NAG C Library Function Document

nag_zhptrf (f07prc)

1 Purpose

nag_zhptrf (f07prc) computes the Bunch–Kaufman factorization of a complex Hermitian indefinite matrix, using packed storage.

2 Specification

```c
void nag_zhptrf (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex ap[],
               Integer ipiv[], NagError *fail)
```

3 Description

nag_zhptrf (f07prc) factorizes a complex Hermitian matrix A, using the Bunch–Kaufman diagonal pivoting method and packed storage. A is factorized as either $A = PUU^H P^T$ if $\text{uplo} = \text{Nag Upper}$, or $A = PLL^H P^T$ if $\text{uplo} = \text{Nag Lower}$, where P is a permutation matrix, U (or L) is a unit upper (or lower) triangular matrix and D is an Hermitian block diagonal matrix with 1 by 1 and 2 by 2 diagonal blocks; U (or L) has 2 by 2 unit diagonal blocks corresponding to the 2 by 2 blocks of D. Row and column interchanges are performed to ensure numerical stability while keeping the matrix Hermitian.

This method is suitable for Hermitian matrices which are not known to be positive-definite. If A is in fact positive-definite, no interchanges are performed and no 2 by 2 blocks occur in D.

4 References

5 Parameters

1: `order` – Nag_OrderType

Input

On entry: the `order` parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by `order = Nag_RowMajor`. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: `order = Nag_RowMajor` or `Nag_ColMajor`.

2: `uplo` – Nag_UploType

Input

On entry: indicates whether the upper or lower triangular part of A is stored and how A is factorized, as follows:

if `uplo = Nag_Upper`, then the upper triangular part of A is stored and A is factorized as $PUU^H P^T$ where U is upper triangular;

if `uplo = Nag_Lower`, then the lower triangular part of A is stored and A is factorized as $PLL^H P^T$ where L is lower triangular.

Constraint: `uplo = Nag_Upper` or `Nag_Lower`.

3: `n` – Integer

Input

On entry: n, the order of the matrix A.

Constraint: $n \geq 0$.
4: \(\text{ap}[\text{dim}] \) – Complex

Input/Output

Note: the dimension, \(\text{dim} \), of the array \(\text{ap} \) must be at least \(\max(1, n \times (n + 1)/2) \).

On entry: the Hermitian indefinite matrix \(A \), packed by rows or columns. The storage of elements \(a_{ij} \) depends on the \(\text{order} \) and \(\text{uplo} \) parameters as follows:

- **if** \(\text{order} = \text{Nag}_\text{ColMajor} \) and \(\text{uplo} = \text{Nag}_\text{Upper} \),
 \(a_{ij} \) is stored in \(\text{ap}[j(j-1)/2 + i - 1] \), for \(i \leq j \);

- **if** \(\text{order} = \text{Nag}_\text{ColMajor} \) and \(\text{uplo} = \text{Nag}_\text{Lower} \),
 \(a_{ij} \) is stored in \(\text{ap}[(2n-j)(j-1)/2 + i - 1] \), for \(i \geq j \);

- **if** \(\text{order} = \text{Nag}_\text{RowMajor} \) and \(\text{uplo} = \text{Nag}_\text{Upper} \),
 \(a_{ij} \) is stored in \(\text{ap}[(i-1)(i+1)/2 + j - 1] \), for \(i \leq j \);

- **if** \(\text{order} = \text{Nag}_\text{RowMajor} \) and \(\text{uplo} = \text{Nag}_\text{Lower} \),
 \(a_{ij} \) is stored in \(\text{ap}[(i-1)(i+1)/2 + j - 1] \), for \(i \geq j \).

On exit: \(A \) is overwritten by details of the block diagonal matrix \(D \) and the multipliers used to obtain the factor \(U \) or \(L \) as specified by \(\text{uplo} \).

5: \(\text{ipiv}[\text{dim}] \) – Integer

Output

Note: the dimension, \(\text{dim} \), of the array \(\text{ipiv} \) must be at least \(\max(1, n) \).

On exit: details of the interchanges and the block structure of \(D \).

More precisely, if \(\text{ipiv}[i-1] = k > 0 \), \(d_k \) is a 1 by 1 pivot block and the \(i \)th row and column of \(A \) were interchanged with the \(k \)th row and column.

- **If** \(\text{uplo} = \text{Nag}_\text{Upper} \) and \(\text{ipiv}[i-2] = \text{ipiv}[i-1] = -l < 0 \), \(\begin{pmatrix} d_{i-1,i-1} & d_{i,i-1} \\ d_{i,i-1} & d_{ii} \end{pmatrix} \) is a 2 by 2 pivot block and the \((i-1) \)th row and column of \(A \) were interchanged with the \(l \)th row and column.

- **If** \(\text{uplo} = \text{Nag}_\text{Lower} \) and \(\text{ipiv}[i-1] = \text{ipiv}[i] = -m < 0 \), \(\begin{pmatrix} d_{ii} & d_{i+1,i} \\ d_{i+1,i} & d_{i+1,i+1} \end{pmatrix} \) is a 2 by 2 pivot block and the \((i+1) \)th row and column of \(A \) were interchanged with the \(m \)th row and column.

6: \(\text{fail} \) – \text{NagError} *

Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, \(n = \langle \text{value} \rangle \).

Constraint: \(n \geq 0 \).

NE_SINGULAR

The block diagonal matrix \(D \) is exactly singular.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.
7 Accuracy

If $\text{uplo} = \text{Nag}_\text{Upper}$, the computed factors U and D are the exact factors of a perturbed matrix $A + E$, where

$$|E| \leq c(n)\epsilon |U||D||U^H|P^T,$$

$c(n)$ is a modest linear function of n, and ϵ is the machine precision. If $\text{uplo} = \text{Nag}_\text{Lower}$, a similar statement holds for the computed factors L and D.

8 Further Comments

The elements of D overwrite the corresponding elements of A; if D has 2 by 2 blocks, only the upper or lower triangle is stored, as specified by uplo.

The unit diagonal elements of U or L and the 2 by 2 unit diagonal blocks are not stored. The remaining elements of U and L are stored in the corresponding columns of the array ap, but additional row interchanges must be applied to recover U or L explicitly (this is seldom necessary). If $\text{ipiv}[i - 1] = i$, for $i = 1, 2, \ldots, n$ (as is the case when A is positive-definite), then U or L are stored explicitly in packed form (except for their unit diagonal elements which are equal to 1).

The total number of real floating-point operations is approximately $\frac{4}{3}n^3$.

A call to this function may be followed by calls to the functions:

- nag_zhptrs (f07psc) to solve $AX = B$;
- nag_zhpcon (f07puc) to estimate the condition number of A;
- nag_zhptri (f07pwc) to compute the inverse of A.

The real analogue of this function is nag_dsprf (f07pdc).

9 Example

To compute the Bunch–Kaufman factorization of the matrix A, where

$$A = \begin{pmatrix}
-1.36 + 0.00i & 1.58 + 0.90i & 2.21 - 0.21i & 3.91 + 1.50i \\
1.58 - 0.90i & -8.87 + 0.00i & -1.84 - 0.03i & -1.78 + 1.18i \\
2.21 + 0.21i & -1.84 + 0.03i & -4.63 + 0.00i & 0.11 + 0.11i \\
3.91 - 1.50i & -1.78 - 1.18i & 0.11 - 0.11i & -1.84 + 0.00i
\end{pmatrix},$$

using packed storage.

9.1 Program Text

/* nag_zhptrf (f07prc) Example Program.
 * Copyright 2001 Numerical Algorithms Group.
 * Mark 7, 2001. */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{
 /* Scalars */
 Integer ap_len, i, j, n;
 Integer exit_status=0;
 NagError fail;
 Nag_UploType uplo_enum;
 Nag_OrderType order;
/* Arrays */
Integer *ipiv=0;
char uplo[2];
Complex *ap=0;

#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I,J) ap[J*(J-1)/2 + I - 1]
#define A_LOWER(I,J) ap[(2*n-J)*(J-1)/2 + I - 1]
#else
#define A_LOWER(I,J) ap[I*(I-1)/2 + J - 1]
#define A_UPPER(I,J) ap[(2*n-I)*(I-1)/2 + J - 1]
#endif
order = Nag_ColMajor;
#endif

INIT_FAIL(fail);
Vprintf("f07prc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[\n"]);
Vscanf("%ld%*[\n"] , &n);
ap_len = n * (n + 1)/2;

/* Allocate memory */
if (!(ipiv = NAG_ALLOC(n, Integer)) ||
 !(ap = NAG_ALLOC(ap_len, Complex)))
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Read A from data file */
Vscanf("' %1s ' %*[\n"] , uplo);
if (*(unsigned char *)uplo == 'L')
 uplo_enum = Nag_Lower;
else if (*(unsigned char *)uplo == 'U')
 uplo_enum = Nag_Upper;
else
{
 Vprintf("Unrecognised character for Nag_UploType type\n");
 exit_status = -1;
 goto END;
}

if (uplo_enum == Nag_Upper)
{
 for (i = 1; i <= n; ++i)
 {
 for (j = i; j <= n; ++j)
 Vscanf(" (%lf , %lf)", &A_UPPER(i,j).re, &A_UPPER(i,j).im);
 }
 Vscanf("%*[\n ");
}
else
{
 for (i = 1; i <= n; ++i)
 {
 for (j = 1; j <= i; ++j)
 Vscanf(" (%lf , %lf)", &A_LOWER(i,j).re, &A_LOWER(i,j).im);
 }
 Vscanf("%*[\n ");
}

/* Factorize A */
f07prc(order, uplo_enum, n, ap, ipiv, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f07prc.\n", fail.message);
 exit_status = 1;
 goto END;
}
/* Print details of factorization */

x04ddc(order, uplo_enum, Nag_NonUnitDiag, n, ap,
 Nag_BracketForm, "%7.4f", "Factor", Nag_IntegerLabels,
 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from x04ddc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
/* Print pivot indices */
Vprintf("\nIPIV\n");
for (i = 1; i <= n; ++i)
 Vprintf("%6ld%s", ipiv[i-1], i%7==0 ?"\n":" ");
Vprintf("\n");

END:
if (ipiv) NAG_FREE(ipiv);
if (ap) NAG_FREE(ap);
return exit_status;
}

9.2 Program Data
f07prc Example Program Data

4
"U"
:Value of N
('U' :Value of UPLO
(-1.36, 0.00) (1.58, 0.90) (2.21,-0.21) (3.91, 1.50)
(-8.87, 0.00) (-1.84,-0.03) (-1.78, 1.18)
(-4.63, 0.00) (0.11, 0.11)
(-1.84, 0.00) :End of matrix A

9.3 Program Results
f07prc Example Program Results

Factor
 1 (-1.3600, 0.0000) (3.9100, 1.5000) (0.3100,-0.0433) (-0.1518,-0.3743)
 2 (-1.8400, 0.0000) (0.5637,-0.2850) (0.3397,-0.0303)
 3 (-5.4176, 0.0000) (0.2997,-0.1578)
 4 (-7.1028, 0.0000)

IPIV
 -4 -4 3 4