J - 1]
    #endif

    //... (rest of the program)
}```
#include "f07vec.h"

#define AB_LOWER(I,J) ab[(J-1)*pdab + I - J]
#define B(I,J) b[(J-1)*pdab + I - 1]

order = Nag_ColMajor;
#endif
#define AB_UPPER(I,J) ab[(I-1)*pdab + J - I]
#define AB_LOWER(I,J) ab[(I-1)*pdab + k + J - I - 1]
#define B(I,J) b[(I-1)*pdab + J - 1]
#endif

#define NAG_COLUMN_MAJOR

INIT_FAIL(fail);
Vprintf("f07vec Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[\n");
Vscanf("%ld%ld%ld%*[\n"] , &n, &kd, &nrhs);
pdab = kd + 1;
#endif
#define NAG_COLUMN_MAJOR

pdb = n;
#else
pdb = nrhs;
#endif

/* Allocate memory */
if ( !(ab = NAG_ALLOC((kd+1) * n, double)) ||
   !(b = NAG_ALLOC(n * nrhs, double)) )
{
   Vprintf("Allocation failure\n");
   exit_status = -1;
   goto END;
}
#endif

/* Read A from data file */
Vscanf("' %s '%*[\n"] , &uplo);
if (*((unsigned char *)uplo == 'L')
   uplo_enum = Nag_Lower;
else if (*((unsigned char *)uplo == 'U')
   uplo_enum = Nag_Upper;
else
   Vprintf("Unrecognised character for Nag_UploType type\n");
   exit_status = -1;
   goto END;
}
k = kd + 1;
if (uplo_enum == Nag_Upper)
{
   for (i = 1; i <= n; ++i)
   {
      for (j = i; j <= MIN(i+kd,n); ++j)
         Vscanf("%lf", &AB_UPPER(i,j));
   }
   Vscanf("%*[\n"] ;
}
else
{
   for (i = 1; i <= n; ++i)
   {
      for (j = MAX(1,i-kd); j <= i; ++j)
         Vscanf("%lf", &AB_LOWER(i,j));
   }
   Vscanf("%*[\n"] ;
}

/* Read B from data file */
for (i = 1; i <= n; ++i)
{
   for (j = 1; j <= nrhs; ++j)
         Vscanf("%lf", &B(i,j));
   Vscanf("%*[\n"] ;
}
/* Compute solution */
f07vec(order, uplo_enum, Nag_NoTrans, Nag_NonUnitDiag, n,
   kd, nrhs, ab, pdab, b, pdb, &fail);
if (fail.code != NE_NOERROR)
   {
      Vprintf("Error from f07vec.\n\n", fail.message);
      exit_status = 1;
      goto END;
   }
/* Print solution */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs,
   b, pdb, "Solution(s)", 0, &fail);
if (fail.code != NE_NOERROR)
   {
      Vprintf("Error from x04cac.\n\n", fail.message);
      exit_status = 1;
      goto END;
   }
END:
if (ab) NAG_FREE(ab);
if (b) NAG_FREE(b);
return exit_status;
}

9.2 Program Data

f07vec Example Program Data
   4 1 2 :Values of N, KD and NRHS
   'L' :Value of UPLO
   -4.16
   -2.25 4.78
   5.86 6.32
   -4.82 0.16 :End of matrix A
   -16.64 -4.16
   -13.78 -16.59
   13.10 -4.94

9.3 Program Results

f07vec Example Program Results

Solution(s)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>2</td>
<td>-1.0000</td>
<td>-3.0000</td>
</tr>
<tr>
<td>3</td>
<td>3.0000</td>
<td>2.0000</td>
</tr>
<tr>
<td>4</td>
<td>2.0000</td>
<td>-2.0000</td>
</tr>
</tbody>
</table>