NAG C Library Function Document
nag_zsptrf (f07qrc)

1 Purpose

nag_zsptrf (f07qrc) computes the Bunch–Kaufman factorization of a complex symmetric matrix, using packed storage.

2 Specification

void nag_zsptrf (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex ap[],
Integer ipiv[], NagError *fail)

3 Description

nag_zsptrf (f07qrc) factorizes a complex symmetric matrix A, using the Bunch–Kaufman diagonal pivoting method and packed storage. A is factorized as either $A = PUDU^TPT$ if $\text{uplo} = \text{Nag}_\text{Upper}$, or $A = PLDL^TPT$ if $\text{uplo} = \text{Nag}_\text{Lower}$, where P is a permutation matrix, U (or L) is a unit upper (or lower) triangular matrix and D is a symmetric block diagonal matrix with 1 by 1 and 2 by 2 diagonal blocks; U (or L) has 2 by 2 unit diagonal blocks corresponding to the 2 by 2 blocks of D. Row and column interchanges are performed to ensure numerical stability while preserving symmetry.

4 References

5 Parameters

1: order – Nag_OrderType

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by $\text{order} = \text{Nag}_\text{RowMajor}$. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: $\text{order} = \text{Nag}_\text{RowMajor}$ or $\text{Nag}_\text{ColMajor}$.

2: uplo – Nag_UploType

On entry: indicates whether the upper or lower triangular part of A is stored and how A is to be factorized, as follows:

if $\text{uplo} = \text{Nag}_\text{Upper}$, the upper triangular part of A is stored and A is factorized as $PUDU^TPT$, where U is upper triangular;

if $\text{uplo} = \text{Nag}_\text{Lower}$, the lower triangular part of A is stored and A is factorized as $PLDL^TPT$, where L is lower triangular.

Constraint: $\text{uplo} = \text{Nag}_\text{Upper}$ or Nag_Lower.

3: n – Integer

On entry: n, the order of the matrix A.

Constraint: $n \geq 0$.

[NP3645/7]
4: \(\text{ap}[\text{dim}] \) – Complex

Input/Output

Note: the dimension, \(\text{dim} \), of the array \(\text{ap} \) must be at least \(\max(1, n \times (n + 1)/2) \).

On entry: the \(n \) by \(n \) symmetric matrix \(A \), packed by rows or columns. The storage of elements \(a_{ij} \) depends on the \(\text{order} \) and \(\text{uplo} \) parameters as follows:

- if \(\text{order} = \text{Nag}_\text{ColMajor} \) and \(\text{uplo} = \text{Nag}_\text{Upper} \),
 \(a_{ij} \) is stored in \(\text{ap}[(j - 1) \times j/2 + i - 1] \), for \(i \leq j \);
- if \(\text{order} = \text{Nag}_\text{ColMajor} \) and \(\text{uplo} = \text{Nag}_\text{Lower} \),
 \(a_{ij} \) is stored in \(\text{ap}[(2n - j) \times (j - 1)/2 + i - 1] \), for \(i \geq j \);
- if \(\text{order} = \text{Nag}_\text{RowMajor} \) and \(\text{uplo} = \text{Nag}_\text{Upper} \),
 \(a_{ij} \) is stored in \(\text{ap}[(i - 1) \times i/2 + j - 1] \), for \(i \leq j \);
- if \(\text{order} = \text{Nag}_\text{RowMajor} \) and \(\text{uplo} = \text{Nag}_\text{Lower} \),
 \(a_{ij} \) is stored in \(\text{ap}[(i - 1) \times i/2 + j - 1] \), for \(i \geq j \).

On exit: \(A \) is overwritten by details of the block diagonal matrix \(D \) and the multipliers used to obtain the factor \(U \) or \(L \) as specified by \(\text{uplo} \).

5: \(\text{ipiv}[\text{dim}] \) – Integer

Output

Note: the dimension, \(\text{dim} \), of the array \(\text{ipiv} \) must be at least \(\max(1, n) \).

On exit: details of the interchanges and the block structure of \(D \).

More precisely, if \(\text{ipiv}[i - 1] = k > 0 \), \(d_k \) is a 1 by 1 pivot block and the \(i \)th row and column of \(A \) were interchanged with the \(k \)th row and column.

- If \(\text{uplo} = \text{Nag}_\text{Upper} \) and \(\text{ipiv}[i - 2] = \text{ipiv}[i - 1] = -l < 0 \), \(\begin{pmatrix} d_{i-1,i-1} & d_{i,i-1} \\ d_{i,i-1} & d_{i,i} \end{pmatrix} \) is a 2 by 2 pivot block and the \((i - 1) \)th row and column of \(A \) were interchanged with the \(l \)th row and column.

- If \(\text{uplo} = \text{Nag}_\text{Lower} \) and \(\text{ipiv}[i - 1] = \text{ipiv}[i] = -m < 0 \), \(\begin{pmatrix} d_{i,i} & d_{i+1,i} \\ d_{i+1,i} & d_{i+1,i+1} \end{pmatrix} \) is a 2 by 2 pivot block and the \((i + 1) \)th row and column of \(A \) were interchanged with the \(m \)th row and column.

6: \(\text{fail} \) – NagError *

Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, \(n = \langle \text{value} \rangle \).

Constraint: \(n \geq 0 \).

NE_SINGULAR

The block diagonal matrix \(D \) is exactly singular.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.
7 Accuracy
If $\text{uplo} = \text{Nag_Upper}$, the computed factors U and D are the exact factors of a perturbed matrix $A + E$, where

$$|E| \leq c(n)\epsilon|U| |D||U^T|P^T,$$

$c(n)$ is a modest linear function of n, and ϵ is the machine precision.

If $\text{uplo} = \text{Nag_Lower}$, a similar statement holds for the computed factors L and D.

8 Further Comments
The elements of D overwrite the corresponding elements of A; if D has 2 by 2 blocks, only the upper or lower triangle is stored, as specified by uplo.

The unit diagonal elements of U or L and the 2 by 2 unit diagonal blocks are not stored. The remaining elements of U or L overwrite elements in the corresponding columns of A, but additional row interchanges must be applied to recover U or L explicitly (this is seldom necessary). If $\text{ipiv}[i-1] = i$, for $i = 1, 2, \ldots, n$, then U or L are stored explicitly in packed form (except for their unit diagonal elements which are equal to 1).

The total number of real floating-point operations is approximately $\frac{4}{3}n^3$.

A call to this function may be followed by calls to the functions:

- $\text{nag_zsptrs (f07qsc)}$ to solve $AX = B$;
- $\text{nag_zspcon (f07quc)}$ to estimate the condition number of A;
- $\text{nag_zsptri (f07qwc)}$ to compute the inverse of A.

The real analogue of this function is $\text{nag_dsptrf (f07pdc)}$.

9 Example
To compute the Bunch–Kaufman factorization of the matrix A, where

$$A = \begin{pmatrix}
-0.39 - 0.71i & 5.14 - 0.64i & -7.86 - 2.96i & 3.80 + 0.92i \\
5.14 - 0.64i & 8.86 + 1.81i & -3.52 + 0.58i & 5.32 - 1.59i \\
-7.86 - 2.96i & -3.52 + 0.58i & -2.83 - 0.03i & -1.54 - 2.86i \\
3.80 + 0.92i & 5.32 - 1.59i & -1.54 - 2.86i & -0.56 + 0.12i
\end{pmatrix},$$

using packed storage.

9.1 Program Text
/* $\text{nag_zsptrf (f07qrc)}$ Example Program. */
/* Copyright 2001 Numerical Algorithms Group. */
/* Mark 7, 2001. */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{
 /* Scalars */
 Integer ap_len, i, j, n;
 Integer exit_status=0;
 NagError fail;
 Nag_UploType uplo_enum;

 [NP3645/7]
Nag_OrderType order;

/* Arrays */
Integer *ipiv=0;
char uplo[2];
Complex *ap=0;

#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I,J) ap[J*(J-1)/2 + I - 1]
#define A_LOWER(I,J) ap[(2*n-J)*(J-1)/2 + I - 1]
order = Nag_ColMajor;
#else
#define A_LOWER(I,J) ap[I*(I-1)/2 + J - 1]
#define A_UPPER(I,J) ap[(2*n-I)*(I-1)/2 + J - 1]
order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f07qrc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[\n] ");
Vscanf("%ld%*[\n] ", &n);
ap_len = n * (n + 1)/2;

/* Allocate memory */
if (!(ipiv = NAG_ALLOC(n, Integer)) ||
 !(ap = NAG_ALLOC(ap_len, Complex)))
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Read A from data file */
Vscanf(" %s '%*[\n] ", &uplo);
if (*((unsigned char *)uplo) == 'L')
 uplo_enum = Nag_Lower;
else if (*((unsigned char *)uplo) == 'U')
 uplo_enum = Nag_Upper;
else
{
 Vprintf("Unrecognised character for Nag_UploType type\n");
 exit_status = -1;
 goto END;
}

if (uplo_enum == Nag_Upper)
{
 for (i = 1; i <= n; ++i)
 {
 for (j = i; j <= n; ++j)
 {
 Vscanf(" (%lf , %lf)", &A_UPPER(i,j).re, &A_UPPER(i,j).im);
 }
 Vscanf("%*[\n] ");
 }
}
else
{
 for (i = 1; i <= n; ++i)
 {
 for (j = 1; j <= i; ++j)
 {
 Vscanf(" (%lf , %lf)", &A_LOWER(i,j).re, &A_LOWER(i,j).im);
 }
 Vscanf("%*[\n] ");
 }
}
/* Factorize A */
f07qrc(order, uplo_enum, n, ap, ipiv, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f07qrc.\n\n", fail.message);
 exit_status = 1;
 goto END;
}
/* Print details of factorization */

x04ddc(order, uplo_enum, Nag_NonUnitDiag, n, ap,
 NagBracketForm, "%7.4f", "Factor", Nag_IntegerLabels,
 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from x04ddc.\n\n", fail.message);
 exit_status = 1;
 goto END;
}
/* Print pivot indices */
Vprintf("\nIPIV\n");
for (i = 1; i <= n; ++i)
 Vprintf("%6ld%s", ipiv[i-1], i%7==0 ?"\n":" ");
Vprintf("\n");

END:
if (ipiv) NAG_FREE(ipiv);
if (ap) NAG_FREE(ap);
return exit_status;

9.2 Program Data

f07qrc Example Program Data
4 :Value of N
'U' :Value of UPLO
(-0.39,-0.71) (5.14,-0.64) (-7.86,-2.96) (3.80, 0.92)
 (8.86, 1.81) (-3.52, 0.58) (5.32,-1.59)
 (-2.83,-0.03) (-1.54,-2.86)
 (-0.56, 0.12) :End of matrix A

9.3 Program Results

f07qrc Example Program Results

<table>
<thead>
<tr>
<th>Factor</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(-0.3900,-0.7100)</td>
<td>(-7.8600,-2.9600)</td>
<td>(0.5279,-0.3715)</td>
<td>(0.4426, 0.1936)</td>
</tr>
<tr>
<td>2</td>
<td>(-2.8300,-0.0300)</td>
<td>(-0.6078, 0.2811)</td>
<td>(-0.1071,-0.3157)</td>
<td>(-2.0954,-2.2011)</td>
</tr>
<tr>
<td>3</td>
<td>(4.4079, 5.3991)</td>
<td>(-0.1071,-0.3157)</td>
<td>(-2.0954,-2.2011)</td>
<td>(-0.0364, 0.7100)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IPIV
-3 -3 3 4