NAG C Library Function Document

nag_ztrtri (f07twc)

1 Purpose

nag_ztrtri (f07twc) computes the inverse of a complex triangular matrix.

2 Specification

void nag_ztrtri (Nag_OrderType order, Nag_UploType uplo, Nag_DiagType diag, integer n, complex a[], integer pda, NagError *fail)

3 Description

nag_ztrtri (f07twc) forms the inverse of a complex triangular matrix A. Note that the inverse of an upper (lower) triangular matrix is also upper (lower) triangular.

4 References

5 Parameters

1: order – Nag_OrderType

Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: uplo – Nag_UploType

Input

On entry: indicates whether A is upper or lower triangular as follows:

if uplo = Nag_Upper, A is upper triangular;

if uplo = Nag_Lower, A is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: diag – Nag_DiagType

Input

On entry: indicates whether A is a non-unit or unit triangular matrix as follows:

if diag = Nag_NonUnitDiag, A is a non-unit triangular matrix;

if diag = Nag_UnitDiag, A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to be 1.

Constraint: diag = Nag_NonUnitDiag or Nag_UnitDiag.

4: n – Integer

Input

On entry: n, the order of the matrix A.

Constraint: $n \geq 0$.
5: \(a[dim]\) – Complex

Input/Output

Note: the dimension, \(dim\), of the array \(a\) must be at least \(\max(1, pda \times n)\).

If \(order = \text{Nag_ColMajor}\), the \((i,j)\)th element of the matrix \(A\) is stored in \(a[(j-1) \times pda + i - 1]\) and if \(order = \text{Nag_RowMajor}\), the \((i,j)\)th element of the matrix \(A\) is stored in \(a[(i-1) \times pda + j - 1]\).

On entry: the \(n\) by \(n\) triangular matrix \(A\). If \(\text{uplo} = \text{Nag_Upper}\), \(A\) is upper triangular and the elements of the array below the diagonal are not referenced; if \(\text{uplo} = \text{Nag_Lower}\), \(A\) is lower triangular and the elements of the array above the diagonal are not referenced. If \(\text{diag} = \text{Nag_UnitDiag}\), the diagonal elements of \(A\) are not referenced, but are assumed to be 1.

On exit: \(A\) is overwritten by \(A^{-1}\), using the same storage format as described above.

6: \(pda\) – Integer

Input

On entry: the stride separating row or column elements (depending on the value of \(order\)) of the matrix \(A\) in the array \(a\).

Constraint: \(pda \geq \max(1, n)\).

7: \(fail\) – NagError *

Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, \(n = \langle\text{value}\rangle\).

Constraint: \(n \geq 0\).

On entry, \(pda = \langle\text{value}\rangle\).

Constraint: \(pda > 0\).

NE_INT_2

On entry, \(pda = \langle\text{value}\rangle\), \(n = \langle\text{value}\rangle\).

Constraint: \(pda \geq \max(1, n)\).

NE_SINGULAR

\(\alpha(\langle\text{value}\rangle, \langle\text{value}\rangle)\) is zero, and the matrix \(A\) is singular.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter \(\langle\text{value}\rangle\) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

The computed inverse \(X\) satisfies

\[|XA - I| \leq c(n)\varepsilon|X||A|,\]

where \(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.

Note that a similar bound for \(|AX - I|\) cannot be guaranteed, although it is almost always satisfied.
The computed inverse satisfies the forward error bound

\[|X - A^{-1}| \leq c(n)\epsilon|A^{-1}| |A| |X|. \]

8 Further Comments

The total number of real floating-point operations is approximately \(\frac{4}{3}n^3\).

The real analogue of this function is nag_dtrtri (f07tjc).

9 Example

To compute the inverse of the matrix \(A\), where

\[
A = \begin{pmatrix}
4.78 + 4.56i & 0.00 + 0.00i & 0.00 + 0.00i & 0.00 + 0.00i \\
2.00 - 0.30i & -4.11 + 1.25i & 0.00 + 0.00i & 0.00 + 0.00i \\
2.89 - 1.34i & 2.36 - 4.25i & 4.15 + 0.80i & 0.00 + 0.00i \\
-1.89 + 1.15i & 0.04 - 3.69i & -0.02 + 0.46i & 0.33 - 0.26i
\end{pmatrix}
\]

9.1 Program Text

/* nag_ztrtri (f07twc) Example Program. *
 * Copyright 2001 Numerical Algorithms Group. *
 * Mark 7, 2001. */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{
 /* Scalars */
 Integer i, j, n, pda;
 Integer exit_status=0;
 Nag_UploType uplo_enum;
 Nag_MatrixType matrix;

 NagError fail;
 Nag_OrderType order;
 /* Arrays */
 char uplo[2];
 Complex *a=0;

 #ifdef NAG_COLUMN_MAJOR
 pda = n;
 #else
 pda = n;
 #endif

 INIT_FAIL(fail);
 Vprintf("f07twc Example Program Results\n\n");
 /* Skip heading in data file */
 Vscanf("%*[\n"]");
 Vscanf("%ld%*[\n"]", &n);
 #ifdef NAG_COLUMN_MAJOR
 pda = n;
 #else
 pda = n;
 */
#endif

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, Complex)))
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Read A from data file */
Vscanf("' %ls '\n", uplo);
if (*((unsigned char *)uplo == 'L')
{
 uplo_enum = Nag_Lower;
 matrix = Nag_LowerMatrix;
}
else if (*((unsigned char *)uplo == 'U')
{
 uplo_enum = Nag_Upper;
 matrix = Nag_UpperMatrix;
}
else
{
 Vprintf("Unrecognised character for Nag_UploType type\n");
 exit_status = -1;
 goto END;
}

if (uplo_enum == Nag_Upper)
{
 for (i = 1; i <= n; ++i)
 {
 for (j = i; j <= n; ++j)
 Vscanf("(%lf , %lf)", &A(i,j).re, &A(i,j).im);
 }
 Vscanf("\n");
}
else
{
 for (i = 1; i <= n; ++i)
 {
 for (j = 1; j <= i; ++j)
 Vscanf("(%lf , %lf)", &A(i,j).re, &A(i,j).im);
 }
 Vscanf("\n");
}

/* Compute inverse of A */
f07twc(order, uplo_enum, Nag_NonUnitDiag, n, a, pda, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f07twc.\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Print inverse */
x04dbc(order, matrix, Nag_NonUnitDiag, n, n, a, pda,
 Nag_BracketForm, "%7.4f", "Inverse", Nag_IntegerLabels,
 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from x04dbc.\n", fail.message);
 exit_status = 1;
 goto END;
}
END:
if (a) NAG_FREE(a);
return exit_status;

9.2 Program Data

f07twc Example Program Data

\[\begin{align*}
\text{'L'} & : \text{Value of } N \\
(4.78, 4.56) & : \text{Value of } \text{UPLO} \\
(2.00, -0.30) & (-4.11, 1.25) \\
(2.89, -1.34) & (2.36, -4.25) (4.15, 0.80) \\
(-1.89, 1.15) & (0.04, -3.69) (-0.02, 0.46) (0.33, -0.26) : \text{End of matrix } A
\end{align*} \]

9.3 Program Results

f07twc Example Program Results

Inverse

\[\begin{align*}
\text{1} & & \text{2} & & \text{3} & & \text{4} \\
1 & (0.1095, -0.1045) & & & & & \\
2 & (0.0582, -0.0411) & (-0.2227, -0.0677) & & & & \\
3 & (0.0032, 0.1905) & (0.1538, -0.2192) & (0.2323, -0.0448) & & & \\
4 & (0.7602, 0.2814) & (1.6184, -1.4346) & (0.1289, -0.2250) & (1.8697, 1.4731) & &
\end{align*} \]