nag_opt_nlin_lsq (e04unc)

1. Purpose

nag_opt_nlin_lsq (e04unc) is designed to minimize an arbitrary smooth sum of squares function subject to constraints (which may include simple bounds on the variables, linear constraints and smooth nonlinear constraints) using a sequential quadratic programming (SQP) method. As many first derivatives as possible should be supplied by the user; any unspecified derivatives are approximated by finite differences. It is not intended for large sparse problems.

nag_opt_nlin_lsq may also be used for unconstrained, bound-constrained and linearly constrained optimization.

2. Specification

```c
#include <nag.h>
#include <nage04.h>

void nag_opt_nlin_lsq(Integer m, Integer n, Integer nclin, Integer ncnlin,
                       double a[], Integer tda,
                       double bl[], double bu[], double y[],
                       void (*objfun)(Integer m, Integer n, double x[],
                                      double f[], double fjac[], Nag_Comm *comm),
                       void (*confun)(Integer n, Integer ncnlin, Integer needc[],
                                      double x[], double conf[], double conjac[],
                                      Nag_Comm *comm),
                       double x[], double *objf, double f[], double fjac[],
                       Integer tdfjac, Nag_E04_Opt *options, Nag_Comm *comm,
                       NagError *fail)
```

3. Description

nag_opt_nlin_lsq is designed to solve the nonlinear least-squares programming problem – the minimization of a smooth nonlinear sum of squares function subject to a set of constraints on the variables. The problem is assumed to be stated in the following form:

\[
\begin{align*}
\text{minimize} & \quad F(x) = \frac{1}{2} \sum_{i=1}^{m} (y_i - f_i(x))^2 \\
\text{subject to} & \quad l \leq \begin{bmatrix} x \, A_L x \\ c(x) \end{bmatrix} \leq u,
\end{align*}
\]

where \(F(x) \) (the objective function) is a nonlinear function which can be represented as the sum of squares of \(m \) subfunctions \((y_1 - f_1(x)), (y_2 - f_2(x)), \ldots, (y_m - f_m(x))\), the \(y_i \) are constant, \(A_L \) is an \(n_L \) by \(n \) constant matrix, and \(c(x) \) is an \(n_N \) element vector of nonlinear constraint functions. (The matrix \(A_L \) and the vector \(c(x) \) may be empty.) The objective function and the constraint functions are assumed to be smooth, i.e., at least twice-continuously differentiable. (The method of nag_opt_nlin_lsq will usually solve (1) if there are only isolated discontinuities away from the solution.)

Note that although the bounds on the variables could be included in the definition of the linear constraints, we prefer to distinguish between them for reasons of computational efficiency. For the same reason, the linear constraints should not be included in the definition of the nonlinear constraints. Upper and lower bounds are specified for all the variables and for all the constraints. An equality constraint can be specified by setting \(l_i = u_i \). If certain bounds are not present, the associated elements of \(l \) or \(u \) can be set to special values that will be treated as \(-\infty\) or \(+\infty\). (See the description of the optional parameter `inf_bound` in Section 8.2.)

If there are no nonlinear constraints in (1) and \(F \) is linear or quadratic, then one of nag_opt_lp (e04mfc), nag_opt_lin_lsq (e04ncc) or nag_opt_qp (e04nfc) will generally be more efficient.

The user must supply an initial estimate of the solution to (1), together with functions that define \(f(x) = (f_1(x), f_2(x), \ldots, f_m(x))^T, c(x) \) and as many first partial derivatives as possible; unspecified derivatives are approximated by finite differences.

The subfunctions are defined by the array \(y \) and function `objfun`, and the nonlinear constraints are defined by the function `confun`. On every call, these functions must return appropriate values
of \(f(x) \) and \(c(x) \). The user should also provide the available partial derivatives. Any unspecified derivatives are approximated by finite differences; see Section 8.2 for a discussion of the optional parameters `obj_deriv` and `con_deriv`. Just before either `objfun` or `confun` is called, each element of the current gradient array `fjac` or `conjac` is initialized to a special value. On exit, any element that retains the value is estimated by finite differences. Note that if there are any nonlinear constraints, then the first call to `confun` will precede the first call to `objfun`.

For maximum reliability, it is preferable for the user to provide all partial derivatives (see Chapter 8 of Gill et al. (1981) for a detailed discussion). If all gradients cannot be provided, it is similarly advisable to provide as many as possible. While developing the functions `objfun` and `confun`, the optional parameter `verify_grad` (see Section 8.2) should be used to check the calculation of any known gradients.

`nag_opt_nlin_lsq` is based on upon `nag_opt_nlp (e04ucc)`; see Section 7 of the documentation for `nag_opt_nlp (e04ucc)` for details of the algorithm.

4. Parameters

\(m \)
- Input: \(m \), the number of subfunctions associated with \(F(x) \).
- Constraint: \(m > 0 \).

\(n \)
- Input: \(n \), the number of variables.
- Constraint: \(n > 0 \).

\(nclin \)
- Input: \(n_L \), the number of general linear constraints.
- Constraint: \(nclin \geq 0 \).

\(ncnlin \)
- Input: \(n_N \), the number of nonlinear constraints.
- Constraint: \(ncnlin \geq 0 \).

\(a[nclin][tda] \)
- Input: the \(i \)th row of \(a \) must contain the coefficients of the \(i \)th general linear constraint (the \(i \)th row of the matrix \(A_L \) in (1)), for \(i = 1, 2, \ldots, n_L \).
- If \(nclin = 0 \) then the array \(a \) is not referenced.

\(tda \)
- Input: the second dimension of the array \(a \) as declared in the function from which `nag_opt_nlin_lsq` is called.
- Constraint: \(tda \geq n \) if \(nclin > 0 \).

\(bl[n+nclin+ncnlin] \)

\(bu[n+nclin+ncnlin] \)
- Input: \(bl \) must contain the lower bounds and \(bu \) the upper bounds, for all the constraints in the following order. The first \(n \) elements of each array must contain the bounds on the variables, the next \(n_L \) elements the bounds for the general linear constraints (if any), and the next \(n_N \) elements the bounds for the nonlinear constraints (if any). To specify a non-existent lower bound (i.e., \(l_j = -\infty \)), set \(bl[j-1] = -\infty \), and to specify a non-existent upper bound (i.e., \(u_j = +\infty \)), set \(bu[j-1] \geq \infty \), where \(\infty \) is one of the optional parameters (default value \(10^{20} \), see Section 8.2). To specify the \(j \)th constraint as an equality, set \(bl[j-1] = bu[j-1] = \beta \), say, where \(|\beta| < \infty \).
- Constraints:
 - \(bl[j] \leq bu[j] \), for \(j = 0, 1, \ldots, n+nclin+ncnlin-1 \),
 - \(|\beta| < \infty \) when \(bl[j] = bu[j] = \beta \).

\(y[m] \)
- Input: the coefficients of the constant vector \(y \) in the objective function.
e04 – Minimizing or Maximizing a Function

objfun

`objfun` must calculate the vector \(f(x) \) of subfunctions and (optionally) its Jacobian \((= \partial f/\partial x) \) for a specified \(n \) element vector \(x \).

The specification for `objfun` is:

```c
void objfun(Integer m, Integer n, double x[], double f[],
            double fjac[], Integer tdfjac, Nag_Comm *comm)
```

- **m**
 Input: \(m \), the number of subfunctions.

- **n**
 Input: \(n \), the number of variables.

- **x[n]**
 Input: \(x \), the vector of variables at which \(f(x) \) and/or all available elements of its Jacobian are to be evaluated.

- **f[m]**
 Output: if \(\text{comm}->\text{flag} = 0 \) or 2, `objfun` must set \(f[i-1] \) to the value of the \(i \)th subfunction \(f_i \) at the current point \(x \), for some or all \(i = 1, 2, \ldots, m \) (see the description of the parameter \(\text{comm}->\text{needf} \) below).

- **fjac[m*tdfjac]**
 Output: if \(\text{comm}->\text{flag} = 2 \), `objfun` must contain the available elements of the subfunction Jacobian matrix. \(\text{fjac}[(i-1)*\text{tdfjac}+j-1] \) must be set to the value of the first derivative \(\partial f_i/\partial x_j \) at the current point \(x \) for \(i = 1, 2, \ldots, m \); \(j = 1, 2, \ldots, n \).

 If the optional parameter `obj_deriv` = TRUE (the default), all elements of `fjac` must be set; if `obj_deriv` = FALSE, any available elements of the Jacobian matrix must be assigned to the elements of `fjac`; the remaining elements must remain unchanged.

 Any constant elements of `fjac` may be assigned once only at the first call to `objfun`, i.e., when `comm->first` = TRUE. This is only effective if the optional parameter `obj_deriv` = TRUE.

- **tdfjac**
 Input: the second dimension of the array `fjac` as declared in the function from which `nag_opt_nlin_lsq` is called.

- **comm**
 Pointer to structure of type `Nag_Comm`; the following members are relevant to `objfun`.

 - **flag** – Integer
 Input: `objfun` is called with `comm->flag` set to 0 or 2.
 If `comm->flag = 0` then only \(f \) is referenced. If `comm->flag = 2` then both \(f \) and `fjac` are referenced.
 Output: if `objfun` resets `comm->flag` to some negative number then `nag_opt_nlin_lsq` will terminate immediately with the error indicator `NE_USER_STOP`. If `fail` is supplied to `nag_opt_nlin_lsq` `fail.errnum` will be set to the user’s setting of `comm->flag`.

 - **first** – Boolean
 Input: will be set to TRUE on the first call to `objfun` and FALSE for all subsequent calls.

 - **nf** – Integer
 Input: the number of evaluations of the objective function; this value will be equal to the number of calls made to `objfun` including the current one.
needf – Integer
Input: if needf = 0, objfun must set, for all \(i = 1, 2, \ldots, m \), \(f[i - 1] \) to the value of the \(i \)th subfunction \(f_i \) at the current point \(x \). If needf = \(i \), for \(i = 1, 2, \ldots, m \), then it is sufficient to set \(f[i - 1] \) to the value of the \(i \)th subfunction \(f_i \). Appropriate use of needf can save a lot of computational work in some cases. Note that when \(\text{comm->needf} \neq 0 \), \(\text{comm->flag} \) will always be 0, hence this does not apply to the Jacobian matrix.

user – double *
uiser – Integer *
p – Pointer
The type Pointer is void *.
Before calling nag_opt_nlin_lsq these pointers may be allocated memory by the user and initialized with various quantities for use by objfun when called from nag_opt_nlin_lsq.

Note: objfun should be tested separately before being used in conjunction with nag_opt_nlin_lsq. The optional parameters verify_grad and max_iter can be used to assist this process. The array \(x \) must not be changed by objfun.

If the function objfun does not calculate all of the Jacobian elements then the optional parameter obj_deriv should be set to FALSE.

confun must calculate the vector \(c(x) \) of nonlinear constraint functions and (optionally) its Jacobian \((= \partial c/\partial x)\) for a specified \(n \) element vector \(x \). If there are no nonlinear constraints (i.e., \(\text{ncnlin} = 0 \)), confun will never be called and the NAG defined null void function pointer, \(\text{NULLFN} \), can be supplied in the call to nag_opt_nlin_lsq. If there are nonlinear constraints the first call to confun will occur before the first call to objfun.

The specification for confun is:

```c
void confun(Integer n, Integer ncnlin, Integer needc[], double x[],
            double conf[], double conjac[], Nag_Comm *comm)
```

\(n \)
Input: \(n \), the number of variables.

\(ncnlin \)
Input: \(n_N \), the number of nonlinear constraints.

\(\text{needc}[\text{ncnlin}] \)
Input: the indices of the elements of \(\text{conf} \) and/or \(\text{conjac} \) that must be evaluated by confun. If \(\text{needc}[i - 1] > 0 \) then the \(i \)th element of \(\text{conf} \) and/or the available elements of the \(i \)th row of \(\text{conjac} \) (see parameter \(\text{comm->flag} \) below) must be evaluated at \(x \).

\(x[n] \)
Input: the vector of variables \(x \) at which the constraint functions and/or all available elements of the constraint Jacobian are to be evaluated.

\(\text{conf}[\text{ncnlin}] \)
Output: if \(\text{needc}[i - 1] > 0 \) and \(\text{comm->flag} = 0 \) or 2, \(\text{conf}[i - 1] \) must contain the value of the \(i \)th constraint at \(x \). The remaining elements of \(\text{conf} \), corresponding to the non-positive elements of \(\text{needc} \), are ignored.
conjac[ncnlin+n]
Output: if needc[i−1] > 0 and comm->flag = 2, the ith row of conjac (i.e.,
the elements conjac[(i−1)∗n+j−1], j = 1, 2, ..., n) must contain the available
elements of the vector ∇c_i given by

∇c_i = \left(\frac{∂c_i}{∂x_1}, \frac{∂c_i}{∂x_2}, ..., \frac{∂c_i}{∂x_n} \right)^T,

where ∂c_i/∂x_j is the partial derivative of the ith constraint with respect to the jth
variable, evaluated at the point x. The remaining rows of conjac, corresponding
to non-positive elements of needc, are ignored.
If the optional parameter con_deriv = TRUE (the default), all elements of conjac
must be set; if con_deriv = FALSE, then any available partial derivatives of c_i(x)
must be assigned to the elements of conjac; the remaining elements must remain unchanged.

If all elements of the constraint Jacobian are known (i.e., con_deriv = TRUE;
see Section 8.2), any constant elements may be assigned to conjac one time only
at the start of the optimization. An element of conjac that is not subsequently
assigned in confun will retain its initial value throughout. Constant elements
may be loaded into conjac during the first call to confun. The ability to preload
constants is useful when many Jacobian elements are identically zero, in which
case conjac may be initialized to zero at the first call when comm->first = TRUE.
It must be emphasized that, if con_deriv = FALSE, unassigned elements of conjac
are not treated as constant; they are estimated by finite differences, at non-trivial
expense. If the user does not supply a value for the optional argument f_diff_int
(the default; see Section 8.2), an interval for each element of x is computed
automatically at the start of the optimization. The automatic procedure can
usually identify constant elements of conjac, which are then computed once only by
finite differences.

comm
Pointer to structure of type Nag_Comm; the following members are relevant to
confun.

flag – Integer
Input: confun is called with comm->flag set to 0 or 2.
If comm->flag = 0 then only conf is referenced. If comm->flag = 2 then both conf and conjac are referenced.
Output: if confun resets comm->flag to some negative number then
nag_opt_nlin_lsq will terminate immediately with the error indicator
NE_USER_STOP. If fail is supplied to nag_opt_nlin_lsq fail.errnum will be
set to the user’s setting of comm->flag.

first – Boolean
Input: will be set to TRUE on the first call to confun and FALSE for all
subsequent calls.

user – double *

user – Integer *

p – Pointer
The type Pointer is void *.
Before calling nag_opt_nlin_lsq these pointers may be allocated memory by
the user and initialized with various quantities for use by confun when
called from nag_opt_nlin_lsq.
Note: confun should be tested separately before being used in conjunction with nag_opt_nlin_lsq. The optional parameters verify_grad and max_iter can be used to assist this process. The array x must not be changed by confun.

If confun does not calculate all of the Jacobian constraint elements then the optional parameter con_deriv should be set to FALSE.

x[n]
Input: an initial estimate of the solution.
Output: the final estimate of the solution.

objf
Output: the value of the objective function at the final iterate.

f[m]
Output: the values of the subfunctions \(f_i \), for \(i = 1, 2, \ldots, m \), at the final iterate.

fjac[m][tdfjac]
Output: the Jacobian matrix of the functions \(f_1, f_2, \ldots, f_m \) at the final iterate, i.e., \(fjac[i-1][j-1] \) contains the partial derivative of the \(i \)th subfunction with respect to the \(j \)th variable, for \(i = 1, 2, \ldots, m; \ j = 1, 2, \ldots, n \). (See also the discussion of parameter fjac under objfun.)

tdfjac
Input: the second dimension of the array fjac as declared in the function from which nag_opt_nlin_lsq is called.

options
Input/Output: a pointer to a structure of type Nag_E04_Opt whose members are optional parameters for nag_opt_nlin_lsq. These structure members offer the means of adjusting some of the parameter values of the algorithm and on output will supply further details of the results. A description of the members of options is given below in Section 8. Some of the results returned in options can be used by nag_opt_nlin_lsq to perform a ‘warm start’ (see the member start in Section 8.2).

If any of these optional parameters are required then the structure options should be declared and initialized by a call to nag_opt_nlin_lsq (e04ucc) and supplied as an argument to nag_opt_nlin_lsq. However, if the optional parameters are not required the NAG defined null pointer, E04_DEFAULT, can be used in the function call.

comm
Input/Output: a structure containing pointers for communication to the user-supplied functions objfun and confun, and the optional user-defined printing function; see the description of objfun and confun and Section 8.3.1 for details. If the user does not need to make use of this communication feature the null pointer NAGCOMM_NULL may be used in the call to nag_opt_nlin_lsq; comm will then be declared internally for use in calls to user-supplied functions.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library. Users are recommended to declare and initialize fail and set fail.print = TRUE for this function.

4.1. Description of Printed Output
Intermediate and final results are printed out by default. The level of printed output can be controlled by the user with the structure members options.print_level and options.minor_print_level (see Section 8.2). The default setting of print_level = Nag_Soln_1ter and minor_print_level = Nag_NoPrint provides a single line of output at each iteration and the final result. This section describes the default printout produced by nag_opt_nlin_lsq.
The following line of summary output (< 80 characters) is produced at every major iteration. In all cases, the values of the quantities printed are those in effect on completion of the given iteration.

Maj

is the major iteration count.

Mnr

is the number of minor iterations required by the feasibility and optimality phases of the QP subproblem. Generally, Mnr will be 1 in the later iterations, since theoretical analysis predicts that the correct active set will be identified near the solution (see Section 7 of the documentation for nag_opt_nlp (e04ucc)). Note that Mnr may be greater than the optional parameter minor_max_iter (default value = \max(50,3(n + n_L + n_N)); see Section 8.2) if some iterations are required for the feasibility phase.

Step

is the step taken along the computed search direction. On reasonably well-behaved problems, the unit step will be taken as the solution is approached.

Merit function

is the value of the augmented Lagrangian merit function at the current iterate. This function will decrease at each iteration unless it was necessary to increase the penalty parameters (see Section 7.3 of the documentation for nag_opt_nlp (e04ucc)). As the solution is approached, Merit function will converge to the value of the objective function at the solution.

If the QP subproblem does not have a feasible point (signified by I at the end of the current output line), the merit function is a large multiple of the constraint violations, weighted by the penalty parameters. During a sequence of major iterations with infeasible subproblems, the sequence of Merit Function values will decrease monotonically until either a feasible subproblem is obtained or nag_opt_nlin_lsq terminates with fail.code = NW_NONLIN_NOT_FEASIBLE (no feasible point could be found for the nonlinear constraints).

If no nonlinear constraints are present (i.e., ncnlin = 0), this entry contains Objective, the value of the objective function \(F(x) \). The objective function will decrease monotonically to its optimal value when there are no nonlinear constraints.

Violtn

is the Euclidean norm of the residuals of constraints that are violated or in the predicted active set (not printed if ncnlin is zero). Violtn will be approximately zero in the neighbourhood of a solution.

Norm Gz

is \(\|Z^Tg_{FR}\| \), the Euclidean norm of the projected gradient (see Section 7.1 of the documentation for nag_opt_nlp (e04ucc)). Norm Gz will be approximately zero in the neighbourhood of a solution.

Cond Hz

is a lower bound on the condition number of the projected Hessian approximation \(H_Z = H_{FR}Z = R_Z^TR_Z \); see (6) and (11) in Section 7.1 and Section 7.2, respectively, of the documentation for nag_opt_nlp (e04ucc)). The larger this number, the more difficult the problem.

The line of output may be terminated by one of the following characters:

M

is printed if the quasi-Newton update was modified to ensure that the Hessian approximation is positive-definite (see Section 7.4 of the documentation for nag_opt_nlp (e04ucc)).

I

is printed if the QP subproblem has no feasible point.

C

is printed if central differences were used to compute the unspecified objective and constraint gradients. If the value of Step is zero, the switch to central differences was made because no lower point could be found in the line search. (In this case, the QP subproblem is re-solved with the central difference gradient and Jacobian.) If the value of Step is non-zero, central differences were computed because Norm Gz and Violtn imply that \(x \) is close to a Kuhn–Tucker point (see Section 7.1 of the documentation for nag_opt_nlp (e04ucc)).

L

is printed if the line search has produced a relative change in \(x \) greater than the value defined by the optional parameter step_limit (default value = 2.0; see
If this output occurs frequently during later iterations of the run, `step_limit` should be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal condition estimator of \mathbf{R} indicates that the approximate Hessian is badly conditioned, the approximate Hessian is refactorized using column interchanges. If necessary, \mathbf{R} is modified so that its diagonal condition estimator is bounded.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable.

- **Varbl** gives the name (V) and index j, for $j = 1, 2, ..., n$ of the variable.

- **State** gives the state of the variable (FR if either bound is in the active set, EQ if a fixed variable, LL if on its lower bound, UL if on its upper bound). If Value lies outside the upper or lower bounds by more than the feasibility tolerances specified by the optional parameters `lin_feas_tol` and `nonlin_feas_tol` (see Section 8.2), `State` will be ++ or -- respectively.

A key is sometimes printed before `State` to give some additional information about the state of a variable.

- **A Alternative optimum possible.** The variable is active at one of its bounds, but its Lagrange Multiplier is essentially zero. This means that if the variable were allowed to start moving away from its bound, there would be no change to the objective function. The values of the other free variables might change, giving a genuine alternative solution. However, if there are any degenerate variables (labelled D), the actual change might prove to be zero, since one of them could encounter a bound immediately. In either case, the values of the Lagrange multipliers might also change.

- **D Degenerate.** The variable is free, but it is equal to (or very close to) one of its bounds.

- **I Infeasible.** The variable is currently violating one of its bounds by more than `lin_feas_tol`.

- **Value** is the value of the variable at the final iteration.

- **Lower bound** is the lower bound specified for the variable j. (None indicates that $\text{bl}[j-1] \leq \text{inf_bound}$, where `inf_bound` is the optional parameter.)

- **Upper bound** is the upper bound specified for the variable j. (None indicates that $\text{bu}[j-1] \geq \text{inf_bound}$, where `inf_bound` is the optional parameter.)

- **Lagr Mult** is the value of the Lagrange multiplier for the associated bound constraint. This will be zero if `State` is FR unless $\text{bl}[j-1] \leq -\text{inf_bound}$ and $\text{bu}[j-1] \geq \text{inf_bound}$, in which case the entry will be blank. If x is optimal, the multiplier should be non-negative if `State` is LL, and non-positive if `State` is UL.

- **Residual** is the difference between the variable `Value` and the nearer of its (finite) bounds $\text{bl}[j-1]$ and $\text{bu}[j-1]$. A blank entry indicates that the associated variable is not bounded (i.e., $\text{bl}[j-1] \leq -\text{inf_bound}$ and $\text{bu}[j-1] \geq \text{inf_bound}$).

The meaning of the printout for linear and nonlinear constraints is the same as that given above for variables, with ‘variable’ replaced by ‘constraint’, $\text{bl}[j-1]$ and $\text{bu}[j-1]$ are replaced by $\text{bl}[n+j-1]$ and $\text{bu}[n+j-1]$ respectively, and with the following changes in the heading:

- **L Con** gives the name (L) and index j, for $j = 1, 2, ..., n_L$ of the linear constraint.

- **N Con** gives the name (N) and index $(j-n_L)$, for $j = n_L + 1, n_L + 2, ..., n_L + n_N$ of the nonlinear constraint.

The I key in the `State` column is printed for general linear constraints which currently violate one of their bounds by more than `lin_feas_tol` and for nonlinear constraints which violate one of their bounds by more than `nonlin_feas_tol`.

Section 8.2).
Note that movement off a constraint (as opposed to a variable moving away from its bound) can be interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this precision.

5. Comments

A list of possible error exits and warnings from nag_opt_nlin lsq is given in Section 9. The termination criteria and accuracy of nag_opt_nlin lsq are considered in Section 10.

6. Example 1

This is based on Problem 57 in Hock and Schittkowski (1981) and involves the minimization of the sum of squares function

\[F(x) = \frac{1}{2} \sum_{i=1}^{44} (f_i(x))^2, \]

where

\[f_i(x) = y_i - x_i - (0.49 - x_1)e^{-x_2(a_i - 8)} \]

and

<table>
<thead>
<tr>
<th>i</th>
<th>a_i</th>
<th>y_i</th>
<th>i</th>
<th>a_i</th>
<th>y_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>0.49</td>
<td>22</td>
<td>22</td>
<td>0.41</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0.49</td>
<td>24</td>
<td>24</td>
<td>0.40</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>0.48</td>
<td>25</td>
<td>24</td>
<td>0.42</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>0.47</td>
<td>26</td>
<td>24</td>
<td>0.40</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>0.48</td>
<td>27</td>
<td>24</td>
<td>0.40</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>0.47</td>
<td>28</td>
<td>26</td>
<td>0.41</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>0.46</td>
<td>29</td>
<td>26</td>
<td>0.40</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>0.46</td>
<td>30</td>
<td>26</td>
<td>0.41</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>0.45</td>
<td>31</td>
<td>28</td>
<td>0.41</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0.43</td>
<td>32</td>
<td>28</td>
<td>0.40</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>0.45</td>
<td>33</td>
<td>30</td>
<td>0.40</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>0.43</td>
<td>34</td>
<td>30</td>
<td>0.40</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>0.43</td>
<td>35</td>
<td>30</td>
<td>0.38</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>0.44</td>
<td>36</td>
<td>32</td>
<td>0.41</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>0.43</td>
<td>37</td>
<td>32</td>
<td>0.40</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>0.43</td>
<td>38</td>
<td>34</td>
<td>0.40</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>0.46</td>
<td>39</td>
<td>36</td>
<td>0.41</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>0.45</td>
<td>40</td>
<td>36</td>
<td>0.38</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>0.42</td>
<td>41</td>
<td>38</td>
<td>0.40</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>0.42</td>
<td>42</td>
<td>38</td>
<td>0.40</td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>0.43</td>
<td>43</td>
<td>40</td>
<td>0.39</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>0.41</td>
<td>44</td>
<td>42</td>
<td>0.39</td>
</tr>
</tbody>
</table>

subject to the bounds

\[x_1 \geq 0.4 \]
\[x_2 \geq -4.0 \]

to the general linear constraint

\[x_1 + x_2 \geq 1.0, \]
and to the nonlinear constraint

\[0.49x_2 - x_1x_2 \geq 0.09. \]

The initial point, which is infeasible, is

\[x_0 = (0.4, 0.0)^T, \]

and \(F(x_0) = 0.002241. \)

The optimal solution (to five figures) is

\[x^* = (0.41995, 1.28484)^T, \]

and \(F(x^*) = 0.01423. \) The nonlinear constraint is active at the solution.

This example shows the simple use of \texttt{nag_opt_nlin_lsq} where default values are used for all optional parameters. An example showing the use of optional parameters is given in Section 13. There is one example program file, the main program of which calls both examples. The main program and Example 1 are given below.

6.1. Program Text

```c
/* nag_opt_nlin_lsq(e04unc) Example Program. */

* * Mark 5, 1998.
* * Mark 6 revised, 2000.
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nage04.h>
static void objfun(Integer m, Integer n, double x[], double f[],
    double fjac[], Integer tdfjac, Nag_Comm *comm);
static void confun(Integer n, Integer ncnlin, Integer needc[], double x[],
    double conf[], double cjac[], Nag_Comm *comm);
static void user_print(const Nag_Search_State *st, Nag_Comm *comm);
static void ex1(void);
static void ex2(void);
static void objfun(Integer m, Integer n, double x[], double f[],
    double fjac[], Integer tdfjac, Nag_Comm *comm)
{
    #define FJAC(I,J) fjac[(I)*tdfjac + (J)]

    /* Initialized data */
    static double a[44] = {
        8.0, 8.0, 10.0, 10.0, 10.0, 10.0, 12.0, 12.0, 12.0, 12.0, 14.0, 14.0,
        14.0, 16.0, 16.0, 16.0, 18.0, 18.0, 20.0, 20.0, 20.0, 22.0, 22.0, 22.0,
        24.0, 24.0, 24.0, 26.0, 26.0, 26.0, 28.0, 28.0, 30.0, 30.0, 30.0, 32.0,
        32.0, 34.0, 36.0, 38.0, 38.0, 40.0, 42.0
    };

    /* Local variables */
    double temp;
    Integer i;
    double x0, x1, ai;

    /* Function to evaluate the objective subfunctions */
    x0 = x[0];
```

```c
NAG C Library Manual

3.e04unc.10 [NP3491/6]
```
x1 = x[1];
for (i = 0; i < m; ++i)
{
 /* Evaluate objective subfunction f(i+1) only if required */
 if (comm->needf == i+1 || comm->needf == 0)
 {
 ai = a[i];
 temp = exp(-x1 * (ai - 8.0));
 f[i] = x0 + (.49 - x0) * temp;
 }
 if (comm->flag == 2)
 {
 FJAC(i,0) = 1.0 - temp;
 FJAC(i,1) = -(.49 - x0) * (ai - 8.0) * temp;
 }
}
} /* objfun */

static void confun(Integer n, Integer ncnlin, Integer needc[], double x[],
 double conf[], double cjac[], Nag_Comm *comm)
{
 #define CJAC(I,J) cjac[(I)*n + (J)]
 /* Function to evaluate the nonlinear constraints and its 1st derivatives. */
 if (comm->first == TRUE)
 {
 /* First call to confun. Set all Jacobian elements to zero.
 * Note that this will only work when options.obj_deriv = TRUE
 * (the default).
 */
 CJAC(0,0) = CJAC(0,1) = 0.0;
 }
 if (needc[0] > 0)
 {
 conf[0] = -.09 - x[0]*x[1] + 0.49*x[1];
 if (comm->flag == 2)
 {
 CJAC(0,0) = -x[1];
 CJAC(0,1) = -x[0] + .49;
 }
 }
} /* confun */

main()
{
 Vprintf("e04unc Example Program Results\n");
ex1();
ex2();
exit(EXIT_SUCCESS);
}

static void ex1(void)
{
 #define NMAX 10
 #define MMAX 50
 #define NCLIN 10
 #define NCNLIN 10
 #define MAXBND NMAX+NCLIN+NCNLIN
 /* Local variables */
 double x[NMAX], a[NCLIN][NMAX];
 double f[MMAX], y[MMAX], fjac[MMAX][NMAX];
 double bl[MAXBND], bu[MAXBND];
 double objf;
 Integer tda, tdfjac;
Integer i, j, m, n, nclin, ncnlin;
static NagError fail;

fail.print = TRUE;

Vprintf("\nExample 1: default options\n");
Vscanf(" %*[\n]"); /* Skip heading in data file */
Vscanf(" %*[\n]");

/* Read problem dimensions */
Vscanf(" %*[\n]");
Vscanf("%ld%ld%*[\n]", &m, &n);
Vscanf(" %*[\n]");
Vscanf("%ld%ld%*[\n]", &nclin, &ncnlin);

if (m <= MMAX && n <= NMAX && nclin <= NCLIN && ncnlin <= NCNLIN)
{
 tda = NMAX;
tdfjac = NMAX;
 /* Read a, y, bl, bu and x from data file */

 if (nclin > 0)
 {
 Vscanf(" %*[\n]");
 for (i = 0; i < nclin; ++i)
 for (j = 0; j < n; ++j)
 Vscanf("%lf",&a[i][j]);
 }

 /* Read the y vector of the objective */
 Vscanf(" %*[\n]");
 for (i = 0; i < m; ++i)
 Vscanf("%lf",&y[i]);

 /* Read lower bounds */
 Vscanf(" %*[\n]");
 for (i = 0; i < n + nclin + ncnlin; ++i)
 Vscanf("%lf",&bl[i]);

 /* Read upper bounds */
 Vscanf(" %*[\n]");
 for (i = 0; i < n + nclin + ncnlin; ++i)
 Vscanf("%lf",&bu[i]);

 /* Read the initial point x */
 Vscanf(" %*[\n]");
 for (i = 0; i < n; ++i)
 Vscanf("%lf",&x[i]);

 /* Solve the problem */
e04unc(m, n, nclin, ncnlin, (double*)a, tda, bl, bu, y, objfun,
 confun, x, &objf, f, (double*)fjac, tdfjac, E04_DEFAULT,
 NAGCOMM_NULL, &fail);
}

} /* ex1 */

6.2. Program Data

e04unc Example Program Data

Data for example 1

Values of m and n
44 2

Values of nclin and ncnlin
1 1

Linear constraint matrix A
1.0 1.0
Objective vector \(y \)
[0.49 0.49 0.48 0.47 0.48 0.47 0.46 0.46 0.45 0.43 0.45 0.43 0.45 0.43 0.44 0.44 0.44 0.43 0.43 0.43 0.46 0.45 0.42 0.42 0.43 0.41 0.41 0.41 0.40 0.40 0.40 0.40 0.40 0.38 0.41 0.40 0.40 0.39 0.39]

Lower bounds
0.4 -4.0 1.0 0.0

Upper bounds
1.0e+25 1.0e+25 1.0e+25 1.0e+25

Initial estimate of \(x \)
0.4 0.0

6.3. Program Results

\texttt{e04unc} Example Program Results

Example 1: default options

Parameters to \texttt{e04unc}

\begin{verbatim}
Number of variables............ 2
Linear constraints............. 1
Nonlinear constraints......... 1

start................. Nag_Cold
step_limit............... 2.000e+00
lin_feas_tol............. 1.05e-08
optm_tol................ 3.26e-12
crash_tol................ 1.00e-02
inf_bound............... 1.00e+20
max_iter............... 50
hessian................... FALSE
f_diff_int............... Automatic
obj_deriv............... TRUE
con_deriv............... TRUE
verify_grad........... Nag_SimpleCheck
print_deriv............ Nag_D_Full
print_level......... Nag_Soln_Iter
minor_print_level..... Nag_NoPrint
outfile................. stdout
\end{verbatim}

Verification of the objective gradients.

All objective gradient elements have been set.

Simple Check:
The Jacobian seems to be ok.

The largest relative error was 1.04e-08 in subfunction 3

Verification of the constraint gradients.

All constraint gradient elements have been set.

Simple Check:
The Jacobian seems to be ok.

The largest relative error was 1.89e-08 in constraint 1
nag_opt_nlin_lsq

Exit from NP problem after 6 major iterations, 8 minor iterations.

<table>
<thead>
<tr>
<th>Varbl</th>
<th>State</th>
<th>Value</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Lagr Mult</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>V 1</td>
<td>FR</td>
<td>4.19953e-01</td>
<td>4.00000e-01</td>
<td>None</td>
<td>0.0000e+00</td>
<td>1.9953e-02</td>
</tr>
<tr>
<td>V 2</td>
<td>FR</td>
<td>1.28485e+00</td>
<td>-4.00000e+00</td>
<td>None</td>
<td>0.0000e+00</td>
<td>5.2848e+00</td>
</tr>
<tr>
<td>L 1</td>
<td>FR</td>
<td>1.70480e+00</td>
<td>1.00000e+00</td>
<td>None</td>
<td>0.0000e+00</td>
<td>7.0480e-01</td>
</tr>
<tr>
<td>N 1</td>
<td>LL</td>
<td>-9.76774e-13</td>
<td>0.00000e+00</td>
<td>None</td>
<td>3.3558e-02</td>
<td>-9.7677e-13</td>
</tr>
</tbody>
</table>

Optimal solution found.

Final objective value = 1.4229835e-02

7. Further Description

nag_opt_nlin_lsq implements a sequential quadratic programming (SQP) method incorporating an augmented Lagrangian merit function and a BFGS (Broyden–Fletcher–Goldfarb–Shanno) and is based on nag_opt_nlp (e04ucc). The documentation for nag_opt_nlp (e04ucc) and nag_opt_lin_lsq (e04ncc) should be consulted for details of the method.

8. Optional Parameters

A number of optional input and output parameters to nag_opt_nlin_lsq are available through the structure argument options, type Nag_E04_Opt. A parameter may be selected by assigning an appropriate value to the relevant structure member; those parameters not selected will be assigned default values. If no use is to be made of any of the optional parameters the user should use the NAG defined null pointer, E04_DEFAULT, in place of options when calling nag_opt_nlin_lsq; the default settings will then be used for all parameters.

Before assigning values to options directly the structure must be initialized by a call to the function nag_opt_init (e04xxc). Values may then be assigned to the structure members in the normal C manner.

Option settings may also be read from a text file using the function nag_opt_read (e04xyc) in which case initialization of the options structure will be performed automatically if not already done. Any subsequent direct assignment to the options structure must not be preceded by initialization.

If assignment of functions and memory to pointers in the options structure is required, then this must be done directly in the calling program; they cannot be assigned using nag_opt_read (e04xyc).

8.1. Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for nag_opt_nlin_lsq together with their default values where relevant. The number ϵ is a generic notation for machine precision (see nag_machine_precision (X02AJC)).
8.2. Description of Optional Parameters

start – Nag_Start

Input: specifies how the initial working set is chosen in both the procedure for finding a feasible point for the linear constraints and bounds, and in the first QP subproblem thereafter. With **start** = Nag_Cold, nag_opt_nlin_lsq chooses the initial working set based on the values of the variables and constraints at the initial point. Broadly speaking, the initial working set will include equality constraints and bounds or inequality constraints that violate or ‘nearly’ satisfy their bounds (to within the value of the optional parameter **crash_tol**; see below). nag_opt_nlin_lsq will override the user’s specification of **state** if necessary, so that a poor choice of the working set will not cause a fatal error. For instance, any elements of **state** which are set to $-2, -1$ or 4 will be reset to zero, as will any elements which are set to 3 when the corresponding elements of **bl** and **bu** are not equal. A warm start will be advantageous if a good estimate of the initial working set is available – for example, when nag_opt_nlin_lsq is called repeatedly to solve related problems.
Constraint: \texttt{options.start} = \texttt{Nag_Cold} or \texttt{Nag_Warm}.

\texttt{list} – Boolean
Default = \texttt{TRUE}

Input: if \texttt{options.list} = \texttt{TRUE} the parameter settings in the call to \texttt{nag_opt_nlin_lsq} will be printed.

\texttt{print_level} – \texttt{Nag_PrintType}
Default = \texttt{Nag_Soln_Iter}

Input: the level of results printout produced by \texttt{nag_opt_nlin_lsq} at each major iteration. The following values are available.

\begin{itemize}
 \item \texttt{Nag_NoPrint} No output.
 \item \texttt{Nag_Soln} The final solution.
 \item \texttt{Nag_Iter} One line of output for each iteration.
 \item \texttt{Nag_Iter_Long} A longer line of output for each iteration with more information (line exceeds 80 characters).
 \item \texttt{Nag_Soln_Iter} The final solution and one line of output for each iteration.
 \item \texttt{Nag_Soln_Iter_Long} The final solution and one long line of output for each iteration (line exceeds 80 characters).
 \item \texttt{Nag_Soln_Iter_Const} \texttt{Nag_Soln_Iter_Long} with the objective function, the values of the variables, the Euclidean norm of the nonlinear constraint violations, the nonlinear constraint values, c, and the linear constraint values $A_L x$ also printed at each iteration.
 \item \texttt{Nag_Soln_Iter_Full} As \texttt{Nag_Soln_Iter_Const} with the diagonal elements of the upper triangular matrix T associated with the TQ factorization (see (5) in Section 7.1 of the documentation for \texttt{nag_opt_nlp_e04ucc}) of the QP working set, and the diagonal elements of R, the triangular factor of the transformed and re-ordered Hessian (see (6) in Section 7.1 of the documentation for \texttt{nag_opt_nlp_e04ucc}).
\end{itemize}

Details of each level of results printout are described in Section 8.3.

Constraint: \texttt{options.print_level} = \texttt{Nag_NoPrint}, \texttt{Nag_Soln}, \texttt{Nag_Iter}, \texttt{Nag_Soln_Iter}, \texttt{Nag_Soln_Iter_Long}, \texttt{Nag_Soln_Iter_Const} or \texttt{Nag_Soln_Iter_Full}.

\texttt{minor_print_level} – \texttt{Nag_PrintType}
Default = \texttt{Nag_NoPrint}

Input: the level of results printout produced by the minor iterations of \texttt{nag_opt_nlin_lsq} (i.e., the iterations of the QP subproblem). The following values are available.

\begin{itemize}
 \item \texttt{Nag_NoPrint} No output.
 \item \texttt{Nag_Soln} The final solution.
 \item \texttt{Nag_Iter} One line of output for each iteration.
 \item \texttt{Nag_Iter_Long} A longer line of output for each iteration with more information (line exceeds 80 characters).
 \item \texttt{Nag_Soln_Iter} The final solution and one line of output for each iteration.
 \item \texttt{Nag_Soln_Iter_Long} The final solution and one long line of output for each iteration (line exceeds 80 characters).
 \item \texttt{Nag_Soln_Iter_Const} As \texttt{Nag_Soln_Iter_Long} with the Lagrange multipliers, the variables x, the constraint values $A_L x$ and the constraint status also printed at each iteration.
 \item \texttt{Nag_Soln_Iter_Full} As \texttt{Nag_Soln_Iter_Const} with the diagonal elements of the upper triangular matrix T associated with the TQ factorization (see (4) in Section 7.2 of the documentation for \texttt{nag_opt_lin_lsq_e04ucc}) of the working set, and the diagonal elements of the upper triangular matrix R printed at each iteration.
\end{itemize}
Details of each level of results printout are described in Section 8.3 of the function documentation for nag_opt_lin_lsq (e04ncc). (options.minor_print_level in the present function is equivalent to options.print_level is nag_opt_lin_lsq.)

Constraint: options.minor_print_level = Nag_NoPrint, Nag_Soln, Nag_Iter, Nag_Soln_Iter, Nag_Iter_Long, Nag_Soln_Iter_Long, Nag_Soln_Iter_Const or Nag_Soln_Iter_Full.

outfile – char[80] Default = stdout
Input: the name of the file to which results should be printed. If options.outfile[0] = '\0' then the stdout stream is used.

print_fun – pointer to function
Input: printing function defined by the user; the prototype of print_fun is
void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);
See Section 8.3.1 below for further details.

obj_deriv – Boolean Default = TRUE
Input: this argument indicates whether all elements of the objective Jacobian are provided by the user in function objfun. If none or only some of the elements are being supplied by objfun then obj_deriv should be set to FALSE.
Whenever possible all elements should be supplied, since nag_opt_nlin_lsq is more reliable and will usually be more efficient when all derivatives are exact.
If obj_deriv = FALSE, nag_opt_nlin_lsq will approximate unspecified elements of the objective Jacobian, using finite differences. The computation of finite-difference approximations usually increases the total run-time, since a call to objfun is required for each unspecified element. Furthermore, less accuracy can be attained in the solution (see Chapter 8 of Gill et al (1981), for a discussion of limiting accuracy).
At times, central differences are used rather than forward differences, in which case twice as many calls to objfun are needed. (The switch to central differences is not under the user’s control.)

con_deriv – Boolean Default = TRUE
Input: this argument indicates whether all elements of the constraint Jacobian are provided by the user in function confun. If none or only some of the elements are being supplied by confun then con_deriv should be set to FALSE.
Whenever possible all elements should be supplied, since nag_opt_nlin_lsq is more reliable and will usually be more efficient when all derivatives are exact.
If con_deriv = FALSE, nag_opt_nlin_lsq will approximate unspecified elements of the constraint Jacobian. One call to confun is needed for each variable for which partial derivatives are not available. For example, if the constraint Jacobian has the form

\[
\begin{pmatrix}
 * & * & * & * \\
 * & ? & ? & * \\
 * & * & ? & * \\
 * & * & * & *
\end{pmatrix}
\]

where ‘*’ indicates an element provided by the user and ‘?’ indicates an unspecified element, nag_opt_nlin_lsq will call confun twice: once to estimate the missing element in column 2, and again to estimate the two missing elements in column 3. (Since columns 1 and 4 are known, they require no calls to confun.)
At times, central differences are used rather than forward differences, in which case twice as many calls to confun are needed. (The switch to central differences is not under the user’s control.)

verify_grad – Nag_GradChk Default = Nag_SimpleCheck
Input: specifies the level of derivative checking to be performed by nag_opt_nlin_lsq on the gradient elements computed by the user-supplied functions objfun and confun.
The following values are available:
Nag_NoCheck No derivative checking is performed.
Nag_SimpleCheck Perform a simple check of both the objective and constraint gradients.
Nag_CheckObj Perform a component check of the objective gradient elements.
Nag_CheckCon Perform a component check of the constraint gradient elements.
Nag_CheckObjCon Perform a component check of both the objective and constraint gradient elements.
Nag_XSimpleCheck Perform a simple check of both the objective and constraint gradients at the initial value of \(x \) specified in \(x \).
Nag_XCheckObj Perform a component check of the objective gradient elements at the initial value of \(x \) specified in \(x \).
Nag_XCheckCon Perform a component check of the constraint gradient elements at the initial value of \(x \) specified in \(x \).
Nag_XCheckObjCon Perform a component check of both the objective and constraint gradient elements at the initial value of \(x \) specified in \(x \).

If \(\text{verify_grad} = \text{Nag_SimpleCheck} \) or \(\text{Nag_XSimpleCheck} \) then a simple ‘cheap’ test is performed, which requires only one call to \(\text{objfun} \) and one call to \(\text{confun} \). If \(\text{verify_grad} = \text{Nag_CheckObj}, \text{Nag_CheckObjCon} \) or \(\text{Nag_CheckObjCon} \) then a more reliable (but more expensive) test will be made on individual gradient components. This component check will be made in the range specified by the optional parameter \(\text{obj_check_start} \) and \(\text{obj_check_stop} \) for the objective gradient, with default values 1 and \(n \), respectively. For the constraint gradient the range is specified by \(\text{con_check_start} \) and \(\text{con_check_stop} \), with default values 1 and \(n \).

The procedure for the derivative check is based on finding an interval that produces an acceptable estimate of the second derivative, and then using that estimate to compute an interval that should produce a reasonable forward-difference approximation. The gradient element is then compared with the difference approximation. (The method of finite difference interval estimation is based on Gill et al (1983).) The result of the test is printed out by \(\text{nag_opt_nlin_lsq} \) if the optional parameter \(\text{print_deriv} \neq \text{Nag_D_NoPrint} \).

Constraint: \(\text{options.verify_grad} = \text{Nag_NoCheck}, \text{Nag_SimpleCheck}, \text{Nag_CheckObj}, \text{Nag_CheckObjCon}, \text{Nag_XSimpleCheck}, \text{Nag_XCheckObj}, \text{Nag_XCheckObjCon} \) or \(\text{Nag_XCheckObjCon} \).

\text{print_deriv} – \text{Nag_D_Print_Type} \quad \text{Default} = \text{Nag_D_Full}

Input: controls whether the results of any derivative checking are printed out (see optional parameter \(\text{verify_grad} \)).

If a component derivative check has been carried out, then full details will be printed if \(\text{print_deriv} = \text{Nag_D_Full} \). For a printout summarizing the results of a component derivative check set \(\text{print_deriv} = \text{Nag_D_Sum} \). If only a simple derivative check is requested then \(\text{Nag_D_Sum} \) and \(\text{Nag_D_Full} \) will give the same level of output. To prevent any printout from a derivative check set \(\text{print_deriv} = \text{Nag_D_NoPrint} \).

Constraint: \(\text{options.print_deriv} = \text{Nag_D_NoPrint}, \text{Nag_D_Sum} \) or \(\text{Nag_D_Full} \).

\text{obj_check_start} – \text{Integer} \quad \text{Default} = 1
\text{obj_check_stop} – \text{Integer} \quad \text{Default} = \text{n}

These options take effect only when \(\text{options.verify_grad} \) is equal to one of \(\text{Nag_CheckObj}, \text{Nag_CheckObjCon}, \text{Nag_XCheckObj} \) or \(\text{Nag_XCheckObjCon} \).

Input: these parameters may be used to control the verification of Jacobian elements computed by the function \(\text{objfun} \). For example, if the first 30 columns of the objective Jacobian appeared to be correct in an earlier run, so that only column 31 remains questionable, it is reasonable to specify \(\text{obj_check_start} = 31 \). If the first 30 variables appear linearly in the subfunctions, so that the corresponding Jacobian elements are constant, the above choice would also be appropriate.

Constraint: \(1 \leq \text{options.obj_check_start} \leq \text{options.obj_check_stop} \leq n \).
con_check_start – Integer
Default = 1
con_check_stop – Integer
Default = n

These options take effect only when options.verify_grad is equal to one of Nag_CheckCon,
Nag_CheckObjCon, Nag_XCheckCon or Nag_XCheckObjCon.

Input: these parameters may be used to control the verification of the Jacobian elements
computed by the function confun. For example, if the first 30 columns of the constraint
Jacobians appeared to be correct in an earlier run, so that only column 31 remains questionable,
it is reasonable to specify con_check_start = 31.
Constraint: 1 ≤ options.con_check_start ≤ options.con_check_stop ≤ n.

f_diff_int – double
Default = computed automatically
Input: defines an interval used to estimate derivatives by finite differences in the following circumstances:

(a) For verifying the objective and/or constraint gradients (see the description of the optional
parameter verify_grad).
(b) For estimating unspecified elements of the objective and/or constraint Jacobian matrix.

In general, using the notation \(r = \text{options.f_diff_int} \), a derivative with respect to the \(j \)th
variable is approximated using the interval \(\delta_j \), where \(\delta_j = r(1 + |x_j|) \), with \(x \) the first point feasible with respect to the bounds and linear constraints. If the functions are well scaled, the resulting derivative approximation should be accurate to \(O(r) \). See Gill et al (1981) for a
discussion of the accuracy in finite difference approximations.

If a difference interval is not specified by the user, a finite difference interval will be computed
automatically for each variable by a procedure that requires up to six calls of confun and
objfun for each element. This option is recommended if the function is badly scaled or the user wishes to have nag_opt_nlin_lsq determine constant elements in the objective and
constraint gradients (see the descriptions of confun and objfun in Section 4).
Constraint: \(\epsilon \leq \text{options.f_diff_int} < 1.0 \).

c_diff_int – double
Default = computed automatically
Input: if the algorithm switches to central differences because the forward-difference
approximation is not sufficiently accurate the value of c_diff_int is used as the difference
interval for every element of \(x \). The switch to central differences is indicated by C at the end of
each line of intermediate printout produced by the major iterations (see Section 4.1). The
use of finite-differences is discussed under the option f_diff_int.
Constraint: \(\epsilon \leq \text{options.c_diff_int} < 1.0 \).

max_iter – Integer
Default = max(50,3(n+ncnlin)+10ncnlin)
Input: the maximum number of major iterations allowed before termination.
Constraint: options.max_iter ≥ 0.

minor_max_iter – Integer
Default = max(50,3(n+ncnlin+ncnlin))
Input: the maximum number of iterations for finding a feasible point with respect to the
bounds and linear constraints (if any). The value also specifies the maximum number of
minor iterations for the optimality phase of each QP subproblem.
Constraint: options.minor_max_iter ≥ 0.

f_prec – double
Default = \(\epsilon^{0.9} \)
Input: this parameter defines \(
\epsilon_r \), which is intended to be a measure of the accuracy with which
the problem functions \(F(x) \) and \(c(x) \) can be computed.
The value of \(
\epsilon_r \) should reflect the relative precision of \(1 + |F(x)| \); i.e., \(
\epsilon_r \) acts as a relative precision when \(|F| \) is large, and as an absolute precision when \(|F| \) is small. For example, if \(F(x) \) is typically of order 1000 and the first six significant digits are known to be correct, an
appropriate value for \(
\epsilon_r \) would be \(10^{-6} \). In contrast, if \(F(x) \) is typically of order \(10^{-4} \)
and the first six significant digits are known to be correct, an appropriate value for \(
\epsilon_r \) would be \(10^{-10} \). The choice of \(
\epsilon_r \) can be quite complicated for badly scaled problems; see Chapter 8 of
Gill et al (1981), for a discussion of scaling techniques. The default value is appropriate for
most simple functions that are computed with full accuracy. However, when the accuracy of the
computed function values is known to be significantly worse than full precision, the value
of ϵ, should be large enough so that nag_opt_nlin_lsq will not attempt to distinguish between function values that differ by less than the error inherent in the calculation.

Constraint: $\epsilon \leq \text{options.f.prec} < 1.0$.

optim_tol – double

Default = $f.prec^{0.8}$

Input: specifies the accuracy to which the user wishes the final iterate to approximate a solution of the problem. Broadly speaking, **optim_tol** indicates the number of correct figures desired in the objective function at the solution. For example, if **optim_tol** is 10^{-6} and nag_opt_nlin_lsq terminates successfully, the final value of F should have approximately six correct figures.

nag_opt_nlin_lsq will terminate successfully if the iterative sequence of x-values is judged to have converged and the final point satisfies the first-order Kuhn–Tucker conditions (see Section 7.1 of the documentation for nag_opt_nlp (e04ucc)). The sequence of iterates is considered to have converged at x if

$$\alpha \|p\| \leq \sqrt{r}(1 + \|x\|),$$ \hspace{1cm} (2)$$

where p is the search direction, α the step length, and r is the value of **optim_tol**. An iterate is considered to satisfy the first-order conditions for a minimum if

$$\|Z^T g_{FR}\| \leq \sqrt{r}(1 + \max(1 + |F(x)|, \|g_{FR}\|))$$ \hspace{1cm} (3)$$

and

$$|res_j| \leq ftol \text{ for all } j,$$ \hspace{1cm} (4)$$

where $Z^T g_{FR}$ is the projected gradient (see Section 7.1 of the documentation for nag_opt_nlp (e04ucc)), g_{FR} is the gradient of $F(x)$ with respect to the free variables, res_j is the violation of the jth active nonlinear constraint, and $ftol$ is the value of the optional parameter **nonlin_feas_tol**.

Constraint: $\max(\text{options.f.prec}, \text{options.optim_tol}) < 1.0$.

lin_feas_tol – double

Default = $\sqrt{\epsilon}$

Input: defines the maximum acceptable absolute violations in the linear constraints at a ‘feasible’ point; i.e., a linear constraint is considered satisfied if its violation does not exceed **lin_feas_tol**.

On entry to nag_opt_nlin_lsq, an iterative procedure is executed in order to find a point that satisfies the linear constraints and bounds on the variables to within the tolerance specified by **lin_feas_tol**. All subsequent iterates will satisfy the constraints to within the same tolerance (unless **lin_feas_tol** is comparable to the finite difference interval).

This tolerance should reflect the precision of the linear constraints. For example, if the variables and the coefficients in the linear constraints are of order unity, and the latter are correct to about 6 decimal digits, it would be appropriate to specify **lin_feas_tol** as 10^{-6}.

Constraint: $\epsilon \leq \text{options.lin_feas_tol} < 1.0$.

nonlin_feas_tol – double

Default = $\epsilon^{0.33}$ or $\sqrt{\epsilon}$

The default is $\epsilon^{0.33}$ if the optional parameter **con_deriv** = FALSE, and $\sqrt{\epsilon}$ otherwise.

Input: defines the maximum acceptable absolute violations in the nonlinear constraints at a ‘feasible’ point; i.e., a nonlinear constraint is considered satisfied if its violation does not exceed **nonlin_feas_tol**.

This tolerance defines the largest constraint violation that is acceptable at an optimal point. Since nonlinear constraints are generally not satisfied until the final iterate, the value of **nonlin_feas_tol** acts as a partial termination criterion for the iterative sequence generated by nag_opt_nlin_lsq (see also the discussion of the optional parameter **optim_tol**).

This tolerance should reflect the precision of the nonlinear constraint functions calculated by **confun**.

Constraint: $\epsilon \leq \text{options.nonlin_feas_tol} < 1.0$.

linesearch_tol – double

Input: controls the accuracy with which the step \(\alpha \) taken during each iteration approximates a minimum of the merit function along the search direction (the smaller the value of linesearch_tol, the more accurate the line search). The default value requests an inaccurate search, and is appropriate for most problems, particularly those with any nonlinear constraints.

If there are no nonlinear constraints, a more accurate search may be appropriate when it is desirable to reduce the number of major iterations – for example, if the objective function is cheap to evaluate, or if a substantial number of derivatives are unspecified.

Constraint: \(0.0 \leq \text{options.linesearch_tol} < 1.0 \).

step_limit – double

Input: specifies the maximum change in the variables at the first step of the line search. In some cases, such as \(F(x) = ae^{bx} \) or \(F(x) = ax^b \), even a moderate change in the elements of \(x \) can lead to floating-point overflow. The parameter step_limit is therefore used to encourage evaluation of the problem functions at meaningful points. Given any major iterate \(x \), the first point \(\tilde{x} \) at which \(F \) and \(c \) are evaluated during the line search is restricted so that

\[
\| \tilde{x} - x \|_2 \leq r(1 + \|x\|_2),
\]

where \(r \) is the value of step_limit.

The line search may go on and evaluate \(F \) and \(c \) at points further from \(x \) if this will result in a lower value of the merit function. In this case, the character \(L \) is printed at the end of each line of output produced by the major iterations (see Section 4.1). If \(L \) is printed for most of the iterations, step_limit should be set to a larger value.

Wherever possible, upper and lower bounds on \(x \) should be used to prevent evaluation of nonlinear functions at wild values. The default value of step_limit = 2.0 should not affect progress on well-behaved functions, but values such as 0.1 or 0.01 may be helpful when rapidly varying functions are present. If a small value of step_limit is selected, a good starting point may be required. An important application is to the class of nonlinear least-squares problems.

Constraint: \(\text{options.step_limit} > 0.0 \).

crash_tol – double

Input: crash_tol is used during a ‘cold start’ when nag_opt_nlin_lsq selects an initial working set (options.start = Nag_Cold). The initial working set will include (if possible) bounds or general inequality constraints that lie within crash_tol of their bounds. In particular, a constraint of the form \(a^T x \geq l \) will be included in the initial working set if \(|a^T x - l| \leq \text{crash_tol} \times (1 + |l|) \).

Constraint: \(0.0 \leq \text{options.crash_tol} \leq 1.0 \).

inf_bound – double

Input: inf_bound defines the ‘infinite’ bound in the definition of the problem constraints. Any upper bound greater than or equal to inf_bound will be regarded as plus infinity (and similarly any lower bound less than or equal to \(-\text{inf_bound} \) will be regarded as minus infinity).

Constraint: \(\text{options.inf_bound} > 0.0 \).

inf_step – double

Input: inf_step specifies the magnitude of the change in variables that will be considered a step to an unbounded solution. If the change in \(x \) during an iteration would exceed the value of inf_step, the objective function is considered to be unbounded below in the feasible region.

Constraint: \(\text{options.inf_step} > 0.0 \).

conf – double *

Input: ncnlin values of memory will be automatically allocated by nag_opt_nlin_lsq and this is the recommended method of use of options.conf. However a user may supply memory from the calling program.

Output: if ncnlin > 0, conf[i - 1] contains the value of the ith nonlinear constraint function \(c_i \) at the final iterate.

If ncnlin = 0 then conf will not be referenced.
conjac – double *

Input: nclin+n values of memory will be automatically allocated by nag_opt_nlin_lsq and this is the recommended method of use of options.conjac. However a user may supply memory from the calling program.

Output: if nclin > 0, conjac contains the Jacobian matrix of the nonlinear constraint functions at the final iterate, i.e., conjac[(i - 1) = n*n + j - 1] contains the partial derivative of the ith constraint function with respect to the jth variable, for i = 1, 2, . . . , nclin; j = 1, 2, . . . , n. (See the discussion of the parameter conjac under confun.) If nclin = 0 then conjac will not be referenced.

state – Integer *

Input: state need not be set if the default option of start = Nag_Cold is used as n+nclin+nclin values of memory will be automatically allocated by nag_opt_nlin_lsq.

If the option start = Nag_Warm has been chosen, state must point to a minimum of n+nclin+nclin elements of memory. This memory will already be available if the options structure has been used in a previous call to nag_opt_nlin_lsq from the calling program, with start = Nag_Cold and the same values of n, nclin and nclin. If a previous call has not been made, sufficient memory must be allocated by the user.

When a ‘warm start’ is chosen state should specify the status of the bounds and linear constraints at the start of the feasibility phase. More precisely, the first n elements of state refer to the upper and lower bounds on the variables, the next nclin elements refer to the linear constraints, and the following nclin elements refer to the nonlinear constraints. Possible values for state[j] are as follows:

<table>
<thead>
<tr>
<th>state[j]</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The corresponding constraint is not in the initial QP working set.</td>
</tr>
<tr>
<td>1</td>
<td>This inequality constraint should be in the initial working set at its lower bound.</td>
</tr>
<tr>
<td>2</td>
<td>This inequality constraint should be in the initial working set at its upper bound.</td>
</tr>
<tr>
<td>3</td>
<td>This equality constraint should be in the initial working set. This value must only be specified if bl[j] = bu[j].</td>
</tr>
</tbody>
</table>

The values −2, −1 and 4 are also acceptable but will be reset to zero by the function, as will any elements which are set to 3 when the corresponding elements of bl and bu are not equal. If nag_opt_nlin_lsq has been called previously with the same values of n, nclin and nclin, then state already contains satisfactory information. (See also the description of the optional parameter start.) The function also adjusts (if necessary) the values supplied in x to be consistent with the values supplied in state.

Constraint: −2 ≤ options.state[j] ≤ 4, for j = 0, 1, 2, . . . , n+nclin+nclin−1.

Output: the status of the constraints in the QP working set at the point returned in x. The significance of each possible value of state[j] is as follows:

<table>
<thead>
<tr>
<th>state[j]</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>−2</td>
<td>The constraint violates its lower bound by more than the appropriate feasibility tolerance (see the options lin_feas_tol and nonlin_feas_tol). This value can occur only when no feasible point can be found for a QP subproblem.</td>
</tr>
<tr>
<td>−1</td>
<td>The constraint violates its upper bound by more than the appropriate feasibility tolerance (see the options lin_feas_tol and nonlin_feas_tol). This value can occur only when no feasible point can be found for a QP subproblem.</td>
</tr>
<tr>
<td>0</td>
<td>The constraint is satisfied to within the feasibility tolerance, but is not in the QP working set.</td>
</tr>
<tr>
<td>1</td>
<td>This inequality constraint is included in the QP working set at its lower bound.</td>
</tr>
<tr>
<td>2</td>
<td>This inequality constraint is included in the QP working set at its upper bound.</td>
</tr>
<tr>
<td>3</td>
<td>This constraint is included in the working set as an equality. This value of state can occur only when bl[j] = bu[j].</td>
</tr>
</tbody>
</table>
lambda – double *

Input: lambda need not be set if the default option start = Nag_Cold is used as n+nclin+ncnlin values of memory will be automatically allocated by nag_opt_nlin_lsq.

If the option start = Nag_Warm has been chosen, lambda must point to a minimum of n+nclin+ncnlin elements of memory. This memory will already be available if the options structure has been used in a previous call to nag_opt_nlin_lsq from the calling program, with start = Nag_Cold and the same values of n, nclin and ncnlin. If a previous call has not been made with sufficient memory must be allocated by the user.

When a ‘warm start’ is chosen lambda[j−1] must contain a multiplier estimate for each nonlinear constraint with a sign that matches the status of the constraint specified by state, for j = n+nclin+1, n+nclin+2, ..., n+nclin+ncnlin. The remaining elements need not be set.

Note that if the jth constraint is defined as ‘inactive’ by the initial value of the state array (i.e., state[j−1] = 1), lambda[j−1] should be zero; if the jth constraint is an inequality active at its lower bound (i.e., state[j−1] = 0), lambda[j−1] should be non-negative; if the jth constraint is an inequality active at its upper bound (i.e., state[j−1] = 2), lambda[j−1] should be non-positive. If necessary, the function will modify lambda to match these rules.

Output: the values of the Lagrange multipliers from the last QP subproblem. lambda[j−1] should be non-negative if state[j−1] = 1 and non-positive if state[j−1] = 2.

h – double *

Input: h need not be set if the default option of start = Nag_Cold is used as n+n values of memory will be automatically allocated by nag_opt_nlin_lsq.

If the option start = Nag_Warm has been chosen, h must point to a minimum of n+n elements of memory. This memory will already be available if the calling program has used the options structure in a previous call to nag_opt_nlin_lsq with start = Nag_Cold and the same value of n. If a previous call has not been made sufficient memory must be allocated to by the user.

When start = Nag_Warm is chosen the memory pointed to by h must contain the upper triangular Cholesky factor R of the initial approximation of the Hessian of the Lagrangian function, with the variables in the natural order. Elements not in the upper triangular part of R are assumed to be zero and need not be assigned. If a previous call has been made, with hessian = TRUE, then h will already have been set correctly.

Output: if hessian = FALSE, h contains the upper triangular Cholesky factor R of QT HQ, an estimate of the transformed and re-ordered Hessian of the Lagrangian at x (see (6) in Section 7.1 of the documentation for nag_opt_nlp (e04ucc)).

If hessian = TRUE, h contains the upper triangular Cholesky factor R of H, the approximate (untransformed) Hessian of the Lagrangian, with the variables in the natural order.

hessian – Boolean

Input: controls the contents of the optional parameter h on return from nag_opt_nlin_lsq. nag_opt_nlin_lsq works exclusively with the transformed and re-ordered Hessian H, and hence extra computation is required to form the Hessian itself. If hessian = FALSE, h contains the Cholesky factor of the transformed and re-ordered Hessian. If hessian = TRUE, the Cholesky factor of the approximate Hessian itself is formed and stored in h. This information is required by nag_opt_nlin_lsq if the next call to nag_opt_nlin_lsq will be made with optional parameter start = Nag_Warm.

h_unit_init – Boolean

Input: if h_unit_init = FALSE the initial value of the upper triangular matrix R is set to JTJ, where J denotes the objective Jacobian matrix ∇f(x). JTJ is often a good approximation to the objective Hessian matrix ∇2F(x). If h_unit_init = TRUE then the initial value of R is the unit matrix.

h_reset_freq – Integer

Input: this parameter allows the user to reset the approximate Hessian matrix to JTJ every h_reset_freq iterations, where J is the objective Jacobian matrix ∇f(x).

At any point where there are no nonlinear constraints active and the values of f are small in magnitude compared to the norm of J, JTJ will be a good approximation to the objective
Hessian matrix $\nabla^2 F(x)$. Under these circumstances, frequent resetting can significantly improve the convergence rate of nag_opt_nlin_lsq.

Resetting is suppressed at any iteration during which there are nonlinear constraints active. Constraint: $\text{options.h}_\text{reset}_\text{freq} > 0$.

iter – Integer

Output: the number of major iterations which have been performed in nag_opt_nlin_lsq.

nf – Integer

Output: the number of times the objective function has been evaluated (i.e., number of calls of objfun). The total excludes any calls made to objfun for purposes of derivative checking.

8.3. Description of Printed Output

The level of printed output can be controlled by the user with the structure members options.list, options.print_deriv, options.print_level and options.minor_print_level (see Section 8.2). If list = TRUE then the parameter values to nag_opt_nlin_lsq are listed, followed by the result of any derivative check if print_deriv = Nag_D_Sum or Nag_D_Full. The printout of results is governed by the values of print_level and minor_print_level. The default of print_level = Nag_Soln.Iter and minor_print_level = Nag_NoPrint provides a single line of output at each iteration and the final result. This section describes all of the possible levels of results printout available from nag_opt_nlin_lsq.

If a simple derivative check, verify_grad = Nag_SimpleCheck, is requested then a statement indicating success or failure is given. The largest error found in the objective and the constraint Jacobian are also output.

When a component derivative check (see verify_grad in Section 8.2) is selected the element with the largest relative error is identified for the objective and the constraint Jacobian.

If print_deriv = Nag_D_Full then the following results are printed for each component:

- $x[i]$: the element of x.
- $dx[i]$: the optimal finite difference interval.
- Jacobian value: the Jacobian element.
- Difference approxn.: the finite difference approximation.
- Itns: the number of trials performed to find a suitable difference interval.

The indicator, OK or BAD?, states whether the Jacobian element and finite difference approximation are in agreement. If the derivatives are believed to be in error nag_opt_nlin_lsq will exit with fail.code set to NE_DERIV_ERRORS.

When print_level = Nag_Iter or Nag_Soln_Iter the following line of output is produced at every major iteration. In all cases, the values of the quantities printed are those in effect on completion of the given iteration.

- Maj: is the major iteration count.
- Mnr: is the number of minor iterations required by the feasibility and optimality phases of the QP subproblem. Generally, Mnr will be 1 in the later iterations, since theoretical analysis predicts that the correct active set will be identified near the solution (see Section 7 of the documentation for nag_opt_nlp (e04ucc)). Note that Mnr may be greater than the optional parameter minor_max_iter (default value = max(50,3(n + nL + nN)); see Section 8.2) if some iterations are required for the feasibility phase.
- Step: is the step taken along the computed search direction. On reasonably well-behaved problems, the unit step will be taken as the solution is approached.
- Merit function: is the value of the augmented Lagrangian merit function at the current iterate. This function will decrease at each iteration unless it was necessary to increase the penalty parameters (see Section 7.3 of the documentation for nag_opt_nlp.
As the solution is approached, Merit function will converge to the value of the objective function at the solution.

If the QP subproblem does not have a feasible point (signified by I at the end of the current output line), the merit function is a large multiple of the constraint violations, weighted by the penalty parameters. During a sequence of major iterations with infeasible subproblems, the sequence of Merit Function values will decrease monotonically until either a feasible subproblem is obtained or nag_opt_nlin lsq terminates with the error indicator NW_NONLIN_NOT_FEASIBLE (no feasible point could be found for the nonlinear constraints).

If no nonlinear constraints are present (i.e., ncnlin = 0), this entry contains Objective, the value of the objective function $F(x)$. The objective function will decrease monotonically to its optimal value when there are no nonlinear constraints.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the predicted active set (not printed if ncnlin is zero). Violtn will be approximately zero in the neighbourhood of a solution.

Norm Gz is $\|Z^T g_{FR}\|$, the Euclidean norm of the projected gradient (see Section 7.1 of the documentation for nag_opt_nlp (e04ucc)). Norm Gz will be approximately zero in the neighbourhood of a solution.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation $H_Z = Z^T H_{FR} Z = R_Z^T R_Z$; see (6) and (11) in Section 7.1 and Section 7.2, respectively, of the documentation for nag_opt_nlp (e04ucc)). The larger this number, the more difficult the problem.

The line of output may be terminated by one of the following characters:

- **M** is printed if the quasi-Newton update was modified to ensure that the Hessian approximation is positive-definite (see Section 7.4 of the documentation for nag_opt_nlp (e04ucc)).
- **I** is printed if the QP subproblem has no feasible point.
- **C** is printed if central differences were used to compute the unspecified objective and constraint gradients. If the value of Step is zero, the switch to central differences was made because no lower point could be found in the line search. (In this case, the QP subproblem is re-solved with the central difference gradient and Jacobian.) If the value of Step is non-zero, central differences were computed because Norm Gz and Violtn imply that x is close to a Kuhn–Tucker point (see Section 7.1 of the documentation for nag_opt_nlp (e04ucc)).
- **L** is printed if the line search has produced a relative change in x greater than the value defined by the optional parameter step limit (default value = 2.0; see Section 8.2). If this output occurs frequently during later iterations of the run, step limit should be set to a larger value.
- **R** is printed if the approximate Hessian has been refactorized. If the diagonal condition estimator of R indicates that the approximate Hessian is badly conditioned, the approximate Hessian is refactorized using column interchanges. If necessary, R is modified so that its diagonal condition estimator is bounded.

If print_level = Nag_Iter_Long, Nag_Soln_Iter_Long, Nag_Soln_Iter_Const or Nag_Soln_Iter_Full the line of printout at every iteration is extended to give the following additional information. (Note this longer line extends over more than 80 characters.)

Nfun is the cumulative number of evaluations of the objective function needed for the line search. Evaluations needed for the estimation of the gradients by finite differences are not included. Nfun is printed as a guide to the amount of work required for the linesearch.

[NP3491/6] 3.e04unc.25
Nz is the number of columns of Z (see Section 7.1 of the documentation for nag_opt_nlp (e04ucc)). The value of Nz is the number of variables minus the number of constraints in the predicted active set; i.e., $Nz = n - (\text{Bnd} + \text{Lin} + \text{Nln})$.

Bnd is the number of simple bound constraints in the predicted active set.

Lin is the number of general linear constraints in the predicted active set.

Nln is the number of nonlinear constraints in the predicted active set (not printed if ncnlin is zero).

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented Lagrangian merit function (not printed if ncnlin is zero).

Norm Gf is the Euclidean norm of g_{FR}, the gradient of the objective function with respect to the free variables.

Cond H is a lower bound on the condition number of the Hessian approximation H.

Cond T is a lower bound on the condition number of the matrix of predicted active constraints.

Conv is a three-letter indication of the status of the three convergence tests (2)–(4) defined in the description of the optional parameter optim_tol in Section 8.2. Each letter is T if the test is satisfied, and F otherwise. The three tests indicate whether:

(a) the sequence of iterates has converged;
(b) the projected gradient (Norm Gz) is sufficiently small; and
(c) the norm of the residuals of constraints in the predicted active set (Violtn) is small enough.

If any of these indicators is F when nag_opt_nlin lsq terminates with the error indicator NE_NOERROR, the user should check the solution carefully.

When print_level = Nag_Soln_Iter_Const or Nag_Soln_Iter_Full more detailed results are given at each iteration. If print_level = Nag_Soln_Iter_Const these additional values are: the value of x currently held in x; the current value of the objective function; the Euclidean norm of nonlinear constraint violations; the values of the nonlinear constraints (the vector c); and the values of the linear constraints, (the vector A_Lx).

If print_level = Nag_Soln_Iter_Full then the diagonal elements of the matrix T associated with the TQ factorization (see (5) in Section 7.1 of the documentation for nag_opt_nlp (e04ucc)) of the QP working set and the diagonal elements of R, the triangular factor of the transformed and re-ordered Hessian (see (6) in Section 7.1 of the documentation for nag_opt_nlp (e04ucc)) are also output at each iteration.

When print_level = Nag_Soln, Nag_Soln_Iter, Nag_Soln_Iter_Long, Nag_Soln_Iter_Const or Nag_Soln_Iter_Full the final printout from nag_opt_nlin lsq includes a listing of the status of every variable and constraint. The following describes the printout for each variable.

Varbl gives the name (V) and index j, for $j = 1, 2, ..., n$ of the variable.

State gives the state of the variable (FR if neither bound is in the active set, EQ if a fixed variable, LL if on its lower bound, UL if on its upper bound). If Value lies outside the upper or lower bounds by more than the feasibility tolerances specified by the optional parameters lin_feas_tol and nonlin_feas_tol (see Section 8.2), State will be ++ or -- respectively.

A key is sometimes printed before State to give some additional information about the state of a variable.

Alternative optimum possible. The variable is active at one of its bounds, but its Lagrange Multiplier is essentially zero. This means that if the variable
were allowed to start moving away from its bound, there would be no change
to the objective function. The values of the other free variables might
closest to one of them could encounter a bound immediately. In either case, the
values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is currently violating one of its bounds by more
than lin feas tol.

Value is the value of the variable at the final iteration.

Lower bound is the lower bound specified for the variable j. (None indicates that
$\text{bl}[j-1] \leq \text{inf bound}$, where inf bound is the optional parameter.)

Upper bound is the upper bound specified for the variable j. (None indicates that
$\text{bu}[j-1] \geq \text{inf bound}$, where inf bound is the optional parameter.)

Lagr Mult is the value of the Lagrange multiplier for the associated bound constraint. This
will be zero if State is FR unless $\text{bl}[j-1] \leq -\text{inf bound}$ and $\text{bu}[j-1] \geq \text{inf bound}$,
which in case the entry will be blank. If x is optimal, the multiplier should be
non-negative if State is LL, and non-positive if State is UL.

Residual is the difference between the variable Value and the nearer of its (finite) bounds
$\text{bl}[j-1]$ and $\text{bu}[j-1]$. A blank entry indicates that the associated variable is
not bounded (i.e., $\text{bl}[j-1] \leq -\text{inf bound}$ and $\text{bu}[j-1] \geq \text{inf bound}$).

The meaning of the printout for linear and nonlinear constraints is the same as that given above for
variables, with ‘variable’ replaced by ‘constraint’, $\text{bl}[j-1]$ and $\text{bu}[j-1]$ are replaced by $\text{bl}[n+j-1]$ and $\text{bu}[n+j-1]$ respectively, and with the following changes in the heading:

L Con gives the name (L) and index j, for $j = 1, 2, ..., n_L$ of the linear constraint.

N Con gives the name (N) and index $(j - n_L)$, for $j = n_L + 1, n_L + 2, ..., n_L + n_N$ of the
nonlinear constraint.

The I key in the State column is printed for general linear constraints which currently violate one
of their bounds by more than lin feas tol and for nonlinear constraints which violate one of their
bounds by more than nonlin feas tol.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can
be interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate
to this precision.

For the output governed by minor print level, the user is referred to the documentation for
nag_opt_lin lsq (e04ncc). The option minor print level in the current document is equivalent to
options print level in the documentation for nag_opt_lin lsq (e04ncc).

If options print level = Nag NoPrint then printout will be suppressed; the user can print the final
solution when nag opt nlin lsq returns to the calling program.

8.3.1. Output of Results via a User-defined Printing Function

Users may also specify their own print function for output of iteration results and the final solution
by use of the options print fun function pointer, which has prototype

void (*print fun)(const Nag Search State *st, Nag Comm *comm);

This section may be skipped by users who only wish to use the default printing facilities.

When a user-defined function is assigned to options print fun this will be called in preference to the
internal print function of nag opt nlin lsq. Calls to the user-defined function are again controlled
by means of the options print level, options minor print level and options print deriv members.
Information is provided through st and comm, the two structure arguments to print fun.
If `comm->it_maj_prt = TRUE` then results from the last major iteration of `nag_opt_nlin lsq` are provided through `st`. Note that `print_fun` will be called with `comm->it_maj_prt = TRUE` only if `print_level` = `Nag_Iter`, `Nag_Soln_Iter`, `Nag_Soln_Iter_Long` `Nag_Soln_Iter_Const` or `Nag_Soln_Iter_Full`. The following members of `st` are set:

- `n` – Integer
 the number of variables.

- `nclin` – Integer
 the number of linear constraints.

- `ncnlin` – Integer
 the number of nonlinear constraints.

- `nactiv` – Integer
 the total number of active elements in the current set.

- `iter` – Integer
 the major iteration count.

- `minor_iter` – Integer
 the minor iteration count for the feasibility and the optimality phases of the QP subproblem.

- `step` – double
 the step taken along the computed search direction.

- `nfun` – Integer
 the cumulative number of objective function evaluations needed for the line search.

- `merit` – double
 the value of the augmented Lagrangian merit function at the current iterate.

- `objf` – double
 the current value of the objective function.

- `norm_nlnviol` – double
 the Euclidean norm of nonlinear constraint violations (only available if `st->ncnlin > 0`).

- `violtn` – double
 the Euclidean norm of the residuals of constraints that are violated or in the predicted active set (only available if `st->ncnlin > 0`).

- `norm_gz` – double
 \(\|Z^T g_{FR}\|\), the Euclidean norm of the projected gradient.

- `nz` – Integer
 the number of columns of \(Z\) (see Section 7.1 of the documentation for `nag_opt_nlp (e04ucc)`).

- `bnd` – Integer
 the number of simple bound constraints in the predicted active set.

- `lin` – Integer
 the number of general linear constraints in the predicted active set.

- `nln` – Integer
 the number of nonlinear constraints in the predicted active set (only available if `st->ncnlin > 0`).

- `penalty` – double
 the Euclidean norm of the vector of penalty parameters used in the augmented Lagrangian merit function (only available if `st->ncnlin > 0`).

- `norm_gf` – double
 the Euclidean norm of \(g_{FR}\), the gradient of the objective function with respect to the free variables.

- `cond_h` – double
 a lower bound on the condition number of the Hessian approximation \(H\).
cond_hz – double
 a lower bound on the condition number of the projected Hessian approximation H_Z.

cond_t – double
 a lower bound on the condition number of the matrix of predicted active constraints.

iter_conv – Boolean
 TRUE if the sequence of iterates has converged, i.e., convergence condition (2) (see description of options.optim_tol in Section 8.2) is satisfied.

norm gz small – Boolean
 TRUE if the projected gradient is sufficiently small, i.e., convergence condition (3) (see description of options.optim_tol in Section 8.2) is satisfied.

violtn small – Boolean
 TRUE if the violations of the nonlinear constraints are sufficiently small, i.e., convergence condition (4) (see description of options.optim_tol in Section 8.2) is satisfied.

update_modified – Boolean
 TRUE if the quasi-Newton update was modified to ensure that the Hessian is positive-definite.

qp_not_feasible – Boolean
 TRUE if the QP subproblem has no feasible point.

c_diff – Boolean
 TRUE if central differences were used to compute the unspecified objective and constraint gradients.

step_limit_exceeded – Boolean
 TRUE if the line search produced a relative change in x greater than the value defined by the optional parameter step_limit.

refactor – Boolean
 TRUE if the approximate Hessian has been refactorized.

x – double *
 contains the components $x[j - 1]$ of the current point x, for $j = 1, 2, \ldots, st->n$.

state – Integer *
 contains the status of the $st->n$ variables, $st->nclin$ linear, and $st->ncnlin$ nonlinear constraints (if any). See Section 8.2 for a description of the possible status values.

ax – double *
 if $st->nclin > 0$, $ax[j - 1]$ contains the current value of the jth linear constraint, for $j = 1, 2, \ldots, st->nclin$.

cx – double *
 if $st->ncnlin > 0$, $cx[j - 1]$ contains the current value of nonlinear constraint c_j, for $j = 1, 2, \ldots, st->ncnlin$.

diagt – double *
 if $st->nactiv > 0$, the $st->nactiv$ elements of the diagonal of the matrix T.

diagr – double *
 contains the $st->n$ elements of the diagonal of the upper triangular matrix R.

If comm->sol_sqp_prt = TRUE then the final result from nag_opt_nlin lsq is provided through st. Note that print_fun will be called with comm->sol_sqp_prt = TRUE only if print_level = Nag_Soln, Nag_Soln_Iter Nag_Soln_Iter_Long, Nag_Soln_Iter_Const or Nag_Soln_Iter_Full. The following members of st are set:

iter – Integer
 the number of iterations performed.

n – Integer
 the number of variables.

ncclin – Integer
 the number of linear constraints.
ncnlin – Integer
 the number of nonlinear constraints.

x – double *
 contains the components x[j−1] of the final point x, for j = 1, 2, . . . , st->n.

state – Integer *
 contains the status of the st->n variables, st->ncnlin linear, and st->ncnlin nonlinear
 constraints (if any). See Section 8.2 for a description of the possible status values.

ax – double *
 if st->ncnlin > 0, ax[j−1] contains the final value of the jth linear constraint, for
 j = 1, 2, . . . , st->ncnlin.

cx – double *
 if st->ncnlin > 0, cx[j−1] contains the final value of nonlinear constraint c_j, for
 j = 1, 2, . . . , st->ncnlin.

bl – double *
 contains the st->n+st->ncnlin+st->ncnlin lower bounds on the variables.

bu – double *
 contains the st->n+st->ncnlin+st->ncnlin upper bounds on the variables.

lambda – double *
 contains the st->n+st->ncnlin+st->ncnlin final values of the Lagrange multipliers.

If comm->g.prt = TRUE then the results from derivative checking are provided through st. Note
that print_fun will be called with comm->g.prt only if print_deriv = Nag_D_Sum or Nag_D_Full.

The following members of st are set:

m – Integer
 the number of subfunctions.

n – Integer
 the number of variables.

ncnlin – Integer
 the number of nonlinear constraints.

x – double *
 contains the components x[j−1] of the initial point x_0, for j = 1, 2, . . . , st->n.

fjac – double *
 contains elements of the Jacobian of F at the initial point x_0 (∂f_i/∂x_j is held at location
 fjac[(i−1)*st->tdfjac+j−1], i = 1, 2, . . . , st->m, j = 1, 2, . . . , st->n).

tdfjac – Integer
 the trailing dimension of fjac.

conjac – double *
 contains the elements of the Jacobian matrix of nonlinear constraints at the initial point
 x_0 (∂c_j/∂x_i), is held at location conjac[(i−1)*st->ncnlin+j−1], i = 1, 2, . . . , st->n, j = 1, 2, . . . , st->ncnlin.

In this case the details of any derivative check performed by nag_opt_nlin_lsq are held in the following
substructure of st:

gprint – Nag_GPrintSt *
 which in turn contains three substructures g_chk, f_sim, c_sim and two pointers to arrays of
 substructures, f_comp and c_comp.

g_chk – Nag_Grad_Chk_St
 the substructure g_chk contains the members:

type – Nag_GradChk
 the type of derivative check performed by nag_opt_nlin_lsq. This will be the same
 value as in options.verify_grad.
g_error – int
this member will be equal to one of the error codes NE_NOERROR or
NE_DERIV_ERRORS according to whether the derivatives were found to be
correct or not.

obj_start – Integer
specifies the column of the objective Jacobian at which any component check
started. This value will be equal to options.obj_check_start.

obj_stop – Integer
specifies the column of the objective Jacobian at which any component check
ended. This value will be equal to options.obj_check_stop.

con_start – Integer
specifies the element at which any component check of the constraint gradient
started. This value will be equal to options.con_check_start.

con_stop – Integer
specifies the element at which any component check of the constraint gradient
ended. This value will be equal to options.con_check_stop.

f_sim – Nag_SimSt
The result of a simple derivative check of the objective gradient, gprint->g_chk.type = Nag_SimpleCheck, will be held in this substructure in members:

n_elements – Integer
the number of columns of the objective Jacobian for which a simple check has
been carried out, i.e., those columns which do not contain unknown elements.

correct – Boolean
if TRUE then the objective Jacobian is consistent with the finite difference
approximation according to a simple check.

max_error – double
the maximum error found between the norm of a subfunction gradient and its
finite difference approximation.

max_subfunction – Integer
the subfunction which has the maximum error between its norm and its finite
difference approximation.

c_sim – Nag_SimSt
The result of a simple derivative check of the constraint Jacobian, gprint->g_chk.type = Nag_SimpleCheck, will be held in this substructure in members:

n_elements – Integer
the number of columns of the constraint Jacobian for which a simple check has
been carried out, i.e., those columns which do not contain unknown elements.

correct – Boolean
if TRUE then the Jacobian is consistent with the finite difference approximation
according to a simple check.

max_error – double
the maximum error found between the norm of a constraint gradient and its finite
difference approximation.

max_constraint – Integer
the constraint gradient which has the maximum error between its norm and its
finite difference approximation.

f_comp – Nag_CompSt *
The results of a requested component derivative check of the Jacobian of the objective
function subfunctions, st->gprint.g_chk.type = Nag_CheckObj or Nag_CheckObjCon,
will be held in the array of st->m+st->n substructures of type Nag_CompSt pointed to
by f_comp. The element st->gprint.f_comp[(i-1)*st->n +j-1] will hold the details
of the component derivative check for Jacobian element \(i, j \), for \(i = 1, 2, \ldots, \text{st} \to \text{ncnlin} ; j = 1, 2, \ldots, \text{st} \to \text{n} \). The procedure for the derivative check is based on finding an interval that produces an acceptable estimate of the second derivative, and then using that estimate to compute an interval that should produce a reasonable forward-difference approximation. The Jacobian element is then compared with the difference approximation. (The method of finite difference interval estimation is based on Gill et al (1983).)

- **correct** – Boolean

 if **TRUE** then this gradient element is consistent with its finite difference approximation.

- **hopt** – double

 the optimal finite difference interval. This is \(dx[i] \) in the default derivative checking printout (see Section 8.3).

- **gdiff** – double

 the finite difference approximation for this component.

- **iter** – Integer

 the number of trials performed to find a suitable difference interval.

- **comment** – char *

 a character string which describes the possible nature of the reason for which an estimation of the finite difference interval failed to produce a satisfactory relative condition error of the second-order difference. Possible strings are: "Constant?", "Linear or odd?", "Too nonlinear?" and "Small derivative?".

- **c_comp** – Nag CompSt *

 The results of a requested component derivative check of the Jacobian of nonlinear constraint functions, \(\text{st} \to \text{gprt}.*\text{chk.type} = \text{Nag CheckCon} \) or \(\text{Nag CheckObjCon} \), will be held in the array of \(\text{st} \to \text{ncnlin} + \text{st} \to \text{n} \) substructures of type Nag CompSt pointed to by \(c_\text{comp} \). The element \(\text{st} \to \text{gprint.f.comp}[(i - 1)\ast \text{st} \to \text{n} + j - 1] \) will hold the details of the component derivative check for Jacobian element \(i, j \), for \(i = 1, 2, \ldots, \text{st} \to \text{ncnlin} ; j = 1, 2, \ldots, \text{st} \to \text{n} \). The procedure for the derivative check is based on finding an interval that produces an acceptable estimate of the second derivative, and then using that estimate to compute an interval that should produce a reasonable forward-difference approximation. The Jacobian element is then compared with the difference approximation. (The method of finite difference interval estimation is based on Gill et al (1983).)

 The members of \(c_\text{comp} \) are as for \(f_\text{comp} \).

The relevant members of the structure **comm** are:

- **g prt** – Boolean

 will be **TRUE** only when the print function is called with the result of the derivative check of \(\text{objfun} \) and \(\text{confun} \).

- **it maj.prt** – Boolean

 will be **TRUE** when the print function is called with information about the current major iteration.

- **sol sqp.prt** – Boolean

 will be **TRUE** when the print function is called with the details of the final solution.

- **it.prt** – Boolean

 will be **TRUE** when the print function is called with information about the current minor iteration (i.e., an iteration of the current QP subproblem). See the documentation for \(\text{nag opt lin lsq (e04ncc)} \) for details of which members of \(\text{st} \) are set.

- **new lm** – Boolean

 will be **TRUE** when the Lagrange multipliers have been updated in a QP subproblem. See the documentation for \(\text{nag opt lin lsq (e04ncc)} \) for details of which members of \(\text{st} \) are set.
solprt – Boolean
will be TRUE when the print function is called with the details of the solution of a QP subproblem, i.e., the solution at the end of a major iteration. See the documentation for nag_opt_lin_lsq (e04unc) for details of which members of st are set.

user – double *
iuser – Integer *
p – Pointer
Pointers for communication of user information. If used they must be allocated memory by the user either before entry to nag_opt_nlin_lsq or during a call to objfun, confun or printfun. The type Pointer is void *.

9. Error Indications and Warnings

NE_USER_STOP
User requested termination, user flag value = ⟨value⟩.

This exit occurs if the user sets comm->flag to a negative value in objfun or confun. If fail is supplied the value of fail.errnum will be the same as the user’s setting of comm->flag.

NE_INT_OPT_ARG_LT
On entry, options.obj_check_start = ⟨value⟩.
Constraint: options.obj_check_start ≥ 1.

On entry, options.obj_check_stop = ⟨value⟩.
Constraint: options.obj_check_stop ≥ 1.

On entry, options.con_check_start = ⟨value⟩.
Constraint: options.con_check_start ≥ 1.

On entry, options.con_check_stop = ⟨value⟩.
Constraint: options.con_check_stop ≥ 1.

NE_INT_OPT_ARG_GT
On entry, options.obj_check_start = ⟨value⟩.
Constraint: options.obj_check_start ≤ n.

On entry, options.obj_check_stop = ⟨value⟩.
Constraint: options.obj_check_stop ≤ n.

On entry, options.con_check_start = ⟨value⟩.
Constraint: options.con_check_start ≤ n.

On entry, options.con_check_stop = ⟨value⟩.
Constraint: options.con_check_stop ≤ n.

NE_2_INT_OPT_ARG_CONS
On entry, options.con_check_start = ⟨value⟩ while options.con_check_stop = ⟨value⟩.
Constraint: options.con_check_start ≤ options.con_check_stop.

On entry, options.obj_check_start = ⟨value⟩ while options.obj_check_stop = ⟨value⟩.
Constraint: options.obj_check_start ≤ options.obj_check_stop.

NE_INT_ARG_LT
On entry, m must not be less than 1: m = ⟨value⟩.
On entry, n must not be less than 1: n = ⟨value⟩.
On entry, nclin must not be less than 0: nclin = ⟨value⟩.
On entry, ncnlin must not be less than 0: ncnlin = ⟨value⟩.

NE_2_INT_ARG_LT
On entry, tda = ⟨value⟩ while n = ⟨value⟩. These parameters must satisfy tda ≥ n.

NE_OPT_NOT_INIT
Options structure not initialized.
NE_BAD_PARAM
On entry, parameter options.print_level had an illegal value.
On entry, parameter options.minor_print_level had an illegal value.
On entry, parameter options.start had an illegal value.
On entry, parameter options.verify_grad had an illegal value.
On entry, parameter options.print_deriv had an illegal value.

NE_INVALID_INT_RANGE_1
Value (value) given to options.reset_freq not valid. Correct range is reset_freq > 0.
Value (value) given to options.max_iter not valid. Correct range is max_iter ≥ 0.
Value (value) given to options.minor_max_iter not valid. Correct range is minor_max_iter ≥ 0.

NE_INVALID_REAL_RANGE_F
Value (value) given to options.inf_bound not valid. Correct range is inf_bound > 0.0.
Value (value) given to options.inf_step not valid. Correct range is inf_step > 0.0.

NE_INVALID_REAL_RANGE_EQ
Value (value) given to options.inf_bound not valid. Correct range is inf_bound > 0.0.
Value (value) given to options.inf_step not valid. Correct range is inf_step > 0.0.

NE_INVALID_REAL_RANGE_FF
Value (value) given to options.linesearch not valid. Correct range is linesearch < 0.
Value (value) given to options.crash_tol not valid. Correct range is 0.0 ≤ crash_tol ≤ 1.0.

NE_BOUND
The lower bound for variable (value) (array element bl[(value)]) is greater than the upper bound.

NE_BOUND_EQ
The lower bound for linear constraint (value) (array element bl[(value)]) is greater than the upper bound.

NE_BOUND_EQ_LCON
The lower bound and upper bound for linear constraint (value) (array elements bl[(value)] and bu[(value)]) are equal but they are greater than or equal to options.inf_bound.

NE_BOUND_EQ_NLCON
The lower bound and upper bound for nonlinear constraint (value) (array elements bl[(value)] and bu[(value)]) are equal but they are greater than or equal to options.inf_bound.

NE_STATE_VAL
options.state[(value)] is out of range. state[(value)] = (value).

NE_ALLOC_FAIL
Memory allocation failed.

NW_NOT_CONVERGED
Optimal solution found, but the sequence of iterates has not converged with the requested accuracy.
The final iterate x satisfies the first-order Kuhn–Tucker conditions to the accuracy requested, but the sequence of iterates has not yet converged. nag_opt_nlin_lsq was terminated because no further improvement could be made in the merit function (see Section 7 of the documentation for nag_opt_nlp (e04unc) for more details).

This value of fail.code may occur in several circumstances. The most common situation is that the user asks for a solution with accuracy that is not attainable with the given precision of the problem (as specified by the optional parameter f.prec (default value $= 10^{-9}$, where ϵ is the machine precision; see Section 8.2). This condition will also occur if, by chance, an iterate is an ‘exact’ Kuhn–Tucker point, but the change in the variables was significant at the previous iteration. (This situation often happens when minimizing very simple functions, such as quadratics.)

If the four conditions listed in Section 10.1 are satisfied then x is likely to be a solution of (1) even if fail.code = NW_NOT_CONVERGED.

NW_LIN_NOT_FEASIBLE
No feasible point was found for the linear constraints and bounds.

nag_opt_nlin_lsq has terminated without finding a feasible point for the linear constraints and bounds, which means that either no feasible point exists for the given value of the optional parameter lin feas tol (default value $= \sqrt{\epsilon}$, where ϵ is the machine precision; see Section 8.2), or no feasible point could be found in the number of iterations specified by the optional parameter minor max iter (default value $= \max(50,(3(n_L + n_N)10^{-\text{options.max_iter}})))$; see Section 8.2). The user should check that there are no constraint redundancies. If the data for the constraints are accurate only to an absolute precision σ, the user should ensure that the value of the optional parameter lin feas tol is greater than σ. For example, if all elements of A_L are of order unity and are accurate to only three decimal places, lin feas tol should be at least 10^{-3}.

NW_NONLIN_NOT_FEASIBLE
No feasible point could be found for the nonlinear constraints.

The problem may have no feasible solution. This means that there has been a sequence of QP subproblems for which no feasible point could be found (indicated by I at the end of each terse line of output; see Section 4.1). This behaviour will occur if there is no feasible point for the nonlinear constraints. (However, there is no general test that can determine whether a feasible point exists for a set of nonlinear constraints.) If the infeasible subproblems occur from the very first major iteration, it is highly likely that no feasible point exists. If infeasibilities occur when earlier subproblems have been feasible, small constraint inconsistencies may be present. The user should check the validity of constraints with negative values of the optional parameter state. If the user is convinced that a feasible point does exist, nag_opt_nlin_lsq should be restarted at a different starting point.

NW_TOO_MANY_ITER
The maximum number of iterations, ⟨value⟩, have been performed.

The value of the optional parameter max iter may be too small. If the method appears to be making progress (e.g., the objective function is being satisfactorily reduced), increase the value of options.max_iter and rerun nag_opt_nlin_lsq; alternatively, rerun nag_opt_nlin_lsq, setting the optional parameter start = Nag_Warm to specify the initial working set. If the algorithm seems to be making little or no progress, however, then the user should check for incorrect gradients or ill conditioning as described below under fail.code = NW_KT_CONDITIONS. Note that ill conditioning in the working set is sometimes resolved automatically by the algorithm, in which case performing additional iterations may be helpful. However, ill conditioning in the Hessian approximation tends to persist once it has begun, so that allowing additional iterations without altering R is usually inadvisable. If the quasi-Newton update of the Hessian approximation was reset during the latter iterations (i.e., an R occurs at the end of each terse line; see Section 4.1), it may be worthwhile setting start = Nag_Warm and calling nag_opt_nlin_lsq from the final point.

NW_KT_CONDITIONS
The current point cannot be improved upon. The final point does not satisfy the first-order Kuhn–Tucker conditions and no improved point for the merit function could be found during the final line search.
The Kuhn–Tucker conditions are specified and the merit function described in Section 7.1 and Section 7.3 of the function documentation for nag_opt_nlp (e04ucc).

This sometimes occurs because an overly stringent accuracy has been requested, i.e., the value of the optional parameter optim_tol (default value = $\epsilon^{0.8}_r$, where ϵ_r is the relative precision of $F(x)$; see Section 8.2) is too small. In this case the user should apply the four tests described in Section 10.1 to determine whether or not the final solution is acceptable (see Gill et al (1981)), for a discussion of the attainable accuracy).

If many iterations have occurred in which essentially no progress has been made and nag_opt_nlin_lsq has failed completely to move from the initial point then functions objfun and/or confun may be incorrect. The user should refer to comments below under fail.code = NE_DERIV_ERRORS and check the gradients using the optional parameter verify_grad (default value = Nag_Simple_Check; see Section 8.2). Unfortunately, there may be small errors in the objective and constraint gradients that cannot be detected by the verification process.Finite difference approximations to first derivatives are catastrophically affected by even small inaccuracies. An indication of this situation is a dramatic alteration in the iterates if the finite difference interval is altered. One might also suspect this type of error if a switch is made to central differences even when DERIV = 0.

Another possibility is that the search direction has become inaccurate because of ill conditioning in the Hessian approximation or the matrix of constraints in the working set; either form of ill conditioning tends to be reflected in large values of Mnr (the number of iterations required to solve each QP subproblem; see Section 4.1).

If the condition estimate of the projected Hessian (Cond Hz; see Section 4.1) is extremely large, it may be worthwhile rerunning nag_opt_nlin_lsq from the final point with the optional parameter start = Nag_Warm (see Section 8.2). In this situation, the optional parameters state and lambda should be left unaltered and R (in optional parameter h) should be reset to the identity matrix.

If the matrix of constraints in the working set is ill conditioned (i.e., Cond T is extremely large; see Section 8.3), it may be helpful to run nag_opt_nlin_lsq with a relaxed value of the optional parameters infeas_tol and nonlin_feas_tol (default values $\sqrt{\epsilon}$, and $\sqrt{\epsilon}$, respectively, where ϵ is the machine precision; see Section 8.2). (Constraint dependencies are often indicated by wide variations in size in the diagonal elements of the matrix T, whose diagonals will be printed if the optional parameter print_level = Nag_Soln_Iter_Full (default value = Nag_Soln_Iter; see Section 8.2)).

NE_DERIV_ERRORS

Large errors were found in the derivatives of the objective function and/or nonlinear constraints.

This failure will occur if the verification process indicated that at least one gradient or Jacobian element had no correct figures. The user should refer to the printed output to determine which elements are suspected to be in error.

As a first-step, the user should check that the code for the objective and constraint values is correct – for example, by computing the function at a point where the correct value is known. However, care should be taken that the chosen point fully tests the evaluation of the function. It is remarkable how often the values $x = 0$ or $x = 1$ are used to test function evaluation procedures, and how often the special properties of these numbers make the test meaningless.

Errors in programming the function may be quite subtle in that the function value is ‘almost’ correct. For example, the function may not be accurate to full precision because of the inaccurate calculation of a subsidiary quantity, or the limited accuracy of data upon which the function depends. A common error on machines where numerical calculations are usually performed in double precision is to include even one single precision constant in the calculation of the function; since some compilers do not convert such constants to double precision, half the correct figures may be lost by such a seemingly trivial error.

NW_OVERFLOW_WARN

Serious ill conditioning in the working set after adding constraint ⟨value⟩. Overflow may occur in subsequent iterations.

If overflow occurs preceded by this warning then serious ill conditioning has probably occurred in the working set when adding a constraint. It may be possible to avoid the difficulty by
increasing the magnitude of the optional parameter lin_feas_tol (default value = $\sqrt{\epsilon}$, where ϵ is the machine precision; see Section 8.2) and/or the optional parameter nonlin_feas_tol (default value $\epsilon^{0.33}$ or $\sqrt{\epsilon}$; see Section 8.2), and rerunning the program. If the message recurs even after this change, the offending linearly dependent constraint j must be removed from the problem. If overflow occurs in one of the user-supplied functions (e.g., if the nonlinear functions involve exponentials or singularities), it may help to specify tighter bounds for some of the variables (i.e., reduce the gap between the appropriate l_j and u_j).

NE_NOT_APPEND_FILE
Cannot open file `<string>` for appending.

NE_WRITE_ERROR
Error occurred when writing to file `<string>`.

NE_NOT_CLOSE_FILE
Cannot close file `<string>`.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

10. Further Comments

10.1 Termination Criteria

The function exits with fail.code = NE_NOERROR if iterates have converged to a point x that satisfies the Kuhn–Tucker conditions (see Section 7.1 of the documentation for nag_opt_nlp (e04ucc)) to the accuracy requested by the optional parameter optim_tol (default value = $\epsilon_r^{0.8}$, see Section 8.2).

The user should also examine the printout from nag_opt_nlin_lsq (see Section 4.1) to check whether the following four conditions are satisfied:

1. the final value of Norm Gz is significantly less than at the starting point;
2. during the final major iterations, the values of Step and Mnr are both one;
3. the last few values of both Violtn and Norm Gz become small at a fast linear rate; and
4. Cond Hz is small.

If all these conditions hold, x is almost certainly a local minimum.

10.2. Accuracy

If fail.code = NE_NOERROR on exit, then the vector returned in the array x is an estimate of the solution to an accuracy of approximately options.optim_tol (default value = $\epsilon_r^{0.8}$, where ϵ_r is the relative precision of $F(x)$; see Section 8.2).

11. References

12. See Also

nag_opt_lp (e04mfc)
nag_opt_lin_lsq (e04ncc)
nag_opt_qp (e04nfc)
nag_opt_nlp (e04ucc)
nag_opt_init (e04xxc)
nag_opt_read (e04xyc)
nag_opt_free (e04xzc)
13. Example 2

This example illustrates the use of the optional parameter, `print_fun`, which allows the user to customize the output from `nag_opt_nlin_lsq`. The same problem is solved as in Example 1. The `options` structure is declared and initialized by `nag_opt_init (e04xec)`. The `print_fun` option is set to the user defined print function `user_print`. This checks the values of various Boolean members of the `comm` structure parameter to determine what type of printout is required, i.e., derivative checking printout if `comm->g_prt = TRUE`, major iteration printout if `comm->it_maj_prt = TRUE` and final solution printout if `comm->sol_sqp_prt = TRUE`. According to which flag, if any, is set, `user_print` then accesses the relevant members of its `st` structure parameter and outputs the information. On return from `nag_opt_nlin_lsq`, the memory freeing function `nag_opt_free (e04xec)` is used to free the memory assigned to the pointers in the options structure. Users should not use the standard C function `free()` for this purpose.

13.1. Program Text

```c
static void user_print(const Nag_Search_State *st, Nag_Comm *comm)
{
    static char *states[] = {"IL", "IU", "FR", "LL", "UL", "EQ"};
    Integer i, ixl, ixn;
    Nag_SimSt c_sim, f_sim;

    /* Derivative checking (only handle simple checks here) */
    if (comm->g_prt)
    {
        /* First ensure that a check has been performed */
        if (st->gprint->g_chk.type != Nag_NoCheck)
        {
            Vprintf("\n\nDerivative Checks\n------------------\n\n");
            /* Objective check */
            f_sim = st->gprint->f_sim;
            if (f_sim.correct)
            Vprintf("\nSimple check of objective gradients: OK\n");
            else
            Vprintf("\nSimple check of objective gradients: ERROR!\n");
            Vprintf("\nMax error was %9.2e in subfunction %1ld\n", f_sim.max_error, f_sim.max_subfunction);

            /* Similarly for constraints */
            c_sim = st->gprint->c_sim;
            if (c_sim.correct)
            Vprintf("\nSimple check of constraint gradients: OK\n");
            else
            Vprintf("\nSimple check of constraint gradients: ERROR!\n");
            Vprintf("\nMax error was %9.2e in constraint %1ld\n", c_sim.max_error, c_sim.max_constraint);
        }
    }

    /* Major iteration output */
    if (comm->it_maj_prt)
    {
        if (st->first)
        {
            Vprintf("\nIterations\n----------\n");
            Vprintf("\n Maj Mnr Step Merit function\n");
        }
        Vprintf("\n%4ld %4ld %8.1e %14.6e\n", st->iter, st->minor_iter, st->step, st->merit);
    }

    /* Solution output */
    if (comm->sol_sqp_prt)
    {
        Vprintf("\nSolution\n----\n\n%4ld %8.1e %14.6e\n", st->iter, st->minor_iter, st->step, st->merit);
    }
}
```
{
Vprintf("\nSolution
-------\n");

/* Variable results */
Vprintf("\nVarbl State Value Lagr Mult\n");
for (i = 0; i < st->n; ++i)
 Vprintf("V%4ld %2s %14.6e %12.4e\n", i+1, states[st->state[i] + 2],
 st->x[i], st->lambda[i]);

/* Linear constraint results */
Vprintf("\nL Con State Value Lagr Mult\n");
for (i = st->n; i < st->n + st->nclin; ++i)
 { ixl = i - st->n;
 Vprintf("V%4ld %2s %14.6e %12.4e\n", ixl+1, states[st->state[i] + 2],
 st->ax[ixl], st->lambda[i]);
 }

/* Nonlinear constraint results */
Vprintf("\nN Con State Value Lagr Mult\n");
for (i = st->n + st->nclin; i < st->n + st->nclin + st->ncnlin; ++i)
 { ixn = i - st->n - st->nclin;
 Vprintf("V%4ld %2s %14.6e %12.4e\n", ixn+1, states[st->state[i] + 2],
 st->cx[ixn], st->lambda[i]);
 }
}

} /* user_print */

static void ex2(void)
{

/* Local variables */
double x[NMAX], a[NCLIN][NMAX];
double f[MMAX], y[MMAX], fjac[MMAX][NMAX];
double bl[MAXBND], bu[MAXBND];
double objf;
Integer tda, tdfjac;
Integer i, j, m, n, nclin, ncnlin;
Nag_E04_Opt options;
static NagError fail, fail1;
fail.print = TRUE;
fail1.print = TRUE;

Vprintf("\nExample 2: user defined printing option\n");
Vscanf(" %*[\n"); /* Skip heading in data file */

/* Read problem dimensions */
Vscanf(" %*[\n");
Vscanf("%ld%ld%*[\n");, &m, &n);
Vscanf(" %*[\n");
Vscanf("%ld%ld%*[\n");, &nclin, &ncnlin);
if (m <= MMAX && n <= NMAX && nclin <= NCLIN && ncnlin <= NCNLIN)
 {
 tda = NMAX;
 tdfjac = NMAX;
 /* Read a, y, bl, bu and x from data file */
 if (nclin > 0)
 {
 Vscanf(" %*[\n");
 for (i = 0; i < nclin; ++i)
 for (j = 0; j < n; ++j)
 Vscanf("%lf", &a[i][j]);
 }
 /* Read the y vector of the objective */
 Vscanf(" %*[\n");
 for (i = 0; i < m; ++i)
 }

}
Vscanf("%lf", &y[i]);

/* Read lower bounds */
Vscanf("%*[-\n]");
for (i = 0; i < n + nclin + ncnlin; ++i)
 Vscanf("%lf", &bl[i]);

/* Read upper bounds */
Vscanf("%*[-\n]");
for (i = 0; i < n + nclin + ncnlin; ++i)
 Vscanf("%lf", &bu[i]);

/* Read the initial point x */
Vscanf("%*[-\n]");
for (i = 0; i < n; ++i)
 Vscanf("%lf", &x[i]);

/* Set an option */
e04xxc(&options);
options.print_fun = user_print;

/* Solve the problem */
e04unc(m, n, nclin, ncnlin, (double*)a, tda, bl, bu, y, objfun,
 confun, x, &objf, f, (double*)fjac, tdfjac, &options,
 NAGCOMM_NULL, &fail);
e04xzc(&options, "all", &fail1);
}
/* ex2 */

13.2. Program Data

Data for example 2

Values of m and n
44 2

Values of nclin and ncnln
1 1

Linear constraint matrix A
1.0 1.0

Objective vector y
0.49 0.49 0.43 0.47 0.48 0.47 0.46 0.46 0.45 0.43 0.45
0.43 0.43 0.44 0.43 0.43 0.46 0.45 0.42 0.42 0.43 0.41
0.41 0.40 0.42 0.40 0.40 0.41 0.40 0.41 0.41 0.40 0.40
0.40 0.38 0.41 0.40 0.40 0.41 0.38 0.40 0.40 0.39 0.39

Lower bounds
0.4 -4.0 1.0 0.0

Upper bounds
1.0e+25 1.0e+25 1.0e+25 1.0e+25

Initial estimate of x
0.4 0.0
13.3. Program Results

Example 2: user defined printing option

Parameters to e04unc

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of variables</td>
<td>2</td>
</tr>
<tr>
<td>Linear constraints</td>
<td>1</td>
</tr>
<tr>
<td>Nonlinear constraints</td>
<td>1</td>
</tr>
<tr>
<td>start</td>
<td>Nag_Cold</td>
</tr>
<tr>
<td>step_limit</td>
<td>2.00e+00</td>
</tr>
<tr>
<td>lin_feas_tol</td>
<td>1.05e-08</td>
</tr>
<tr>
<td>optim_tol</td>
<td>3.2e-12</td>
</tr>
<tr>
<td>crash_tol</td>
<td>1.00e-02</td>
</tr>
<tr>
<td>f_prec</td>
<td>4.37e-15</td>
</tr>
<tr>
<td>lin_feas_tol</td>
<td>1.05e-08</td>
</tr>
<tr>
<td>nonlin_feas_tol</td>
<td>9.00e-01</td>
</tr>
<tr>
<td>optim_tol</td>
<td>4.37e-15</td>
</tr>
<tr>
<td>optim_tol</td>
<td>3.2e-12</td>
</tr>
<tr>
<td>linesearch_tol</td>
<td>9.00e-01</td>
</tr>
<tr>
<td>machine precision</td>
<td>1.11e-16</td>
</tr>
<tr>
<td>inf_bound</td>
<td>1.00e+20</td>
</tr>
<tr>
<td>inf_step</td>
<td>1.00e+20</td>
</tr>
<tr>
<td>max_iter</td>
<td>50</td>
</tr>
<tr>
<td>minor_max_iter</td>
<td>50</td>
</tr>
<tr>
<td>hessian</td>
<td>FALSE</td>
</tr>
<tr>
<td>h_reset_freq</td>
<td>2</td>
</tr>
<tr>
<td>f_diff_int</td>
<td>Automatic</td>
</tr>
<tr>
<td>c_diff_int</td>
<td>Automatic</td>
</tr>
<tr>
<td>obj_deriv</td>
<td>TRUE</td>
</tr>
<tr>
<td>con_deriv</td>
<td>TRUE</td>
</tr>
<tr>
<td>verify_grad</td>
<td>Nag_SimpleCheck</td>
</tr>
<tr>
<td>print_deriv</td>
<td>Nag_D_Full</td>
</tr>
<tr>
<td>minor_print_level</td>
<td>Nag_NoPrint</td>
</tr>
<tr>
<td>outfile</td>
<td>stdout</td>
</tr>
</tbody>
</table>

Derivative Checks

Simple check of objective gradients: OK
Max error was 1.04e-08 in subfunction 3

Simple check of constraint gradients: OK
Max error was 1.89e-08 in constraint 1

Iterations

<table>
<thead>
<tr>
<th>Maj</th>
<th>Mnr</th>
<th>Step</th>
<th>Merit function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>0.0e+00</td>
<td>2.224070e-02</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.0e+00</td>
<td>1.455402e-02</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.0e+00</td>
<td>1.436491e-02</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1.0e+00</td>
<td>1.427013e-02</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1.0e+00</td>
<td>1.422989e-02</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1.0e+00</td>
<td>1.422983e-02</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1.0e+00</td>
<td>1.422983e-02</td>
</tr>
</tbody>
</table>

Solution

<table>
<thead>
<tr>
<th>Varbl</th>
<th>State</th>
<th>Value</th>
<th>Lagr Mult</th>
</tr>
</thead>
<tbody>
<tr>
<td>V 1</td>
<td>FR</td>
<td>4.199527e-01</td>
<td>0.0000e+00</td>
</tr>
<tr>
<td>V 2</td>
<td>FR</td>
<td>1.284845e+00</td>
<td>0.0000e+00</td>
</tr>
<tr>
<td>L Con</td>
<td>Value</td>
<td>Lagr Mult</td>
<td></td>
</tr>
<tr>
<td>V 1</td>
<td>FR</td>
<td>1.704798e+00</td>
<td>0.0000e+00</td>
</tr>
<tr>
<td>N Con</td>
<td>Value</td>
<td>Lagr Mult</td>
<td></td>
</tr>
<tr>
<td>V 1</td>
<td>LL</td>
<td>-9.767742e-13</td>
<td>3.3358e-02</td>
</tr>
</tbody>
</table>