NAG C Library Function Document

nag_zgecon (f07auc)

1 Purpose

nag_zgecon (f07auc) estimates the condition number of a complex matrix A, where A has been factorized by nag_zgetrf (f07arc).

2 Specification

```c
void nag_zgecon (Nag_OrderType order, Nag_NormType norm, Integer n,
            const Complex a[], Integer pda, double anorm, double *rcond, NagError *fail)
```

3 Description

nag_zgecon (f07auc) estimates the condition number of a complex matrix A, in either the 1-norm or the infinity-norm:

$$
\kappa_1(A) = \|A\|_1 \|A^{-1}\|_1 \quad \text{or} \quad \kappa_\infty(A) = \|A\|_\infty \|A^{-1}\|_\infty.
$$

Note that $\kappa_\infty(A) = \kappa_1(A^H)$.

Because the condition number is infinite if A is singular, the function actually returns an estimate of the reciprocal of the condition number.

The function should be preceded by a call to nag_zge_norm (f16uac) to compute $\|A\|_1$ or $\|A\|_\infty$, and a call to nag_zgetrf (f07arc) to compute the LU factorization of A. The function then uses Higham’s implementation of Hager’s method (see Higham (1988)) to estimate $\|A^{-1}\|_1$ or $\|A^{-1}\|_\infty$.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Parameters

1: **order** – Nag_OrderType
 On entry: the **order** parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by **order** = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.
 Constraint: **order** = Nag_RowMajor or Nag_ColMajor.

2: **norm** – Nag_NormType
 On entry: indicates whether $\kappa_1(A)$ or $\kappa_\infty(A)$ is estimated as follows:
 if **norm** = Nag_OneNorm, $\kappa_1(A)$ is estimated;
 if **norm** = Nag_InfNorm, $\kappa_\infty(A)$ is estimated.
 Constraint: **norm** = Nag_OneNorm or Nag_InfNorm.

3: **n** – Integer
 On entry: n, the order of the matrix A.
 Constraint: $n \geq 0$.

[NP3645/7]
4: \(a[\text{dim}] \) – const Complex

\textit{Input}

\textbf{Note:} the dimension, \(\text{dim} \), of the array \(a \) must be at least \(\max(1, pda \times n) \).

If \(\text{order} = \text{Nag}_\text{ColMajor} \), the \((i,j)\)th element of the matrix \(A \) is stored in \(a[(j-1) \times pda + i - 1] \) and if \(\text{order} = \text{Nag}_\text{RowMajor} \), the \((i,j)\)th element of the matrix \(A \) is stored in \(a[(i-1) \times pda + j - 1] \).

\textit{On entry:} the \(LU \) factorization of \(A \), as returned by \texttt{nag_zgetrf} (f07arc).

5: \(pda \) – Integer

\textit{Input}

\textit{On entry:} the stride separating matrix row or column elements (depending on the value of \(\text{order} \)) in the array \(a \).

\textbf{Constraint:} \(pda \geq 1 \times n \).

6: \(anorm \) – double

\textit{Input}

\textit{On entry:} if \(\text{norm} = \text{Nag}_\text{OneNorm} \), the 1-norm of the original matrix \(A \); if \(\text{norm} = \text{Nag}_\text{InfNorm} \), the infinity-norm of the original matrix \(A \). \(anorm \) may be computed by calling \texttt{nag_zge_norm} (f16uac) with the same value for the parameter \(\text{norm} \). \(anorm \) must be computed either before calling \texttt{nag_zgetrf} (f07arc) or else from a copy of the original matrix \(A \).

\textbf{Constraint:} \(anorm \geq 0.0 \).

7: \(rcond \) – double *

\textit{Output}

\textit{On exit:} an estimate of the reciprocal of the condition number of \(A \). \(rcond \) is set to zero if exact singularity is detected or the estimate underflows. If \(rcond \) is less than \textit{machine precision}, \(A \) is singular to working precision.

8: \(fail \) – NagError *

\textit{Output}

The NAG error parameter (see the Essential Introduction).

6 \textbf{Error Indicators and Warnings}

\textbf{NE_INT}

\textit{On entry,} \(n = \langle \text{value} \rangle \).

\textbf{Constraint:} \(n \geq 0 \).

\textit{On entry,} \(pda = \langle \text{value} \rangle \).

\textbf{Constraint:} \(pda > 0 \).

\textbf{NE_INT_2}

\textit{On entry,} \(pda = \langle \text{value} \rangle \), \(n = \langle \text{value} \rangle \).

\textbf{Constraint:} \(pda \geq \max(1, n) \).

\textbf{NE_REAL}

\textit{On entry,} \(anorm = \langle \text{value} \rangle \).

\textbf{Constraint:} \(anorm \geq 0.0 \).

\textbf{NE_ALLOC_FAIL}

Memory allocation failed.

\textbf{NE_BAD_PARAM}

\textit{On entry,} parameter \(\langle \text{value} \rangle \) had an illegal value.
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy
The computed estimate rcond is never less than the true value ρ, and in practice is nearly always less than 10ρ, although examples can be constructed where rcond is much larger.

8 Further Comments
A call to nag_zgecon (f07auc) involves solving a number of systems of linear equations of the form $Ax = b$ or $A^Hx = b$; the number is usually 5 and never more than 11. Each solution involves approximately $8n^2$ real floating-point operations but takes considerably longer than a call to nag_zgetrs (f07asc) with 1 right-hand side, because extra care is taken to avoid overflow when A is approximately singular.

The real analogue of this function is nag_dgecon (f07agc).

9 Example
To estimate the condition number in the 1-norm of the matrix A, where

$$A = \begin{pmatrix}
-1.34 + 2.55i & 0.28 + 3.17i & -6.39 - 2.20i & 0.72 - 0.92i \\
-0.17 - 1.41i & 3.31 - 0.15i & -0.15 + 1.34i & 1.29 + 1.38i \\
-3.29 - 2.39i & -1.91 + 4.42i & -0.14 - 1.35i & 1.72 + 1.35i \\
2.41 + 0.39i & -0.56 + 1.47i & -0.83 - 0.69i & -1.96 + 0.67i
\end{pmatrix}$$

Here A is nonsymmetric and must first be factorized by nag_zgetrf (f07arc). The true condition number in the 1-norm is 231.86.

9.1 Program Text

```c
/* nag_zgecon (f07auc) Example Program. */
/* Copyright 2001 Numerical Algorithms Group. */
/* Mark 7, 2001. */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf07.h>
#include <nagf16.h>
#include <nagx02.h>
#include <math.h>

int main(void)
{

    /* Scalars */
    double anorm, rcond;
    Integer exit_status=0;
    Integer i, ipiv_len, j, n, pda;
    NagError fail;
    Nag_OrderType order;
    /* Arrays */
    Complex *a=0;
    Integer *ipiv=0;

    #ifdef NAG_COLUMN_MAJOR
    #define A(I,J) a[(J-1)*pda + I - 1]
    ```
order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f07auc Example Program Results\n\n");
/* Skip heading in data file */
Vscanf("%*[\n] ");
Vscanf("%ld%*[\n] ", &n);

#ifdef NAG_COLUMN_MAJOR
pda = n;
#else
pda = n;
#endif

ipiv_len = n;

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, Complex)) ||
 !(ipiv = NAG_ALLOC(ipiv_len, Integer)))
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Read A from data file */
for (i = 1; i <= n; ++i)
{
 for (j = 1; j <= n; ++j)
 Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
 Vscanf("%*[\n] ");

/* Compute norm of A */
f16uac(order, Nag_OneNorm, n, n, a, pda, &anorm, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f16uac.\n\s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Factorize A */
f07arc(order, n, n, a, pda, ipiv, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f07arc.\n\s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Estimate condition number */
f07auc(order, Nag_OneNorm, n, a, pda, anorm, &rcond, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from f07auc.\n\s\n", fail.message);
 exit_status = 1;
 goto END;
}

if (rcond >= X02AJC)
 Vprintf("Estimate of condition number = %10.2e\n",1.0/rcond);
else
 Vprintf("A is singular to working precision\n");
END:
if (a) NAG_FREE(a);
if (ipiv) NAG_FREE(ipiv);
return exit_status;
}
9.2 Program Data
f07auc Example Program Data

Value of N

(-1.34, 2.55) (0.28, 3.17) (-6.39, -2.20) (0.72, -0.92)
(-0.17, -1.41) (3.31, -0.15) (-0.15, 1.34) (1.29, 1.38)
(-3.29, -2.39) (-1.91, 4.42) (-0.14, -1.35) (1.72, 1.35)
(2.41, 0.39) (-0.56, 1.47) (-0.83, -0.69) (-1.96, 0.67)

:End of matrix A

9.3 Program Results
f07auc Example Program Results

Estimate of condition number = 1.50e+02