nag_complex_qr (f01rcc)

1. Purpose

nag_complex_qr (f01rcc) finds the QR factorization of the complex \(m \) by \(n \) matrix \(A \), where \(m \geq n \).

2. Specification

#include <nag.h>
#include <nagf01.h>

void nag_complex_qr(Integer m, Integer n, Complex a[], Integer tda, Complex theta[], NagError *fail)

3. Description

The \(m \) by \(n \) matrix \(A \) is factorized as

\[
A = Q \begin{pmatrix} R \\ 0 \end{pmatrix} \quad \text{when } m > n \\
A = QR \quad \text{when } m = n
\]

where \(Q \) is an \(m \) by \(m \) unitary matrix and \(R \) is an \(n \) by \(n \) upper triangular matrix with real diagonal elements.

The factorization is obtained by Householder’s method. The \(k \)th transformation matrix, \(Q_k \), which is used to introduce zeros into the \(k \)th column of \(A \) is given in the form

\[
Q_k = \begin{pmatrix} I \\ 0 & T_k \end{pmatrix},
\]

where

\[
T_k = I - \gamma_k u_k u_k^H \\
u_k = \begin{pmatrix} \zeta_k \\ z_k \end{pmatrix},
\]

\(\gamma_k \) is a scalar for which \(\Re \gamma_k = 1.0 \), \(\zeta_k \) is a real scalar and \(z_k \) is an \((m - k) \) element vector. \(\gamma_k \), \(\zeta_k \) and \(z_k \) are chosen to annihilate the elements below the triangular part of \(A \) and to make the diagonal elements real.

The scalar \(\gamma_k \) and the vector \(u_k \) are returned in the \((k - 1)\)th element of the array \(\text{theta} \) and in the \((k - 1)\)th column of \(a \), such that \(\theta_k \), given by

\[
\theta_k = (\zeta_k, \Im \gamma_k),
\]

is in \(\text{theta}[k - 1] \) and the elements of \(z_k \) are in \(a[k][k + 1], \ldots, a[m - 1][k - 1] \). The elements of \(R \) are returned in the upper triangular part of \(A \).

\(Q \) is given by

\[
Q = (Q_n Q_{n-1} \ldots Q_1)^H.
\]

A good background description to the QR factorization is given in Dongarra et al(1979).

4. Parameters

\(m \)

Input: \(m \), the number of rows of \(A \).

Constraint: \(m \geq n \).
nag_complex_qr

- **n**
 - Input: \(n \), the number of columns of \(A \).
 - Constraint: \(n \geq 0 \).
 - When \(n = 0 \) then an immediate return is effected.

- **a[m][tda]**
 - Input: the leading \(m \) by \(n \) part of the array \(a \) must contain the matrix to be factorized.
 - Output: the \(n \) by \(n \) upper triangular part of \(a \) will contain the upper triangular matrix \(R \), with the imaginary parts of the diagonal elements set to zero, and the \(m \) by \(n \) strictly lower triangular part of \(a \) will contain details of the factorization as described above.

- **tda**
 - Input: the second dimension of the array \(a \) as declared in the function from which nag_complex_qr is called.
 - Constraint: \(tda \geq n \).

- **theta[n]**
 - Output: the scalar \(\theta_k \) for the \(k \)th transformation. If \(T_k = I \) then \(\theta[k-1] = 0.0 \); if
 \[
 T_k = \begin{pmatrix}
 \alpha & 0 \\
 0 & 1
 \end{pmatrix}
 \]
 \(\Re \alpha < 0.0 \)
 then \(\theta[k-1] = \alpha \); otherwise \(\theta[k-1] \) contains \(\theta[k-1] \) as described in Section 3 and \(\Re(\theta[k-1]) \) is always in the range \((1.0, \sqrt{2.0})\).

- **fail**
 - The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. **Error Indications and Warnings**

 NE_INT_ARG_LT
 - On entry, \(m = \langle \text{value} \rangle \) while \(n = \langle \text{value} \rangle \). These parameters must satisfy \(m \geq n \).
 - On entry, \(tda = \langle \text{value} \rangle \) while \(n = \langle \text{value} \rangle \). These parameters must satisfy \(tda \geq n \).

6. **Further Comments**

 The approximate number of real floating-point operations is given by \(8n^2(3m - n)/3 \).

 Following the use of this function the operations
 \[
 B := QB \quad \text{and} \quad B := Q^HB
 \]
 where \(B \) is an \(m \) by \(k \) matrix, can be performed by calls to nag_complex_apply_q (f01rdc).

 The operation \(B := QB \) can be obtained by the call:
 \[
 \text{f01rdc(NoTranspose, Nag_ElementsSeparate, m, n, (Complex *) a, tda, theta, k, (Complex *) b, tdb, &fail)}
 \]
 and \(B := Q^HB \) can be obtained by the call:
 \[
 \text{f01rdc(ConjugateTranspose, Nag_ElementsSeparate, m, n, (Complex *) a, tda, theta, k, (Complex *) b, tdb, &fail)}
 \]

 If \(B \) is a one-dimensional array (single column) then the parameter \(tdb \) can be replaced by 1. See nag_complex_apply_q (f01rdc) for further details.

 The first \(k \) columns of the unitary matrix \(Q \) can either be obtained by setting \(B \) to the first \(k \) columns of the unit matrix and using the first of the above two calls, or by calling nag_complex_form_q (f01rec), which overwrites the \(k \) columns of \(Q \) on the first \(k \) columns of the array \(a \). \(Q \) is obtained by the call:
 \[
 \text{f01rec(Nag_ElementsSeparate, m, n, k, (Complex *) a, tda, theta, &fail)}
 \]
 If \(k \) is larger than \(n \), then \(A \) must have been declared to have at least \(k \) columns.
6.1. Accuracy

The computed factors Q and R satisfy the relation

$$Q \begin{pmatrix} R \\ 0 \end{pmatrix} = A + E$$

where $\|E\| \leq c\varepsilon \|A\|$, ε being the \textit{machine precision}, c is a modest function of m and n and $\|.-\|$ denotes the spectral (two) norm.

6.2. References

7. See Also

\texttt{nag_complex_apply_q(f01rdc)}
\texttt{nag_complex_form_q(f01rec)}

8. Example

To obtain the QR factorization of the 5 by 3 matrix

$$A = \begin{pmatrix}
0.5i & -0.5 + 1.5i & -1.0 + 1.0i \\
0.4 + 0.3i & 0.9 + 1.3i & 0.2 + 1.4i \\
0.4 & -0.4 + 0.4i & 1.8 \\
0.3 - 0.4i & 0.1 + 0.7i & 0.0 \\
-0.3i & 0.3 + 0.3i & 2.4i \\
\end{pmatrix}$$

8.1. Program Text

\begin{verbatim}
/* nag_complex_qr(f01rcc) Example Program */
* Copyright 1990 Numerical Algorithms Group.
* Mark 1, 1990.
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagf01.h>
#define MMAX 20
#define NMAX 10
#define TDA NMAX
#define COMPLEX(A) A.re, A.im

main()
{
 Integer i, j, m, n;
 static NagError fail;
 Complex a[MMAX][TDA], theta[NMAX];
 /* Skip heading in data file */
 Vscanf("%*\n");
 Vprintf("f01rcc Example Program Results\n");
 Vscanf("%ld%ld", &m, &n);
 Vprintf("\n");
 if (m>MMAX || n>NMAX)
 {
 Vfprintf(stderr, "m or n is out of range.\n");
 Vfprintf(stderr, "m = %ld n = %ld\n", m, n);
 exit(EXIT_FAILURE);
 }

 \end{verbatim}
for (i=0; i<m; ++i)
 for (j=0; j<n; ++j)
 Vscanf("(%lf , %lf) ", COMPLEX(&a[i][j]));
/* Find the QR factorization of A. */
fail.print = TRUE;
f01rcc(m, n, (Complex *)a, (Integer)TDA, theta, &fail);
if (fail.code != NE_NOERROR)
 exit(EXIT_FAILURE);
Vprintf("QR factorization of A\n");
Vprintf("Vector THETA\n");
for (i=0; i<n; ++i)
 Vprintf(" %7.4f,%8.4f") COMPLEX(theta[i]),
 (i%3==2 || i==n-1) ? "\n" : " ");
Vprintf("\nMatrix A after factorization (upper triangular part is R)\n");
for (i=0; i<m; ++i)
{
 for (j=0; j<n; ++j)
 Vprintf(" %7.4f,%8.4f") COMPLEX(a[i][j]),
 (j%3==2 || j==n-1) ? "\n" : " ");
}
exit(EXIT_SUCCESS);

8.2. Program Data
f01rcc Example Program Data

5 3
(0.0, 0.5) (-0.5, 1.5) (-1.0, 1.0)
(0.4, 0.3) (0.9, 1.3) (0.2, 1.4)
(0.4, 0.0) (-0.4, 0.4) (1.8, 0.0)
(0.3, -0.4) (0.1, 0.7) (0.0, 0.0)
(0.0, -0.3) (0.3, 0.3) (0.0, 2.4)

8.3. Program Results
f01rcc Example Program Results

QR factorization of A
Vector THETA
(1.0000, 0.5000) (1.0954, -0.3333) (1.2649, 0.0000)

Matrix A after factorization (upper triangular part is R)
(1.0000, 0.0000) (1.0000, 1.0000) (1.0000, 1.0000)
(-0.2000, -0.4000) (-0.3000, -0.4000) (0.0000, 0.0000)
(-0.3200, -0.1600) (-0.3505, 0.2629) (-3.0000, 0.0000)
(-0.4000, 0.2000) (0.0000, 0.5477) (0.0000, 0.0000)
(-0.1200, 0.2400) (0.1972, 0.2629) (0.0000, 0.6325)