NAG C Library Function Document

nag_dpbcon (f07hgc)

1 Purpose

nag_dpbcon (f07hgc) estimates the condition number of a real symmetric positive-definite band matrix A, where A has been factorized by nag_dpbtrf (f07hdc).

2 Specification

void nag_dpbcon (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer kd, const double ab[], Integer pdab, double anorm, double *rcond, NagError *fail)

3 Description

nag_dpbcon (f07hgc) estimates the condition number (in the 1-norm) of a real symmetric positive-definite band matrix A:

$$
\kappa_1(A) = \|A\|_1 \|A^{-1}\|_1.
$$

Since A is symmetric, $\kappa_1(A) = \kappa_{\infty}(A) = \|A\|_{\infty} \|A^{-1}\|_{\infty}$.

Because $\kappa_1(A)$ is infinite if A is singular, the function actually returns an estimate of the reciprocal of $\kappa_1(A)$.

The function should be preceded by a call to nag_dsb_norm (f16rec) to compute $\|A\|_1$ and a call to nag_dpbtrf (f07hdc) to compute the Cholesky factorization of A. The function then uses Higham’s implementation of Hager’s method (see Higham (1988)) to estimate $\|A^{-1}\|_1$.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Parameters

1: order – Nag_OrderType

 On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

 Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: uplo – Nag_UploType

 On entry: indicates whether A has been factorized as $U^T U$ or LL^T as follows:

 if uplo = Nag_Upper, $A = U^T U$, where U is upper triangular;

 if uplo = Nag_Lower, $A = LL^T$, where L is lower triangular.

 Constraint: uplo = Nag_Upper or Nag_Lower.

3: n – Integer

 On entry: n, the order of the matrix A.

 Constraint: $n \geq 0$.
4: \textbf{kd} – Integer \hfill \textit{Input}

\textit{On entry:} \(k\), the number of super-diagonals or sub-diagonals of the matrix \(A\).
\textit{Constraint:} \(kd \geq 0\).

5: \textbf{ab}[\textit{dim}] – const double \hfill \textit{Input}

\textit{Note:} the dimension, \textit{dim}, of the array \textbf{ab} must be at least \(\max(1, \text{pdab} \times n)\).
\textit{On entry:} the Cholesky factor of \(A\), as returned by \texttt{nag_dpbtrf (f07hdc)}.

6: \textbf{pdab} – Integer \hfill \textit{Input}

\textit{On entry:} the stride separating row or column elements (depending on the value of \textit{order}) of the matrix in the array \textbf{ab}.
\textit{Constraint:} \(pdab \geq kd + 1\).

7: \textbf{anorm} – double \hfill \textit{Input}

\textit{On entry:} the 1-norm of the \textit{original} matrix \(A\), which may be computed by calling \texttt{nag_dsb_norm} (f16rec). \textbf{anorm} must be computed either \textbf{before} calling \texttt{nag_dpbtrf (f07hdc)} or else from a copy of the original matrix \(A\).
\textit{Constraint:} \(anorm \geq 0.0\).

8: \textbf{rcond} – double * \hfill \textit{Output}

\textit{On exit:} an estimate of the reciprocal of the condition number of \(A\). \textbf{rcond} is set to zero if exact singularity is detected or the estimate underflows. If \textbf{rcond} is less than \textit{machine precision}, \(A\) is singular to working precision.

9: \textbf{fail} – NagError * \hfill \textit{Output}

The NAG error parameter (see the Essential Introduction).

6 \quad \textbf{Error Indicators and Warnings}

\textbf{NE_INT}

\textit{On entry,} \textbf{n} = \langle\textit{value}\rangle.
\textit{Constraint:} \textbf{n} \geq 0.

\textit{On entry,} \textbf{kd} = \langle\textit{value}\rangle.
\textit{Constraint:} \textbf{kd} \geq 0.

\textit{On entry,} \textbf{pdab} = \langle\textit{value}\rangle.
\textit{Constraint:} \textbf{pdab} > 0.

\textbf{NE_INT_2}

\textit{On entry,} \textbf{pdab} = \langle\textit{value}\rangle, \textbf{kd} = \langle\textit{value}\rangle.
\textit{Constraint:} \textbf{pdab} \geq \textbf{kd} + 1.

\textbf{NE_REAL}

\textit{On entry,} \textbf{anorm} = \langle\textit{value}\rangle.
\textit{Constraint:} \textbf{anorm} \geq 0.0.

\textbf{NE_ALLOC_FAIL}

Memory allocation failed.
On entry, parameter 'value' had an illegal value.

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

The computed estimate rcond is never less than the true value ρ, and in practice is nearly always less than 10ρ, although examples can be constructed where rcond is much larger.

A call to nag_dpbcon (f07hgc) involves solving a number of systems of linear equations of the form \(Ax = b \); the number is usually 4 or 5 and never more than 11. Each solution involves approximately \(4nk \) floating-point operations (assuming \(n \gg k \)) but takes considerably longer than a call to nag_dpbtrs (f07hec) with 1 right-hand side, because extra care is taken to avoid overflow when \(A \) is approximately singular.

The complex analogue of this function is nag_zpbcon (f07huc).

To estimate the condition number in the 1-norm (or infinity-norm) of the matrix \(A \), where

\[
A = \begin{pmatrix}
5.49 & 2.68 & 0.00 & 0.00 \\
2.68 & 5.63 & -2.39 & 0.00 \\
0.00 & -2.39 & 2.60 & -2.22 \\
0.00 & 0.00 & -2.22 & 5.17
\end{pmatrix}.
\]

Here \(A \) is symmetric and positive-definite, and is treated as a band matrix, which must first be factorized by nag_dpbtrf (f07hdc). The true condition number in the 1-norm is 74.15.

/* nag_dpbcon (f07hgc) Example Program. *
 * Copyright 2001 Numerical Algorithms Group.
 */
#include <stdio.h>
#include <nag.h>
#include <nagf07.h>
#include <nagx02.h>

int main(void)
{
 /* Scalars */
 Integer i, j, k, kd, n, pdab;
 Integer exit_status=0;
 double anorm, rcond;
 NagError fail;
 Nag_UploType uplo_enum;
 Nag_OrderType order;

 /* Arrays */
 char uplo[2];
 double *ab=0;

 // Program code...
#ifdef NAG_COLUMN_MAJOR
#define AB_UPPER(I,J) ab[(J-1)*pdab + k + I - J - 1]
#define AB_LOWER(I,J) ab[(J-1)*pdab + I - J]

order = Nag_ColMajor;
#else
#define AB_UPPER(I,J) ab[(I-1)*pdab + J - I]
#define AB_LOWER(I,J) ab[(I-1)*pdab + k + J - I - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f07hgc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[\n] ");
Vscanf("%ld%ld%*[\n] ", n, &kd);
pdab = kd + 1;

/* Allocate memory */
if (!(ab = NAG_ALLOC((kd+1) * n, double)))
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Read A from data file */
Vscanf(" %1s '%*
] ", uplo);
if (*(unsigned char *)uplo == 'L')
 uplo_enum = Nag_Lower;
else if (*(unsigned char *)uplo == 'U')
 uplo_enum = Nag_Upper;
else
{
 Vprintf("Unrecognised character for Nag_UploType type\n");
 exit_status = -1;
 goto END;
}
k = kd + 1;
if (uplo_enum == Nag_Upper)
{
 for (i = 1; i <= n; ++i)
 {
 for (j = i; j <= MIN(i+kd,n); ++j)
 Vscanf("%lf", &AB_UPPER(i,j));
 }
 Vscanf("%*[\n] ");
}
else
{
 for (i = 1; i <= n; ++i)
 {
 for (j = MAX(1,i-kd); j <= i; ++j)
 Vscanf("%lf", &AB_LOWER(i,j));
 }
 Vscanf("%*[\n] ");
}

/* Compute norm of A */
f16rec(order, Nag_OneNorm, uplo_enum, n, kd, ab, pdab, &anorm, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f16rec.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Factorize A */
f07hdc(order, uplo_enum, n, kd, ab, pdab, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f07hdc.\n%s\n", fail.message);
}
exit_status = 1;
goto END;
}
/* Estimate condition number */
f07hgc(order, uplo_enum, n, kd, ab, pdab, anorm, &rcond, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f07hgc.\n\n", fail.message);
 exit_status = 1;
 goto END;
}
if (rcond >= X02AJC)
 Vprintf("Estimate of condition number =%10.2e\n\n", 1.0/rcond);
else
 Vprintf("A is singular to working precision\n");
END:
 if (ab) NAG_FREE(ab);
 return exit_status;
}

9.2 Program Data
f07hgc Example Program Data
4 1 :Values of N and KD
'L' :Value of UPLO
5.49
 2.68 5.63
 2.39 2.60
-2.22 5.17 :End of matrix A

9.3 Program Results
f07hgc Example Program Results
Estimate of condition number = 7.42e+01