NAG C Library Function Document

nag_zpocon (f07fuc)

1 Purpose

nag_zpocon (f07fuc) estimates the condition number of a complex Hermitian positive-definite matrix A, where A has been factorized by nag_zpotrf (f07frc).

2 Specification

```c
void nag_zpocon (Nag_OrderType order, Nag_UploType uplo, Integer n,
                const Complex a[], Integer pda, double anorm, double *rcond,
                NagError *fail)
```

3 Description

nag_zpocon (f07fuc) estimates the condition number (in the 1-norm) of a complex Hermitian positive-definite matrix A:

$$
\kappa_1(A) = \|A\|_1 \|A^{-1}\|_1.
$$

Since A is Hermitian, $\kappa_1(A) = \kappa_\infty(A) = \|A\|_\infty \|A^{-1}\|_\infty$.

Because $\kappa_1(A)$ is infinite if A is singular, the function actually returns an estimate of the reciprocal of $\kappa_1(A)$.

The function should be preceded by a call to nag_zhe_norm (f16ucc) to compute $\|A\|_1$ and a call to nag_zpotrf (f07frc) to compute the Cholesky factorization of A. The function then uses Higham's implementation of Hager's method (see Higham (1988)) to estimate $\|A^{-1}\|_1$.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Parameters

1: order – Nag_OrderType

- **Input**
- On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.
- **Constraint:** order = Nag_RowMajor or Nag_ColMajor.

2: uplo – Nag_UploType

- **Input**
- On entry: indicates whether A has been factorized as $U^H U$ or LL^H as follows:
 - if uplo = Nag_Upper, $A = U^H U$, where U is upper triangular;
 - if uplo = Nag_Lower, $A = LL^H$, where L is lower triangular.
- **Constraint:** uplo = Nag_Upper or Nag_Lower.

3: n – Integer

- **Input**
- On entry: n, the order of the matrix A.
- **Constraint:** $n \geq 0$.

References:

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation ACM Trans. Math. Software 14 381–396
4. \(\mathbf{a}[\text{dim}] \) – const Complex

Input

Note: the dimension, \(\text{dim} \), of the array \(\mathbf{a} \) must be at least \(\max(1, \mathbf{pda} \times \mathbf{n}) \).

On entry: the Cholesky factor of \(\mathbf{A} \), as returned by nag_zpotrf (f07frc).

5. \(\mathbf{pda} \) – Integer

Input

On entry: the stride separating row or column elements (depending on the value of \(\text{order} \)) of the matrix in the array \(\mathbf{a} \).

Constraint: \(\mathbf{pda} \geq \max(1, \mathbf{n}) \).

6. \(\text{anorm} \) – double

Input

On entry: the 1-norm of the original matrix \(\mathbf{A} \), which may be computed by calling nag_zhe_norm (f16ucc). \(\text{anorm} \) must be computed either before calling nag_zpotrf (f07frc) or else from a copy of the original matrix \(\mathbf{A} \).

Constraint: \(\text{anorm} \geq 0.0 \).

7. \(\text{rcond} \) – double *

Output

On exit: an estimate of the reciprocal of the condition number of \(\mathbf{A} \). \(\text{rcond} \) is set to zero if exact singularity is detected or the estimate underflows. If \(\text{rcond} \) is less than *machine precision*, \(\mathbf{A} \) is singular to working precision.

8. \(\text{fail} \) – NagError *

Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, \(\mathbf{n} = \langle \text{value} \rangle \).

Constraint: \(\mathbf{n} \geq 0 \).

On entry, \(\mathbf{pda} = \langle \text{value} \rangle \).

Constraint: \(\mathbf{pda} > 0 \).

NE_INT_2

On entry, \(\mathbf{pda} = \langle \text{value} \rangle \), \(\mathbf{n} = \langle \text{value} \rangle \).

Constraint: \(\mathbf{pda} \geq \max(1, \mathbf{n}) \).

NE_REAL

On entry, \(\text{anorm} = \langle \text{value} \rangle \).

Constraint: \(\text{anorm} \geq 0.0 \).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.
7 Accuracy

The computed estimate $rcond$ is never less than the true value ρ, and in practice is nearly always less than 10ρ, although examples can be constructed where $rcond$ is much larger.

8 Further Comments

A call to nag_zpocon (f07fuc) involves solving a number of systems of linear equations of the form $Ax = b$; the number is usually 5 and never more than 11. Each solution involves approximately $8n^2$ real floating-point operations but takes considerably longer than a call to nag_zpotrs (f07fsc) with 1 right-hand side, because extra care is taken to avoid overflow when A is approximately singular.

The real analogue of this function is nag_dpocon (f07fgc).

9 Example

To estimate the condition number in the 1-norm (or infinity-norm) of the matrix A, where

$$A = \begin{pmatrix}
3.23 + 0.00i & 1.51 - 1.92i & 1.90 + 0.84i & 0.42 + 2.50i \\
1.51 + 1.92i & 3.58 + 0.00i & -0.23 + 1.11i & -1.18 + 1.37i \\
1.90 - 0.84i & -0.23 - 1.11i & 4.09 + 0.00i & 2.33 - 0.14i \\
0.42 - 2.50i & -1.18 - 1.37i & 2.33 + 0.14i & 4.29 + 0.00i
\end{pmatrix}.$$

Here A is Hermitian positive-definite and must first be factorized by nag_zpotrf (f07frc). The true condition number in the 1-norm is 201.92.

9.1 Program Text

/* nag_zpocon (f07fuc) Example Program. */
/* Copyright 2001 Numerical Algorithms Group. */
/* * Mark 7, 2001. */
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf07.h>
#include <nagal6.h>
#include <nagx02.h>

int main(void)
{
 /* Scalars */
 double anorm, rcond;
 Integer i, j, n, pda;
 Integer exit_status=0;
 Nag_UploType uplo_enum;
 NagError fail;
 Nag_OrderType order;
 /* Arrays */
 char uplo[2];
 Complex *a=0;

 #ifdef NAG_COLUMN_MAJOR
 #define A(I,J) a[(J-1)*pda+I-1]
 order = Nag_ColMajor;
 #else
 #define A(I,J) a[(I-1)*pda+J-1]
 order = Nag_RowMajor;
 #endif

 INIT_FAIL(fail);
 Vprintf("f07fuc Example Program Results\n\n");

}
/* Skip heading in data file */
Vscanf("%*[\n] ");
Vscanf("%ld%*[\n] ", &n);
#endif
pda = n;
#endif
pda = n;
#endif

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, Complex)))
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Read A from data file */
Vscanf(" %ls %*[\n] ", uplo);
if (*(unsigned char *)uplo == 'L')
 uplo_enum = Nag_Lower;
else if (*(unsigned char *)uplo == 'U')
 uplo_enum = Nag_Upper;
else
 {
 Vprintf("Unrecognised character for Nag_UploType type\n");
 exit_status = -1;
 goto END;
 }
if (uplo_enum == Nag_Upper)
{
 for (i = 1; i <= n; ++i)
 {
 for (j = i; j <= n; ++j)
 Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
 }
 Vscanf("%*[\n] ");
}
else
{
 for (i = 1; i <= n; ++i)
 {
 for (j = 1; j <= i; ++j)
 Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
 }
 Vscanf("%*[\n] ");
}

/* Compute norm of A */
f16ucc(order, Nag_OneNorm, uplo_enum, n, a, pda, &anorm, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f16ucc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Factorize A */
f07frc(order, uplo_enum, n, a, pda, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f07frc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Estimate condition number */
f07fuc(order, uplo_enum, n, a, pda, anorm, &rcond, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f07fuc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
if (rcond >= X02AJC)
 Vprintf("Estimate of condition number =%10.2e\n", 1.0/rcond);
else
 Vprintf("A is singular to working precision\n");
END:
if (a) NAG_FREE(a);
return exit_status;
}

9.2 Program Data
f07fuc Example Program Data
4 :Value of N
'L' :Value of UPLO
(3.23, 0.00)
(1.51, 1.92) (3.58, 0.00)
(1.90,-0.84) (-0.23,-1.11) (4.09, 0.00)
(0.42,-2.50) (-1.18,-1.37) (2.33, 0.14) (4.29, 0.00) :End of matrix A

9.3 Program Results
f07fuc Example Program Results
Estimate of condition number = 1.51e+02