nag_opt_nlp (e04ucc)

1. Purpose

nag_opt_nlp (e04ucc) is designed to minimize an arbitrary smooth function subject to constraints (which may include simple bounds on the variables, linear constraints and smooth nonlinear constraints) using a sequential quadratic programming (SQP) method. As many first derivatives as possible should be supplied by the user; any unspecified derivatives are approximated by finite differences. It is not intended for large sparse problems.

nag_opt_nlp may also be used for unconstrained, bound-constrained and linearly constrained optimization.

2. Specification

```c
#include <nag.h>
#include <nage04.h>

void nag_opt_nlp(Integer n, Integer nclin, Integer ncnlin, double a[],
                  Integer tda, double bl[], double bu[],
                  void (*objfun)(Integer n, double x[], double *objf,
                                   double g[], Nag_Comm *comm),
                  void (*confun)(Integer n, Integer ncnlin, Integer needc[],
                                 double x[], double conf[], double conjac[],
                                 Nag_Comm *comm),
                  double x[], double *objf, double g[],
                  Nag_E04_Opt *options, Nag_Comm *comm, NagError *fail)
```

3. Description

nag_opt_nlp is designed to solve the nonlinear programming problem – the minimization of a smooth nonlinear function subject to a set of constraints on the variables. The problem is assumed to be stated in the following form:

\[
\begin{align*}
\text{minimize} \quad & F(x) \\
\text{subject to} \quad & l \leq \begin{bmatrix} x \\ A_L x \\ c(x) \end{bmatrix} \leq u,
\end{align*}
\]

(1)

where \(F(x) \) (the objective function) is a nonlinear function, \(A_L \) is an \(n_L \) by \(n \) constant matrix, and \(c(x) \) is an \(n_N \) element vector of nonlinear constraint functions. (The matrix \(A_L \) and the vector \(c(x) \) may be empty.) The objective function and the constraint functions are assumed to be smooth, i.e., at least twice-continuously differentiable. (The method of nag_opt_nlp will usually solve (1) if there are only isolated discontinuities away from the solution.)

Note that although the bounds on the variables could be included in the definition of the linear constraints, we prefer to distinguish between them for reasons of computational efficiency. For the same reason, the linear constraints should not be included in the definition of the nonlinear constraints. Upper and lower bounds are specified for all the variables and for all the constraints. An equality constraint can be specified by setting \(l_i = u_i \). If certain bounds are not present, the associated elements of \(l \) or \(u \) can be set to special values that will be treated as \(-\infty \) or \(+\infty \). (See the description of the optional parameter inf_bound in Section 8.2.)

If there are no nonlinear constraints in (1) and \(F \) is linear or quadratic, then one of nag_opt_lp (e04mfc), nag_opt_lin_lsq (e04ncc) or nag_opt_qp (e04nfc) will generally be more efficient.

The user must supply an initial estimate of the solution to (1), together with functions that define \(F(x), c(x) \) and as many first partial derivatives as possible; unspecified derivatives are approximated by finite differences.

The objective function is defined by function objfun, and the nonlinear constraints are defined by function confun. On every call, these functions must return appropriate values of the objective and nonlinear constraints. The user should also provide the available partial derivatives. Any unspecified derivatives are approximated by finite differences; see Section 8.2 for a discussion of
the optional parameters obj_deriv and con_deriv. Just before either objfun or confun is called, each element of the current gradient array g or conjac is initialized to a special value. On exit, any element that retains the value is estimated by finite differences. Note that if there are any nonlinear constraints, then the first call to confun will precede the first call to objfun.

For maximum reliability, it is preferable for the user to provide all partial derivatives (see Chapter 8 of Gill et al (1981), for a detailed discussion). If all gradients cannot be provided, it is similarly advisable to provide as many as possible. While developing the functions objfun and confun, the optional parameter verify_grad (see Section 8.2) should be used to check the calculation of any known gradients.

The method used by nag_opt_nlp is described in detail in Section 7.

4. Parameters

n
- Input: n, the number of variables.
- Constraint: $n > 0$.

nclin
- Input: n_L, the number of general linear constraints.
- Constraint: $nclin \geq 0$.

ncnlin
- Input: n_N, the number of nonlinear constraints.
- Constraint: $ncnlin \geq 0$.

a[nclin][tda]
- Input: the ith row of a must contain the coefficients of the ith general linear constraint (the ith row of the matrix A_L in (1)), for $i = 1, 2, \ldots, n_L$.
- If $nclin = 0$ then the array a is not referenced.

tda
- Input: the second dimension of the array a as declared in the function from which nag_opt_nlp is called.
- Constraint: $tda \geq n$ if $nclin > 0$.

bl[n+nclin+ncnlin]
- Input: bl must contain the lower bounds and bu the upper bounds, for all the constraints in the following order. The first n elements of each array must contain the bounds on the variables, the next n_L elements the bounds for the general linear constraints (if any), and the next n_N elements the bounds for the nonlinear constraints (if any). To specify a non-existent lower bound (i.e., $l_j = -\infty$), set $bl[j-1] \leq -\inf_bound$, and to specify a non-existent upper bound (i.e., $u_j = +\infty$), set $bu[j-1] \geq \inf_bound$, where \inf_bound is one of the optional parameters (default value 10^{-20}, see Section 8.2). To specify the jth constraint as an equality, set $bl[j-1] = bu[j-1] = \beta$, say, where $|\beta| < \inf_bound$.
- Constraints:
 - $bl[j] \leq bu[j]$, for $j = 0, 1, \ldots, n+nclin+ncnlin-1$,
 - $|\beta| < \inf_bound$ when $bl[j] = bu[j] = \beta$.

objfun
- objfun must calculate the objective function $F(x)$ and (optionally) its gradient $g(x) = \partial F/\partial x_j$ for a specified n element vector x.
- The specification for objfun is:
void objfun(Integer n, double x[], double *objf, double g[], Nag_Comm *comm)

Input: n, the number of variables.

$x[n]$ Input: x, the vector of variables at which the value of F and/or all available elements of its gradient are to be evaluated.

objf Output: if $\text{comm->flag} =$ 0 or 2, objfun must set objf to the value of the objective function F at the current point x. If it is not possible to evaluate F then objfun should assign a negative value to comm->flag; nag_opt_nlp will then terminate.

$g[n]$ Output: if $\text{comm->flag} =$ 2, g must contain all the elements of the vector $g(x)$ given by

$$g(x) = \left(\frac{\partial F}{\partial x_1}, \frac{\partial F}{\partial x_2}, \ldots, \frac{\partial F}{\partial x_n} \right)^T,$$

where $\partial F/\partial x_i$ is the partial derivative of the objective function with respect to the ith variable evaluated at the point x, for $i = 1, 2, \ldots, n$.

If the optional parameter $\text{obj_deriv} =$ TRUE (the default), all elements of g must be set; if $\text{obj_deriv} =$ FALSE, any available elements of the vector $g(x)$ must be assigned to the elements of g; the remaining elements must remain unchanged.

comm Pointer to structure of type Nag_Comm; the following members are relevant to objfun.

flag – Integer

Input: objfun is called with comm->flag set to 0 or 2.

If $\text{comm->flag} =$ 0 then only objf is referenced.

If $\text{comm->flag} =$ 2 then both objf and g are referenced.

Output: if objfun resets comm->flag to some negative number then nag_opt_nlp will terminate immediately with the error indicator NE_USER_STOP. If fail is supplied to nag_opt_nlp, fail.errnum will be set to the user’s setting of comm->flag.

first – Boolean

Input: will be set to TRUE on the first call to objfun and FALSE for all subsequent calls.

nf – Integer

Input: the number of evaluations of the objective function; this value will be equal to the number of calls made to objfun including the current one.

user – double *

iuser – Integer *

p – Pointer

The type Pointer is void *.

Before calling nag_opt_nlp these pointers may be allocated memory by the user and initialized with various quantities for use by objfun when called from nag_opt_nlp.

Note: objfun should be tested separately before being used in conjunction with nag_opt_nlp. The optional parameters verify_grad and max_iter can be used to assist this process. The array x must not be changed by objfun.

If the function objfun does not calculate all of the gradient elements then the optional parameter obj_deriv should be set to FALSE.
confun must calculate the vector \(c(x) \) of nonlinear constraint functions and (optionally) its Jacobian \((\partial c / \partial x) \) for a specified \(n \) element vector \(x \). If there are no nonlinear constraints (i.e., \(\text{ncnlin} = 0 \)), \text{confun} \) will never be called and the NAG defined null void function pointer, \text{NULLFN}, can be supplied in the call to \text{nag_opt_nlp}. If there are nonlinear constraints the first call to \text{confun} \) will occur before the first call to \text{objfun}.

The specification for \text{confun} \) is:

```c
void confun(Integer n, Integer ncnlin, Integer needc[], double x[],
            double conf[], double conjac[], Nag_Comm *comm)
```

- \(n \)
 Input: \(n \), the number of variables.

- \(\text{ncnlin} \)
 Input: \(n_N \), the number of nonlinear constraints.

- \(\text{needc}[\text{ncnlin}] \)
 Input: the indices of the elements of \text{conf} and/or \text{conjac} that must be evaluated by \text{confun}. If \(\text{needc}[i - 1] > 0 \) then the \(i \)th element of \text{conf} and/or the available elements of the \(i \)th row of \text{conjac} (see parameter \text{comm->flag} below) must be evaluated at \(x \).

- \(x[n] \)
 Input: the vector of variables \(x \) at which the constraint functions and/or all available elements of the constraint Jacobian are to be evaluated.

- \(\text{conf}[\text{ncnlin}] \)
 Output: if \(\text{needc}[i - 1] > 0 \) and \text{comm->flag} = 0 or 2, \(\text{conf}(i - 1) \) must contain the value of the \(i \)th constraint at \(x \). The remaining elements of \text{conf}, corresponding to the non-positive elements of \text{needc}, are ignored.

- \(\text{conjac}[\text{ncnlin}+n] \)
 Output: if \(\text{needc}[i - 1] > 0 \) and \text{comm->flag} = 2, the \(i \)th row of \text{conjac} (i.e., the elements \text{conjac}[(i - 1)*n+j - 1], \(j = 1, 2, \ldots, n \)) must contain the available elements of the vector \(\nabla c_i \) given by

\[
\nabla c_i = \left(\frac{\partial c_i}{\partial x_1}, \frac{\partial c_i}{\partial x_2}, \ldots, \frac{\partial c_i}{\partial x_n} \right)^T,
\]

where \(\partial c_i / \partial x_j \) is the partial derivative of the \(i \)th constraint with respect to the \(j \)th variable, evaluated at the point \(x \). The remaining rows of \text{conjac}, corresponding to non-positive elements of \text{needc}, are ignored.

If the optional parameter \text{con_deriv} = \text{TRUE} \) (the default), all elements of \text{conjac} must be set; if \text{con_deriv} = \text{FALSE} \), then any available partial derivatives of \(c_i(x) \) must be assigned to the elements of \text{conjac}; the remaining elements must remain unchanged.

If all elements of the constraint Jacobian are known (i.e., \text{con_deriv} = \text{TRUE}; see Section 8.2), any constant elements may be assigned to \text{conjac} one time only at the start of the optimization. An element of \text{conjac} that is not subsequently assigned in \text{confun} \) will retain its initial value throughout.

Constant elements may be loaded into \text{conjac} during the first call to \text{confun}. The ability to preload constants is useful when many Jacobian elements are identically zero, in which case \text{conjac} may be initialized to zero at the first call when \text{comm->first} = \text{TRUE}.
It must be emphasized that, if `con_deriv = FALSE`, unassigned elements of `conjac` are not treated as constant; they are estimated by finite differences, at non-trivial expense. If the user does not supply a value for the optional argument `f_diff_int` (the default; see Section 8.2), an interval for each element of `x` is computed automatically at the start of the optimization. The automatic procedure can usually identify constant elements of `conjac`, which are then computed once only by finite differences.

```cpp
comm
Pointer to structure of type Nag_Comm; the following members are relevant to `confun`.

flag – Integer
Input: `confun` is called with `comm->flag` set to 0 or 2.
If `comm->flag = 0` then only `conf` is referenced.
If `comm->flag = 2` then both `conf` and `conjac` are referenced.
Output: if `confun` resets `comm->flag` to some negative number then nag_opt_nlp will terminate immediately with the error indicator `NE_USER_STOP`. If `fail` is supplied to nag_opt_nlp `fail.errnum` will be set to the user’s setting of `comm->flag`.

first – Boolean
Input: will be set to `TRUE` on the first call to `confun` and `FALSE` for all subsequent calls.

user – double *

iuser – Integer *

p – Pointer

The type Pointer will be void * with a C compiler that defines void * and char * otherwise.
Before calling nag_opt_nlp these pointers may be allocated memory by the user and initialized with various quantities for use by `confun` when called from nag_opt_nlp.
```

Note: `confun` should be tested separately before being used in conjunction with nag_opt_nlp. The optional parameters `verify_grad` and `max_iter` can be used to assist this process. The array `x` must not be changed by `confun`.

If `confun` does not calculate all of the elements of the constraint gradients then the optional parameter `con_deriv` should be set to `FALSE`.

`x[n]`
Input: an initial estimate of the solution.
Output: the final estimate of the solution.

`objf`
Output: the value of the objective function at the final iterate.

`g[n]`
Output: the gradient of the objective function at the final iterate (or its finite difference approximation).

`options`
Input/Output: a pointer to a structure of type Nag_E04_Opt whose members are optional parameters for nag_opt_nlp. These structure members offer the means of adjusting some of the parameter values of the algorithm and on output will supply further details of the results. A description of the members of `options` is given below in Section 8. Some of the results returned in `options` can be used by nag_opt_nlp to perform a ‘warm start’ (see the member `start` in Section 8.2).

If any of these optional parameters are required then the structure `options` should be declared and initialized by a call to nag_opt_init (e04ucc) and supplied as an argument to nag_opt_nlp. However, if the optional parameters are not required the NAG defined null pointer, E04_DEFAULT, can be used in the function call.
nag_opt_nlp

Input/Output: structure containing pointers for communication to the user-supplied functions objfun and confun, and the optional user-defined printing function; see the description of objfun and confun and Section 8.3.1 for details. If the user does not need to make use of this communication feature the null pointer NAGCOMM_NULL may be used in the call to nag_opt_nlp; comm will then be declared internally for use in calls to user-supplied functions.

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library. Users are recommended to declare and initialize fail and set fail.print = TRUE for this function.

4.1. Description of Printed Output

Intermediate and final results are printed out by default. The level of printed output can be controlled by the user with the structure members options.print_level and options.minor_print_level (see Section 8.2). The default setting of print_level = Nag_Soln_Iter and minor_print_level = Nag_NoPrint provides a single line of output at each iteration and the final result. This section describes the default printout produced by nag_opt_nlp.

The following line of summary output (< 80 characters) is produced at every major iteration. In all cases, the values of the quantities printed are those in effect on completion of the given iteration.

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases of the QP subproblem. Generally, Mnr will be 1 in the later iterations, since theoretical analysis predicts that the correct active set will be identified near the solution (see Section 7).

Note that Mnr may be greater than the optional parameter minor_max_iter (default value = max(50,3(n + nL + nN)); see Section 8.2) if some iterations are required for the feasibility phase.

Step is the step taken along the computed search direction. On reasonably well-behaved problems, the unit step will be taken as the solution is approached.

Merit function is the value of the augmented Lagrangian merit function (12) at the current iterate. This function will decrease at each iteration unless it was necessary to increase the penalty parameters (see Section 7.3). As the solution is approached, Merit function will converge to the value of the objective function at the solution.

If the QP subproblem does not have a feasible point (signified by I at the end of the current output line), the merit function is a large multiple of the constraint violations, weighted by the penalty parameters. During a sequence of major iterations with infeasible subproblems, the sequence of Merit Function values will decrease monotonically until either a feasible subproblem is obtained or nag_opt_nlp terminates with fail.code = NW_NONLIN_NOT_FEASIBLE (no feasible point could be found for the nonlinear constraints).

If no nonlinear constraints are present (i.e., ncnlin = 0), this entry contains Objective, the value of the objective function F(x). The objective function will decrease monotonically to its optimal value when there are no nonlinear constraints.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the predicted active set (not printed if ncnlin is zero). Violtn will be approximately zero in the neighbourhood of a solution.

Norm Gz is \(\|Z^T g_{FR} \| \), the Euclidean norm of the projected gradient (see Section 7.1). Norm Gz will be approximately zero in the neighbourhood of a solution.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation \(H_Z \) (\(H_Z = Z^T H_{FR} Z = R_Z^T R_Z \); see (6) in Section 7.1 and (11) in Section 7.2). The larger this number, the more difficult the problem.
The line of output may be terminated by one of the following characters:

M is printed if the quasi-Newton update was modified to ensure that the Hessian approximation is positive-definite (see Section 7.4).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences were used to compute the unspecified objective and constraint gradients. If the value of Step is zero, the switch to central differences was made because no lower point could be found in the line search. (In this case, the QP subproblem is re-solved with the central difference gradient and Jacobian.) If the value of Step is non-zero, central differences were computed because Norm Gz and Violtn imply that x is close to a Kuhn–Tucker point (see Section 7.1).

L is printed if the line search has produced a relative change in x greater than the value defined by the optional parameter step_limit (default value = 2.0; see Section 8.2). If this output occurs frequently during later iterations of the run, step_limit should be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal condition estimator of R indicates that the approximate Hessian is badly conditioned, the approximate Hessian is refactorized using column interchanges. If necessary, R is modified so that its diagonal condition estimator is bounded.

The final printout includes a listing of the status of every variable and constraint. The following describes the printout for each variable.

Varbl gives the name (V) and index j, for j = 1, 2, ..., n of the variable.

State gives the state of the variable (FR if neither bound is in the active set, EQ if a fixed variable, LL if on its lower bound, UL if on its upper bound). If Value lies outside the upper or lower bounds by more than the feasibility tolerances specified by the optional parameters lin_feas_tol and nonlin_feas_tol (see Section 8.2), State will be ++ or -- respectively.

A key is sometimes printed before State to give some additional information about the state of a variable.

A Alternative optimum possible. The variable is active at one of its bounds, but its Lagrange Multiplier is essentially zero. This means that if the variable were allowed to start moving away from its bound, there would be no change to the objective function. The values of the other free variables might change, giving a genuine alternative solution. However, if there are any degenerate variables (labelled D), the actual change might prove to be zero, since one of them could encounter a bound immediately. In either case, the values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of its bounds.

I Infeasible. The variable is currently violating one of its bounds by more than lin_feas_tol.

Value is the value of the variable at the final iteration.

Lower bound is the lower bound specified for the variable j. (None indicates that bl[j – 1] ≤ inf_bound, where inf_bound is the optional parameter.)

Upper bound is the upper bound specified for the variable j. (None indicates that bu[j – 1] ≥ inf_bound, where inf_bound is the optional parameter.)

Lagr Mult is the value of the Lagrange multiplier for the associated bound constraint. This will be zero if State is FR unless bl[j – 1] ≤ –inf_bound and bu[j – 1] ≥ inf_bound, in which case the entry will be blank. If x is optimal, the multiplier should be non-negative if State is LL, and non-positive if State is UL.
Residual is the difference between the variable Value and the nearer of its (finite) bounds \(b_l[j - 1]\) and \(b_u[j - 1]\). A blank entry indicates that the associated variable is not bounded (i.e., \(b_l[j - 1] \leq -\text{inf_bound}\) and \(b_u[j - 1] \geq \text{inf_bound}\)).

The meaning of the printout for linear and nonlinear constraints is the same as that given above for variables, with 'variable' replaced by 'constraint', \(b_l[j - 1]\) and \(b_u[j - 1]\) are replaced by \(b_l[n + j - 1]\) and \(b_u[n + j - 1]\) respectively, and with the following changes in the heading:

- **L Con** gives the name (L) and index \(j\), for \(j = 1, 2, ..., n_L\) of the linear constraint.
- **N Con** gives the name (N) and index \((j - n_L)\), for \(j = n_L + 1, n_L + 2, ..., n_L + n_N\) of the nonlinear constraint.

The I key in the State column is printed for general linear constraints which currently violate one of their bounds by more than \text{lin_feas_tol} and for nonlinear constraints which violate one of their bounds by more than \text{nonlin_feas_tol}.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this precision.

5. Comments

A list of possible error exits and warnings from \text{nag_opt_nlp} is given in Section 9. The termination criteria and accuracy of \text{nag_opt_nlp} are considered in Section 10.

6. Example 1

This is based on Problem 71 in Hock and Schittkowski (1981) and involves the minimization of the nonlinear function

\[F(x) = x_1x_4(x_1 + x_2 + x_3) + x_3 \]

subject to the bounds

\[
\begin{align*}
1 & \leq x_1 \leq 5 \\
1 & \leq x_2 \leq 5 \\
1 & \leq x_3 \leq 5 \\
1 & \leq x_4 \leq 5
\end{align*}
\]

to the general linear constraint

\[x_1 + x_2 + x_3 + x_4 \leq 20, \]

and to the nonlinear constraints

\[
\begin{align*}
x_1^2 + x_2^2 + x_3^2 + x_4^2 & \leq 40, \\
x_1x_2x_3x_4 & \geq 25.
\end{align*}
\]

The initial point, which is infeasible, is

\[x_0 = (1, 5, 5, 1)^T, \]

and \(F(x_0) = 16\).

The optimal solution (to five figures) is

\[x^* = (1.0, 4.7430, 3.8211, 1.3794)^T, \]

3.e04ucc.8

[NP3491/6]
and $F(x^*) = 17.014$. One bound constraint and both nonlinear constraints are active at the solution.

This example shows the simple use of nag_opt_nlp where default values are used for all optional parameters. An example showing the use of optional parameters is given in Section 13. There is one example program file, the main program of which calls both examples. The main program and Example 1 are given below.

6.1. Program Text

```c
/* nag_opt_nlp (e04ucc) Example Program. 
* 
* 
* Mark 4, 1996. 
* 
* Mark 5 revised, 1998. 
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage04.h>

static void objfun(Integer n, double x[], double *objf,
                     double objgrd[], Nag_Comm *comm)
{
    /* Routine to evaluate objective function and its 1st derivatives. */
    if (comm->flag == 0 || comm->flag == 2)
        *objf = x[0] * x[3] * (x[0] + x[1] + x[2]) + x[2];
    if (comm->flag == 2)
    {
        objgrd[0] = x[3] * (2.0*x[0] + x[1] + x[2]);
        objgrd[1] = x[0] * x[3];
    }
} /* objfun */

static void confun(Integer n, Integer ncnlin, Integer needc[],
                     double x[], double conf[], double conjac[],
                     Nag_Comm *comm)
{
    #define CONJAC(I,J) conjac[((I)-1)*n + (J) - 1]
    Integer i, j;
    /* Routine to evaluate the nonlinear constraints and 
     * their 1st derivatives. 
     */
    /* Function Body */
    if (comm->first) 
    {
        /* First call to confun. Set all Jacobian elements to zero. 
         * Note that this will only work when con_deriv = TRUE 
         * (the default; see Section 4 (confun) and 8.2 (con_deriv)). 
         */
        for (j = 1; j <= n; ++j)
            for (i = 1; i <= ncnlin; ++i)
                CONJAC(i,j) = 0.0;
    }
    if (needc[0] > 0)
    {
        if (comm->flag == 0 || comm->flag == 2)
    }
```
if (comm->flag == 2)
{
 CONJAC(1,1) = x[0] * 2.0;
 CONJAC(1,2) = x[1] * 2.0;
 CONJAC(1,3) = x[2] * 2.0;
 CONJAC(1,4) = x[3] * 2.0;
}
}

if (needc[1] > 0)
{
 if (comm->flag == 0 || comm->flag == 2)
 if (comm->flag == 2)
 {
 CONJAC(2,1) = x[1] * x[2] * x[3];
 CONJAC(2,2) = x[0] * x[2] * x[3];
 CONJAC(2,3) = x[0] * x[1] * x[3];
 CONJAC(2,4) = x[0] * x[1] * x[2];
 }
}
} /* confun */

static void objfun1(Integer n, double x[], double *objf, double objgrd[], Nag_Comm *comm)
{
 /* Routine to evaluate objective function and its 1st derivatives. */
 if (comm->flag == 0 || comm->flag == 2)
 *objf = x[0] * x[3] * (x[0] + x[1] + x[2]) + x[2];
 /* Note, elements of the objective gradient have not been specified. */
} /* objfun1 */

static void confun1(Integer n, Integer ncnlin, Integer needc[], double x[], double conf[], double conjac[], Nag_Comm *comm)
{
 #define CONJAC(I,J) conjac[((I)-1)*n + (J) - 1]

 /* Routine to evaluate the nonlinear constraints and * their 1st derivatives. */
 /* Function Body */
 if (needc[0] > 0)
 {
 if (comm->flag == 0 || comm->flag == 2)
 if (comm->flag == 2)
 CONJAC(1,3) = x[2] * 2.0;
 /* Note only one constraint gradient has been specified * in the first row of the constraint Jacobian. */
 }
 if (needc[1] > 0)
 {
 if (comm->flag == 0 || comm->flag == 2)
 if (comm->flag == 2)
 CONJAC(2,2) = x[0] * x[2] * x[3];
 }
CONJAC(2,3) = x[0] * x[1] * x[3];
/* Note only two constraint gradients have been specified
 * in the second row of the constraint Jacobian.
 */
}
} /* confun */

static void ex1(void);
static void ex2(void);

main()
{
/* Two examples are called, ex1() uses the
 * default settings to solve a problem while
 * ex2() solves another problem with some
 * of the optional parameters set by the user.
 */
Vprintf("e04ucc Example Program Results\n");
Vscanf(" %*[～\n]"; /* Skip heading in data file */
ex1();
ex2();
exit(EXIT_SUCCESS);
}

static void ex1()
{
#define NMAX 10
#define NCLIN 10
#define NCNLIN 10
#define TOTALVARS NMAX+NCLIN+NCNLIN
#define TDA NMAX

/* Local variables */
Integer i, j, n, tda;
Integer nclin, ncnlin;

double objf;
double x[NMAX], a[NCLIN][NMAX], bl[TOTALVARS],
bu[TOTALVARS], objgrd[NMAX];

Vprintf("e04ucc example 1: no option setting.\n");
Vscanf(" %*[～\n]"; /* Skip heading in data file */
Vscanf("%ld%ld%ld%*[～\n]", &n, &nclin, &ncnlin);
if (n <= 10 && nclin <= 10 && ncnlin <= 10)
{
 tda = NMAX;
 /* Read a, bl, bu and x from data file */
 /* Read the matrix of linear constraint coefficients */
 if (nclin > 0)
 for (i = 0; i < nclin; ++i)
 for (j = 0; j < n; ++j)
 Vscanf("%lf", &a[i][j]);
 Vscanf("%*[～\n]"); /* Remove remainder of line */
 /* Read lower bounds */
 for (i = 0; i < n + nclin + ncnlin; ++i)
 Vscanf("%lf", &bl[i]);
 Vscanf("%*[～\n]";
 /* Read upper bounds */
 for (i = 0; i < n + nclin + ncnlin; ++i)
 Vscanf("%lf", &bu[i]);
}
6.2. Program Data

e04ucc Example Program Data

Example data for exam: no option setting

```
4 1 2 : Values of N, NCLIN and NCNLNN
1.0 1.0 1.0 1.0 : End of matrix A
1.0 1.0 1.0 -1.0E+25 -1.0E+25 25.0 : End of BL
5.0 5.0 5.0 20.0 40.0 1.0E+25 : End of BU
1.0 5.0 5.0 1.0 : End of X
```

6.3. Program Results

e04ucc Example Program Results

e04ucc example 1: no option setting.

Parameters to e04ucc

```
Number of variables......... 4
Linear constraints........ 1
Nonlinear constraints........ 2
start................ Nag_Cold
step_limit........ 2.00e+00
lin_feas_tol........ 1.05e-08
optim_tol........ 3.26e-12
f_prec................ 4.37e-15
f_diff_int........ Automatic
obj_deriv............... TRUE
con_deriv............... TRUE
verify_grad....... Nag_SimpleCheck
print_deriv............ Nag_D_Full
print_level....... Nag_Soln_Iter
minor_print_level..... Nag_NoPrint
outfile................. stdout
```

Verification of the objective gradients.

All objective gradient elements have been set.

Simple Check:

The objective gradient seems to be ok.

Directional derivative of the objective 8.15250000e-01
Difference approximation 8.15249734e-01

Verification of the constraint gradients.

All constraint gradient elements have been set.

Simple Check:
The Jacobian seems to be ok.

The largest relative error was 2.29×10^{-7} in constraint 2

<table>
<thead>
<tr>
<th>Maj</th>
<th>Mnr</th>
<th>Step</th>
<th>Merit function</th>
<th>Violtn</th>
<th>Norm Gz</th>
<th>Cond Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0.0e+00</td>
<td>1.738282e+01</td>
<td>1.2e+01</td>
<td>7.1e-01</td>
<td>1.0e+00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.0e+00</td>
<td>1.703169e+01</td>
<td>1.9e+00</td>
<td>4.6e-02</td>
<td>1.0e+00</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.0e+00</td>
<td>1.701442e+01</td>
<td>8.8e-02</td>
<td>2.1e-02</td>
<td>1.0e+00</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1.0e+00</td>
<td>1.701402e+01</td>
<td>5.4e-04</td>
<td>3.1e-04</td>
<td>1.0e+00</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1.0e+00</td>
<td>1.701402e+01</td>
<td>9.9e-08</td>
<td>7.0e-06</td>
<td>1.0e+00</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1.0e+00</td>
<td>1.701402e+01</td>
<td>4.6e-11</td>
<td>1.1e-08</td>
<td>1.0e+00</td>
</tr>
</tbody>
</table>

Exit from NP problem after 5 major iterations, 9 minor iterations.

<table>
<thead>
<tr>
<th>Varbl</th>
<th>State</th>
<th>Value</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Lagr Mult</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>V 1</td>
<td>LL</td>
<td>1.00000e+00</td>
<td>1.00000e+00</td>
<td>5.00000e+00</td>
<td>1.0879e+00</td>
<td>0.0000e+00</td>
</tr>
<tr>
<td>V 2</td>
<td>FR</td>
<td>4.74300e+00</td>
<td>1.00000e+00</td>
<td>5.00000e+00</td>
<td>0.0000e+00</td>
<td>2.5700e-01</td>
</tr>
<tr>
<td>V 3</td>
<td>FR</td>
<td>3.82115e+00</td>
<td>1.00000e+00</td>
<td>5.00000e+00</td>
<td>0.0000e+00</td>
<td>1.1789e+00</td>
</tr>
<tr>
<td>V 4</td>
<td>FR</td>
<td>1.37941e+00</td>
<td>1.00000e+00</td>
<td>5.00000e+00</td>
<td>0.0000e+00</td>
<td>3.7941e-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L Con</th>
<th>State</th>
<th>Value</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Lagr Mult</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 1</td>
<td>FR</td>
<td>1.09436e+01</td>
<td>None</td>
<td>2.00000e+01</td>
<td>0.0000e+00</td>
<td>9.0564e+00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N Con</th>
<th>State</th>
<th>Value</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Lagr Mult</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 1</td>
<td>UL</td>
<td>4.00000e+01</td>
<td>None</td>
<td>4.00000e+01</td>
<td>-1.6147e-01</td>
<td>-3.5264e-11</td>
</tr>
<tr>
<td>N 2</td>
<td>LL</td>
<td>2.50000e+01</td>
<td>2.50000e+01</td>
<td>None</td>
<td>5.5229e-01</td>
<td>-2.8791e-11</td>
</tr>
</tbody>
</table>

Optimal solution found.

Final objective value = 1.7014017e+01

7. Further Description

This section gives a detailed description of the algorithm used in nag_opt_nlp. This, and possibly the next section, Section 8, may be omitted if the more sophisticated features of the algorithm and software are not currently of interest.

7.1. Overview

nag_opt_nlp is based on the same algorithm as used in subroutine NPSOL described in Gill et al (1986c).

At a solution of (1), some of the constraints will be active, i.e., satisfied exactly. An active simple bound constraint implies that the corresponding variable is fixed at its bound, and hence the variables are partitioned into fixed and free variables. Let C denote the m by n matrix of gradients of the active general linear and nonlinear constraints. The number of fixed variables will be denoted by n_{FX}, with n_{FR} ($n_{FR} = n - n_{FX}$) the number of free variables. The subscripts ‘FX’ and ‘FR’ on a vector or matrix will denote the vector or matrix composed of the elements corresponding to fixed or free variables.

A point x is a first-order Kuhn–Tucker point for (1) (see, e.g., Powell (1974)) if the following conditions hold:

(i) x is feasible;

(ii) there exist vectors ξ and λ (the Lagrange multiplier vectors for the bound and general constraints) such that

$$g = C^T \lambda + \xi$$ \hspace{1cm} (2)

where g is the gradient of F evaluated at x, and $\xi_j = 0$ if the jth variable is free.

(iii) The Lagrange multiplier corresponding to an inequality constraint active at its lower bound must be non-negative, and it must be non-positive for an inequality constraint active at its upper bound.
Let Z denote a matrix whose columns form a basis for the set of vectors orthogonal to the rows of C_{FR}; i.e., $C_{FR}Z = 0$. An equivalent statement of the condition (2) in terms of Z is

$$Z^Tg_{FR} = 0.$$

The vector Z^Tg_{FR} is termed the projected gradient of F at x. Certain additional conditions must be satisfied in order for a first-order Kuhn–Tucker point to be a solution of (1) (see, e.g., Powell (1974)).

nag_opt_nlp implements a sequential quadratic programming (SQP) method. For an overview of SQP methods, see, for example, Fletcher (1987), Gill et al (1981) and Powell (1983).

The basic structure of nag_opt_nlp involves major and minor iterations. The major iterations generate a sequence of iterates \(\{x_k\} \) that converge to \(x^* \), a first-order Kuhn–Tucker point of (1).

At a typical major iteration, the new iterate \(\bar{x} \) is defined by

$$\bar{x} = x + \alpha p$$

where x is the current iterate, the non-negative scalar α is the step length, and p is the search direction. (For simplicity, we shall always consider a typical iteration and avoid reference to the index of the iteration.) Also associated with each major iteration are estimates of the Lagrange multipliers and a prediction of the active set.

The search direction p in (3) is the solution of a quadratic programming subproblem of the form

$\min_p \ g^T p + \frac{1}{2} p^T H p \ $ subject to $\tilde{l} \leq \begin{bmatrix} p \\ A_L p \\ A_N p \end{bmatrix} \leq \tilde{u}$,

where g is the gradient of F at x, the matrix H is a positive-definite quasi-Newton approximation to the Hessian of the Lagrangian function (see Section 7.4), and A_N is the Jacobian matrix of c evaluated at x. (Finite difference estimates may be used for g and A_N; see the optional parameters obj_deriv and con_deriv in Section 8.2.) Let l in (1) be partitioned into three sections: l_B, l_L, and l_N, corresponding to the bound, linear and nonlinear constraints. The vector \tilde{l} in (4) is similarly partitioned, and is defined as

$$\tilde{l}_B = l_B - x, \quad \tilde{l}_L = l_L - A_L x, \quad \text{and} \quad \tilde{l}_N = l_N - c,$$

where c is the vector of nonlinear constraints evaluated at x. The vector \tilde{u} is defined in an analogous fashion.

The estimated Lagrange multipliers at each major iteration are the Lagrange multipliers from the subproblem (4) (and similarly for the predicted active set). (The numbers of bounds, general linear and nonlinear constraints in the QP active set are the quantities Bnd, Lin and Nln in the output of nag_opt_nlp; see Section 8.3.) In nag_opt_nlp, (4) is solved using the same algorithm as used in function nag_opt_lin_lsq (e04ncc). Since solving a quadratic program is an iterative procedure, the minor iterations of nag_opt_nlp are the iterations of nag_opt_lin_lsq (e04ncc). (More details about solving the subproblem are given in Section 7.2.)

Certain matrices associated with the QP subproblem are relevant in the major iterations. Let the subscripts ‘FX’ and ‘FR’ refer to the predicted fixed and free variables, and let C denote the m by n matrix of gradients of the general linear and nonlinear constraints in the predicted active set. First, we have available the TQ factorization of C_{FR}:

$$C_{FR}Q_{FR} = (0 \ T),$$

where T is a non-singular m by m reverse-triangular matrix (i.e., $t_{ij} = 0$ if $i + j < m$), and the non-singular n_{FR} by n_{FR} matrix Q_{FR} is the product of orthogonal transformations (see Gill et al (1984a)). Second, we have the upper triangular Cholesky factor R of the transformed and re-ordered Hessian matrix

$$R^T R = H_Q \equiv Q^T \tilde{H} Q,$$
where \tilde{H} is the Hessian H with rows and columns permuted so that the free variables are first, and Q is the n by n matrix

$$Q = \begin{pmatrix} Q_{FR} & I_{FX} \end{pmatrix}$$

with I_{FX} the identity matrix of order n_{FX}. If the columns of Q_{FR} are partitioned so that

$$Q_{FR} = (Z \ Y),$$

the n_z ($n_z \equiv n_{FR} - m$) columns of Z form a basis for the null space of C_{FR}. The matrix Z is used to compute the projected gradient $Z^T g_{FR}$ at the current iterate. (The values n_z, Norm G_f and Norm G_z printed by nag_opt_nlp give n_z and the norms of g_{FR} and $Z^T g_{FR}$; see Section 8.3.)

A theoretical characteristic of SQP methods is that the predicted active set from the QP subproblem (4) is identical to the correct active set in a neighbourhood of x^*. In nag_opt_nlp, this feature is exploited by using the QP active set from the previous iteration as a prediction of the active set for the next QP subproblem, which leads in practice to optimality of the subproblems in only one iteration as the solution is approached. Separate treatment of bound and linear constraints in nag_opt_nlp also saves computation in factorizing C_{FR} and H_Q.

Once p has been computed, the major iteration proceeds by determining a step length α that produces a ‘sufficient decrease’ in an augmented Lagrangian merit function (see Section 7.3). Finally, the approximation to the transformed Hessian matrix H_Q is updated using a modified BFGS quasi-Newton update (see Section 7.4) to incorporate new curvature information obtained in the move from x to \tilde{x}.

On entry to nag_opt_nlp, an iterative procedure from nag_opt_lin_lsq (e04ncc) is executed, starting with the user-provided initial point, to find a point that is feasible with respect to the bounds and linear constraints (using the tolerance specified by lin_feas_tol; see Section 8.2). If no feasible point exists for the bound and linear constraints, (1) has no solution and nag_opt_nlp terminates. Otherwise, the problem functions will thereafter be evaluated only at points that are feasible with respect to the bounds and linear constraints. The only exception involves variables whose bounds differ by an amount comparable to the finite difference interval (see the discussion of f_diff_int in Section 8.2). In contrast to the bounds and linear constraints, it must be emphasized that the nonlinear constraints will not generally be satisfied until an optimal point is reached.

Facilities are provided to check whether the user-provided gradients appear to be correct (see the optional parameter verify_grad in Section 8.2). In general, the check is provided at the first point that is feasible with respect to the linear constraints and bounds. However, the user may request that the check be performed at the initial point.

In summary, the method of nag_opt_nlp first determines a point that satisfies the bound and linear constraints. Thereafter, each iteration includes:

(a) the solution of a quadratic programming subproblem (see Section 7.2);
(b) a linesearch with an augmented Lagrangian merit function (see Section 7.3); and
(c) a quasi-Newton update of the approximate Hessian of the Lagrangian function (Section 7.4).

7.2. Solution of the Quadratic Programming Subproblem

The search direction p is obtained by solving (4) using the algorithm of nag_opt_lin_lsq (e04ncc) (see Gill et al (1986a)), which was specifically designed to be used within an SQP algorithm for nonlinear programming.

The method of nag_opt_lin_lsq (e04ncc) is a two-phase (primal) quadratic programming method. The two phases of the method are: finding an initial feasible point by minimizing the sum of infeasibilities (the feasibility phase), and minimizing the quadratic objective function within the feasible region (the optimality phase). The computations in both phases are performed by the same segments of code. The two-phase nature of the algorithm is reflected by changing the function being minimized from the sum of infeasibilities to the quadratic objective function.

In general, a quadratic program must be solved by iteration. Let p denote the current estimate of the solution of (4); the new iterate \tilde{p} is defined by

$$\tilde{p} = p + \sigma d$$

(8)
where, as in (3), σ is a non-negative step length and d is a search direction.

At the beginning of each iteration of nag_opt_lin_lsq (e04ncc), a *working set* is defined of constraints (general and bound) that are satisfied exactly. The vector d is then constructed so that the values of constraints in the working set remain *unaltered* for any move along d. For a bound constraint in the working set, this property is achieved by setting the corresponding element of d to zero, i.e., by fixing the variable at its bound. As before, the subscripts ‘FX’ and ‘FR’ denote selection of the elements associated with the fixed and free variables.

Let C denote the sub-matrix of rows of

$$
\begin{pmatrix}
A_L \\
A_N
\end{pmatrix}
$$

corresponding to general constraints in the working set. The general constraints in the working set will remain unaltered if

$$
C_{\text{FR}}d_{\text{FR}} = 0
$$

which is equivalent to defining d_{FR} as

$$
d_{\text{FR}} = Zd_Z
$$

for some vector d_Z, where Z is the matrix associated with the TQ factorization (5) of C_{FR}.

The definition of d_Z in (10) depends on whether the current p is feasible. If not, d_Z is zero except for a element γ in the jth position, where j and γ are chosen so that the sum of infeasibilities is decreasing along d. (For further details, see Gill et al (1986a).) In the feasible case, d_Z satisfies the equations

$$
R_Z^T R_Z d_Z = -Z^T q_{\text{FR}}
$$

where R_Z is the Cholesky factor of $Z^T H_{\text{FR}} Z$ and q is the gradient of the quadratic objective function ($q = g + H p$). (The vector $Z^T q_{\text{FR}}$ is the projected gradient of the QP.) With (11), $p + d$ is the minimizer of the quadratic objective function subject to treating the constraints in the working set as equalities.

If the QP projected gradient is zero, the current point is a constrained stationary point in the subspace defined by the working set. During the feasibility phase, the projected gradient will usually be zero only at a vertex (although it may vanish at non-vertices in the presence of constraint dependencies). During the optimality phase, a zero projected gradient implies that p minimizes the quadratic objective function when the constraints in the working set are treated as equalities.

In either case, Lagrange multipliers are computed. Given a positive constant δ of the order of the *machine precision*, the Lagrange multiplier μ_j corresponding to an inequality constraint in the working set at its upper bound is said to be *optimal* if $\mu_j \leq \delta$ when the jth constraint is at its *upper bound*, or if $\mu_j \geq -\delta$ when the associated constraint is at its *lower bound*. If any multiplier is non-optimal, the current objective function (either the true objective or the sum of infeasibilities) can be reduced by deleting the corresponding constraint from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is non-zero, no feasible point exists. The QP algorithm will then continue iterating to determine the minimum sum of infeasibilities. At this point, the Lagrange multiplier μ_j will satisfy $-(1 + \delta) \leq \mu_j \leq \delta$ for an inequality constraint at its upper bound, and $-\delta \leq \mu_j \leq (1 + \delta)$ for an inequality at its lower bound. The Lagrange multiplier for an equality constraint will satisfy $|\mu_j| \leq 1 + \delta$.

The choice of step length σ in the QP iteration (8) is based on remaining feasible with respect to the satisfied constraints. During the optimality phase, if $p + d$ is feasible, σ will be taken as unity. (In this case, the projected gradient at \bar{p} will be zero.) Otherwise, σ is set to σ_{M}, the step to the ‘nearest’ constraint, which is added to the working set at the next iteration.

Each change in the working set leads to a simple change to C_{FR}: if the status of a general constraint changes, a *row* of C_{FR} is altered; if a bound constraint enters or leaves the working set, a *column*
7.3. The Merit Function

After computing the search direction as described in Section 7.2, each major iteration proceeds by determining a step length \(\alpha \) in (3) that produces a 'sufficient decrease' in the augmented Lagrangian merit function

\[
L(x, \lambda, s) = F(x) - \sum_i \lambda_i (c_i(x) - s_i) + \frac{1}{2} \sum_i \rho_i (c_i(x) - s_i)^2,
\]

where \(x \), \(\lambda \) and \(s \) vary during the linesearch. The summation terms in (12) involve only the nonlinear constraints. The vector \(\lambda \) is an estimate of the Lagrange multipliers for the nonlinear constraints of (1). The non-negative slack variables \(\{s_i\} \) allow nonlinear inequality constraints to be treated without introducing discontinuities. The solution of the QP subproblem (4) provides a vector triple that serves as a direction of search for the three sets of variables. The non-negative vector \(\rho \) of penalty parameters is initialized to zero at the beginning of the first major iteration. Thereafter, selected elements are increased whenever necessary to ensure descent for the merit function. Thus, the sequence of norms of \(\rho \) (the printed quantity Penalty; see Section 8.3) is generally non-decreasing, although each \(\rho_i \) may be reduced a limited number of times.

The merit function (12) and its global convergence properties are described in Gill et al (1986b).

7.4. The Quasi-Newton Update

The matrix \(H \) in (4) is a positive-definite quasi-Newton approximation to the Hessian of the Lagrangian function. (For a review of quasi-Newton methods, see Dennis and Schnabel (1983).) At the end of each major iteration, a new Hessian approximation \(\bar{H} \) is defined as a rank-two modification of \(H \).

\[
\bar{H} = H - \frac{1}{s^T H s} H s s^T H + \frac{1}{y^T s} y y^T,
\]

where \(s = \bar{x} - x \) (the change in \(x \)).

In nag_opt_nlp, \(H \) is required to be positive-definite. If \(H \) is positive-definite, \(\bar{H} \) defined by (13) will be positive-definite if and only if \(y^T s \) is positive (see, e.g., Dennis and Moré (1977)). Ideally, \(y \) in (13) would be taken as \(y_L \), the change in gradient of the Lagrangian function

\[
y_L = g - \bar{A}_N^T \mu_N - g + A_N^T \mu_N
\]

where \(\mu_N \) denotes the QP multipliers associated with the nonlinear constraints of the original problem. If \(y_L^T s \) is not sufficiently positive, an attempt is made to perform the update with a vector \(y \) of the form

\[
y = y_L + \sum_i \omega_i (a_i(\bar{x}) c_i(\bar{x}) - a_i(x) c_i(x)),
\]

where \(\omega_i \geq 0 \). If no such vector can be found, the update is performed with a scaled \(y_L \); in this case, \(M \) is printed to indicate that the update was modified.

Rather than modifying \(H \) itself, the Cholesky factor of the transformed Hessian \(H_Q \) (6) is updated, where \(Q \) is the matrix from (5) associated with the active set of the QP subproblem. The update (12) is equivalent to the following update to \(H_Q \):

\[
\bar{H}_Q = H_Q - \frac{1}{s_Q^T H_Q S_Q} H_Q S_Q S_Q^T H_Q + \frac{1}{y_Q^T S_Q} y_Q y_Q^T,
\]

where \(y_Q = Q^T y \) and \(s_Q = Q^T s \). This update may be expressed as a rank-one update to \(R \) (see Dennis and Schnabel (1981)).
8. Optional Parameters

A number of optional input and output parameters to nag_opt_nlp are available through the structure argument options, type Nag_E04_Opt. A parameter may be selected by assigning an appropriate value to the relevant structure member; those parameters not selected will be assigned default values. If no use is to be made of any of the optional parameters the user should use the NAG defined null pointer, E04_DEFAULT, in place of options when calling nag_opt_nlp; the default settings will then be used for all parameters.

Before assigning values to options directly the structure must be initialized by a call to the function nag_opt_init (e04xcc). Values may then be assigned to the structure members in the normal C manner.

Option settings may also be read from a text file using the function nag_opt_read (e04xyc) in which case initialization of the options structure will be performed automatically if not already done. Any subsequent direct assignment to the options structure must not be preceded by initialization.

If assignment of functions and memory to pointers in the options structure is required, then this must be done directly in the calling program; they cannot be assigned using using nag_opt_read (e04xyc).

8.1. Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for nag_opt_nlp together with their default values where relevant. The number ϵ is a generic notation for machine precision (see nag_machine_precision (X02AJC)).

```
Nag_Start start  Nag_Cold
Boolean list       TRUE
Nag_PrintType print_level
Nag_PrintType minor_print_level
char outfile[80]
void (*print_fun)()
Boolean obj_deriv
Boolean con_deriv
Nag_GradChk verify_grad
Nag_DPrintType print_deriv
Integer obj_check_start
Integer obj_check_stop
Integer con_check_start
Integer con_check_stop
double f_diff_int
double c_diff_int
Integer max_iter
Integer minor_max_iter
double f_prec
double optim_tol
double lin_feas_tol
double nonlin_feas_tol
double linesearch_tol
double step_limit
double crash_tol
double inf_bound
double inf_step
double *conf
double *conjac
Integer *state
double *lambda
double *h
Boolean hessian
Integer iter
Integer nf
```

"3.e04acc.18"
8.2. Description of Optional Parameters

```
start – Nag_Start
Input: specifies how the initial working set is chosen in both the procedure for finding
a feasible point for the linear constraints and bounds, and in the first QP subproblem thereafter.
With start = Nag_Cold, nag_opt_nlp chooses the initial working set based on the values of
the variables and constraints at the initial point. Broadly speaking, the initial working set
will include equality constraints and bounds or inequality constraints that violate or ‘nearly’
satisfy their bounds (to within the value of optional parameter crash_tol; see below).
With start = Nag_Warm, the user must provide a valid definition of every array element
of the optional parameters state, lambda and h (see below for their definitions). The state
values associated with bounds and linear constraints determine the initial working set of the
procedure to find a feasible point with respect to the bounds and linear constraints. The state
values associated with nonlinear constraints determine the initial working set of the first QP
subproblem after such a feasible point has been found. nag_opt_nlp will override the user’s
specification of state if necessary, so that a poor choice of the working set will not cause a
fatal error. For instance, any elements of state which are set to −2, −1 or 4 will be reset to
zero, as will any elements which are set to 3 when the corresponding elements of bl and bu
are not equal. A warm start will be advantageous if a good estimate of the initial working set
is available – for example, when nag_opt_nlp is called repeatedly to solve related problems.
Constraint: options.start = Nag_Cold or Nag_Warm.
```

```
list – Boolean Default = TRUE
Input: if options.list = TRUE the parameter settings in the call to nag_opt_nlp will be printed.
```

```
print_level – Nag_PrintType Default = Nag_Soln_Iter
Input: the level of results printout produced by nag_opt_nlp at each major iteration. The
following values are available.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nag_NoPrint</td>
<td>No output.</td>
</tr>
<tr>
<td>Nag_Soln</td>
<td>The final solution only.</td>
</tr>
<tr>
<td>Nag_Iter</td>
<td>One line of output for each iteration.</td>
</tr>
<tr>
<td>Nag_Iter_Long</td>
<td>A longer line of output for each iteration with more information (line exceeds 80 characters).</td>
</tr>
<tr>
<td>Nag_Soln_Iter</td>
<td>The final solution and one line of output for each iteration.</td>
</tr>
<tr>
<td>Nag_Soln_Iter_Long</td>
<td>The final solution and one long line of output for each iteration (line exceeds 80 characters).</td>
</tr>
<tr>
<td>Nag_Soln_Iter_Const</td>
<td>As Nag_Soln_Iter_Long with the objective function, the values of the variables, the Euclidean norm of the nonlinear constraint violations, the nonlinear constraint values, c, and the linear constraint values (A_L x) also printed at each iteration.</td>
</tr>
<tr>
<td>Nag_Soln_Iter_Full</td>
<td>As Nag_Soln_Iter_Const with the diagonal elements of the upper triangular matrix T associated with the (TQ) factorization (5) of the QP working set, and the diagonal elements of R, the triangular factor of the transformed and re-ordered Hessian (6).</td>
</tr>
</tbody>
</table>

Details of each level of results printout are described in Section 8.3.
Constraint: options.print_level = Nag_NoPrint, Nag_Soln, Nag_Iter, Nag_Soln_Iter, Nag_Iter_Long, Nag_Soln_Iter_Long, Nag_Soln_Iter_Const or Nag_Soln_Iter_Full.
```

```
minor_print_level – Nag_PrintType Default = Nag_NoPrint
Input: the level of results printout produced by the minor iterations of nag_opt_nlp (i.e., the
iterations of the QP subproblem). The following values are available.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nag_NoPrint</td>
<td>No output.</td>
</tr>
<tr>
<td>Nag_Soln</td>
<td>The final solution only.</td>
</tr>
</tbody>
</table>
```

Nag_Iter One line of output for each iteration.
Nag_Iter_Long A longer line of output for each iteration (line exceeds 80 characters).
Nag_Soln_Iter The final solution and one line of output for each iteration.
Nag_Soln_Iter_Long The final solution and one long line of output for each iteration (line exceeds 80 characters).
Nag_Soln_Iter(Const As Nag_Soln_Iter Long with the Lagrange multipliers, the variables \(x \), the constraint values \(A_L x \) and the constraint status also printed at each iteration.
Nag_Soln_Iter_Full As Nag_Soln_Iter Const with the diagonal elements of the upper triangular matrix \(T \) associated with the \(TQ \) factorization (4) of the working set, and the diagonal elements of the upper triangular matrix \(R \) printed at each iteration.

Details of each level of results printout are described in Section 8.3 of the function documentation for nag_opt_lin_lsq (e04ncc). (options.minor_print_level in the present function is equivalent to options.print_level in nag_opt_lin_lsq.)

Constraint: options.minor_print_level = Nag_NoPrint, Nag_Soln, Nag_Iter, Nag_Soln_Iter, Nag_Iter_Long, Nag_Soln_Iter_Long, Nag_Soln_IterConst or Nag_Soln_Iter_Full.

outfile - char[80] Default = stdout
Input: the name of the file to which results should be printed. If options.outfile[0] = ‘\0’ then the stdout stream is used.

print_fun - pointer to function Default = NULL
Input: printing function defined by the user; the prototype of print_fun is
void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);
See Section 8.3.1 below for further details.

obj_deriv - Boolean Default = TRUE
Input: this argument indicates whether all the derivatives of the objective function are provided by the user in function objfun. If none or only some of the derivatives are being supplied by objfun then obj_deriv should be set to FALSE.
Whenever possible all derivatives should be supplied, since nag_opt_nlp is more reliable and will usually be more efficient when all derivatives are exact.
If obj_deriv = FALSE, nag_opt_nlp will approximate the unspecified components of the objective gradient, using finite differences. The computation of finite-difference approximations usually increases the total run-time, since a call to objfun is required for each unspecified element. Furthermore, less accuracy can be attained in the solution (see Chapter 8 of Gill et al. (1986c), for a discussion of limiting accuracy).
At times, central differences are used rather than forward differences, in which case twice as many calls to objfun are needed. (The switch to central differences is not under the user’s control.)

con_deriv – Boolean Default = TRUE
Input: this argument indicates whether all derivatives for the constraint Jacobian are provided by the user in function confun. If none or only some of the derivatives are being supplied by confun then con_deriv should be set to FALSE.
Whenever possible all derivatives should be supplied, since nag_opt_nlp is more reliable and will usually be more efficient when all derivatives are exact.
If con_deriv = FALSE, nag_opt_nlp will approximate unspecified elements of the Jacobian. One call to confun is needed for each variable for which partial derivatives are not available. For example, if the constraint Jacobian has the form
\[
\begin{pmatrix}
* & * & * & * \\
* & ? & ? & * \\
* & ? & ? & * \\
* & * & * & * \\
\end{pmatrix}
\]
where ‘∗’ indicates an element provided by the user and ‘?’ indicates an unspecified element,
nag_opt_nlp will call confun twice: once to estimate the missing element in column 2, and
again to estimate the two missing elements in column 3. (Since columns 1 and 4 are known,
they require no calls to confun.)

At times, central differences are used rather than forward differences, in which case twice as
many calls to confun are needed. (The switch to central differences is not under the user’s
control.)

verify_grad – Nag_GradChk

Input: specifies the level of derivative checking to be performed by nag_opt_nlp on the gradient
elements computed by the user supplied functions objfun and confun.
The following values are available:

Nag_NoCheck No derivative checking is performed.
Nag_SimpleCheck Perform a simple check of both the objective and constraint gradients.
Nag_CheckObj Perform a component check of the objective gradient elements.
Nag_CheckCon Perform a component check of the constraint gradient elements.
Nag_CheckObjCon Perform a component check of both the objective and constraint gradient elements.
Nag_XSimpleCheck Perform a simple check of both the objective and constraint gradients at the initial value of x specified in x.
Nag_XCheckObj Perform a component check of the objective gradient elements at the initial value of x specified in x.
Nag_XCheckCon Perform a component check of the constraint gradient elements at the initial value of x specified in x.
Nag_XCheckObjCon Perform a component check of both the objective and constraint gradient elements at the initial value of x specified in x.

If verify_grad = Nag_SimpleCheck or Nag_XSimpleCheck then a simple ‘cheap’ test is
performed, which requires only one call to objfun and one call to confun. If verify_grad
= Nag_CheckObj, Nag_CheckCon or Nag_CheckObjCon then a more reliable (but more
expensive) test will be made on individual gradient components. This component check will
be made in the range specified by the optional parameters obj_check_start and obj_check_stop
for the objective gradient, with default values being 1 and n respectively. For the constraint
gradients the range is specified by options.con_check_start and options.con_check_stop, with
default values being 1 and n.

The procedure for the derivative check is based on finding an interval that produces an
acceptable estimate of the second derivative, and then using that estimate to compute an
interval that should produce a reasonable forward-difference approximation. The gradient
element is then compared with the difference approximation. (The method of finite difference
interval estimation is based on Gill et al (1983).) The result of the test is printed out by
nag_opt_nlp if optional parameter print_deriv ≠ Nag_D_NoPrint.

Constraint: options.verify_grad = Nag_NoCheck, Nag_SimpleCheck, Nag_CheckObj,
Nag_CheckCon, Nag_CheckObjCon, Nag_XSimpleCheck, Nag_XCheckObj, Nag_XCheckCon
or Nag_XCheckObjCon.

print_deriv – Nag_DPrintType

Input: controls whether the results of any derivative checking are printed out (see optional
parameter verify_grad).

If a component derivative check has been carried out, then full details will be printed if
print_deriv = Nag_D_Full. For a printout summarising the results of a component derivative
check set print_deriv = Nag_D_Sum. If only a simple derivative check is requested then
Nag_D_Sum and Nag_D_Full will give the same level of output. To prevent any printout from
a derivative check set print_deriv = Nag_D_NoPrint.

Constraint: options.print_deriv = Nag_D_NoPrint, Nag_D_Sum or Nag_D_Full.
These options take effect only when options.verify_grad is equal to one of Nag_CheckObj, Nag_CheckObjCon, Nag_XCheckObj or Nag_XCheckObjCon.

Input: they may be used to control the verification of gradient elements computed by the function objfun. For example, if the first 30 elements appeared to be correct in an earlier run, so that only element 31 remains questionable, it is reasonable to specify options.obj_check_start = 31. If the first 30 variables appear linearly in the objective, so that the corresponding gradient elements are constant, the above choice would also be appropriate.

Constraint: $1 \leq \text{options.obj_check_start} \leq \text{options.obj_check_stop} \leq n$.

These options take effect only when options.verify_grad is equal to one of Nag_CheckCon, Nag_CheckObjCon, Nag_XCheckCon or Nag_XCheckObjCon.

Input: these parameters may be used to control the verification of the Jacobian elements computed by the function confun. For example, if the first 30 columns of the constraint Jacobian appeared to be correct in an earlier run, so that only column 31 remains questionable, it is reasonable to specify con_check_start = 31.

Constraint: $1 \leq \text{options.con_check_start} \leq \text{options.con_check_stop} \leq n$.

Input: defines an interval used to estimate derivatives by finite differences in the following circumstances:

(a) For verifying the objective and/or constraint gradients (see the description of the optional parameter verify_grad).

(b) For estimating unspecified elements of the objective and/or constraint Jacobian matrix.

In general, using the notation $r = \text{options.f_diff_int}$, a derivative with respect to the jth variable is approximated using the interval δ_j, where $\delta_j = r(1 + |\hat{x}_j|)$, with \hat{x} the first point feasible with respect to the bounds and linear constraints. If the functions are well scaled, the resulting derivative approximation should be accurate to $O(r)$. See Gill et al (1981) for a discussion of the accuracy in finite difference approximations.

If a difference interval is not specified by the user, a finite difference interval will be computed automatically for each variable by a procedure that requires up to six calls of confun and objfun for each element. This option is recommended if the function is badly scaled or the user wishes to have nag_opt_nlp determine constant elements in the objective and constraint gradients (see the descriptions of confun and objfun in Section 4).

Constraint: $\epsilon \leq \text{options.f_diff_int} < 1.0$.

Input: if the algorithm switches to central differences because the forward-difference approximation is not sufficiently accurate the value of c_diff_int is used as the difference interval for every element of x. The switch to central differences is indicated by C at the end of each line of intermediate printout produced by the major iterations (see Section 4.1). The use of finite-differences is discussed under the option f_diff_int.

Constraint: $\epsilon \leq \text{options.c_diff_int} < 1.0$.

Input: the maximum number of major iterations allowed before termination.

Constraint: options.max_iter ≥ 0.

Input: the maximum number of iterations for finding a feasible point with respect to the bounds and linear constraints (if any). The value also specifies the maximum number of minor iterations for the optimality phase of each QP subproblem.

Constraint: options.minor_max_iter ≥ 0.

Constraint: $\epsilon \leq \text{options.minor_max_iter} < 1.0$.

Constraint: $\epsilon \leq \text{options.c_diff_int} < 1.0$.

Constraint: $\epsilon \leq \text{options.f_diff_int} < 1.0$.
f_prec – double

Input: this parameter defines ϵ_r, which is intended to be a measure of the accuracy with which the problem functions $F(x)$ and $c(x)$ can be computed.

The value of ϵ_r should reflect the relative precision of $1 + |F(x)|$; i.e., ϵ_r acts as a relative precision when $|F|$ is large, and as an absolute precision when $|F|$ is small. For example, if $F(x)$ is typically of order 10^4 and the first six significant digits are known to be correct, an appropriate value for ϵ_r would be 10^{-6}. In contrast, if $F(x)$ is typically of order 10^{-4} and the first six significant digits are known to be correct, an appropriate value for ϵ_r would be 10^{-10}. The choice of ϵ_r can be quite complicated for badly scaled problems; see Chapter 8 of Gill et al (1981), for a discussion of scaling techniques. The default value is appropriate for most simple functions that are computed with full accuracy. However, when the accuracy of the computed function values is known to be significantly worse than full precision, the value of ϵ_r should be large enough so that nag_opt_nlp will not attempt to distinguish between function values that differ by less than the error inherent in the calculation.

Constraint: $\epsilon \leq \text{options.f_prec} < 1.0$.

optim_tol – double

Input: specifies the accuracy to which the user wishes the final iterate to approximate a solution of the problem. Broadly speaking, optim_tol indicates the number of correct figures desired in the objective function at the solution. For example, if optim_tol is 10^{-6} and nag_opt_nlp terminates successfully, the final value of F should have approximately six correct figures.

nag_opt_nlp will terminate successfully if the iterative sequence of x-values is judged to have converged and the final point satisfies the first-order Kuhn–Tucker conditions (see Section 7.1). The sequence of iterates is considered to have converged at x if

$$\alpha \|p\| \leq \sqrt{r}(1 + \|x\|), \quad (16a)$$

where p is the search direction and α the step length from (3), and r is the value of optim_tol.

An iterate is considered to satisfy the first-order conditions for a minimum if

$$\|Z^T g_{FR}\| \leq \sqrt{r}(1 + \max(1 + |F(x)|, \|g_{FR}\|)) \quad (16b)$$

and

$$|res_j| \leq ftol \text{ for all } j, \quad (16c)$$

where $Z^T g_{FR}$ is the projected gradient (see Section 7.1), g_{FR} is the gradient of $F(x)$ with respect to the free variables, res_j is the violation of the jth active nonlinear constraint, and $ftol$ the value of the optional parameter nonlin_feas_tol.

Constraint: options.f_prec \leq options.optim_tol < 1.0.

lin_feas_tol – double

Input: defines the maximum acceptable absolute violations in the linear constraints at a feasible point; i.e., a linear constraint is considered satisfied if its violation does not exceed lin_feas_tol.

On entry to nag_opt_nlp, an iterative procedure is executed in order to find a point that satisfies the linear constraints and bounds on the variables to within the tolerance specified by lin_feas_tol. All subsequent iterates will satisfy the constraints to within the same tolerance (unless lin_feas_tol is comparable to the finite difference interval).

This tolerance should reflect the precision of the linear constraints. For example, if the variables and the coefficients in the linear constraints are of order unity, and the latter are correct to about 6 decimal digits, it would be appropriate to specify lin_feas_tol as 10^{-6}.

Constraint: $\epsilon \leq \text{options.lin_feas_tol} < 1.0$.

[NP3491/6] e04ucc.23
nonlin_feas_tol – double
The default is $\epsilon^{0.33}$ if options.con_deriv = FALSE, and $\sqrt{\epsilon}$ otherwise.
Input: defines the maximum acceptable absolute violations in the nonlinear constraints at a ‘feasible’ point; i.e., a nonlinear constraint is considered satisfied if its violation does not exceed nonlin_feas_tol.
The tolerance defines the largest constraint violation that is acceptable at an optimal point.
Since nonlinear constraints are generally not satisfied until the final iterate, the value of nonlin_feas_tol acts as a partial termination criteria for the iterative sequence generated by nag_opt_nlp (see the discussion of options.optim_tol).
This tolerance should reflect the precision of the nonlinear constraint functions calculated by confun.
Constraint: $\epsilon \leq \text{options.nonlin_feas_tol} < 1.0$.

linesearch_tol – double
Input: controls the accuracy with which the step α taken during each iteration approximates a minimum of the merit function along the search direction (the smaller the value of linesearch_tol, the more accurate the line search). The default value requests an inaccurate search, and is appropriate for most problems, particularly those with any nonlinear constraints.
If there are no nonlinear constraints, a more accurate search may be appropriate when it is desirable to reduce the number of major iterations – for example, if the objective function is cheap to evaluate, or if a substantial number of derivatives are unspecified.
Constraint: $0.0 \leq \text{options.linesearch_tol} < 1.0$.

step_limit – double
Input: specifies the maximum change in the variables at the first step of the line search. In some cases, such as $F(x) = ae^{bx}$ or $F(x) = ax^b$, even a moderate change in the elements of x can lead to floating-point overflow. The parameter step_limit is therefore used to encourage evaluation of the problem functions at meaningful points. Given any major iterate x, the first point \tilde{x} at which F and c are evaluated during the line search is restricted so that
$$
\|\tilde{x} - x\|_2 \leq r(1 + \|x\|_2),
$$
where r is the value of step_limit.
The line search may go on and evaluate F and c at points further from x if this will result in a lower value of the merit function. In this case, the character L is printed at the end of each line of output produced by the major iterations (see Section 4.1). If L is printed for most of the iterations, step_limit should be set to a larger value.
Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear functions at wild values. The default value of step_limit = 2.0 should not affect progress on well-behaved functions, but values such as 0.1 or 0.01 may be helpful when rapidly varying functions are present. If a small value of step_limit is selected, a good starting point may be required. An important application is to the class of nonlinear least-squares problems.
Constraint: $\text{options.step_limit} > 0.0$.

crash_tol – double
Input: crash_tol is used during a ‘cold start’ when nag_opt_nlp selects an initial working set (options.start = Nag_Cold). The initial working set will include (if possible) bounds or general inequality constraints that lie within crash_tol of their bounds. In particular, a constraint of the form $a^T_j x \geq l$ will be included in the initial working set if $|a^T_j x - l| \leq \text{crash_tol} \times (1 + |l|)$.
Constraint: $0.0 \leq \text{options.crash_tol} \leq 1.0$.

inf_bound – double
Input: inf_bound defines the ‘infinite’ bound in the definition of the problem constraints. Any upper bound greater than or equal to inf_bound will be regarded as plus infinity (and similarly any lower bound less than or equal to −inf_bound will be regarded as minus infinity).
Constraint: $\text{options.inf_bound} > 0.0$.

inf_step – double
Input: inf_step specifies the magnitude of the change in variables that will be considered a
step to an unbounded solution. If the change in x during an iteration would exceed the value
of inf_step, the objective function is considered to be unbounded below in the feasible region.
Constraint: options.inf_step > 0.0.

conf – double *
Input: nclin values of memory will be automatically allocated by nag_opt_nlp and this is the
recommended method of use of options.conf. However a user may supply memory from the
calling program.
Output: if nclin > 0, conf[i-1] contains the value of the ith nonlinear constraint function
c_i at the final iterate.
If nclin = 0 then conf will not be referenced.

conjac – double *
Input: ncnlin+n values of memory will be automatically allocated by nag_opt_nlp and this is the
recommended method of use of options.conjac. However a user may supply memory from the
calling program.
Output: if ncnlin > 0, conjac contains the Jacobian matrix of the nonlinear constraint
functions at the final iterate, i.e., conjac[(i-1)*n+j-1] contains the partial derivative of the
ith constraint function with respect to the jth variable, for i = 1, 2, ..., nclin; j = 1, 2, ..., n.
(See the discussion of the parameter conjac under confun.)
If nclin = 0 then conjac will not be referenced.

state – Integer *
Input: state need not be set if the default option of start = Nag_Cold is used as
n+nclin+nclin values of memory will be automatically allocated by nag_opt_nlp.
If the option start = Nag_Warm has been chosen, state must point to a minimum of n+nclin+
nclin elements of memory. This memory will already be available if the options structure has
been used in a previous call to nag_opt_nlp from the calling program, with start = Nag_Cold
and the same values of n, nclin and nclin. If a previous call has not been made, sufficient
memory must be allocated to by the user.

When a ‘warm start’ is chosen state should specify the status of the bounds and linear
constraints at the start of the feasibility phase. More precisely, the first n elements of state
refer to the upper and lower bounds on the variables, the next nclin elements refer to the
general linear constraints and the following nclin elements refer to the nonlinear constraints.
Possible values for state[j] are as follows:

<table>
<thead>
<tr>
<th>state[j]</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The corresponding constraint is not in the initial QP working set.</td>
</tr>
<tr>
<td>1</td>
<td>This inequality constraint should be in the initial working set at its lower bound.</td>
</tr>
<tr>
<td>2</td>
<td>This inequality constraint should be in the initial working set at its upper bound.</td>
</tr>
<tr>
<td>3</td>
<td>This equality constraint should be in the initial working set. This value must only be specified if bl[j] = bu[j].</td>
</tr>
</tbody>
</table>

The values −2, −1 and 4 are also acceptable but will be reset to zero by the function, as will
any elements which are set to 3 when the corresponding elements of bl and bu are not equal. If
nag_opt_nlp has been called previously with the same values of n, nclin and nclin, then state
already contains satisfactory information. (See also the description of the optional parameter
start.) The function also adjusts (if necessary) the values supplied in x to be consistent with the
values supplied in state.
Constraint: −2 ≤ options.state[j] ≤ 4, for j = 0, 1, 2, ..., n+nclin+nclin−1.

Output: the status of the constraints in the QP working set at the point returned in x. The
significance of each possible value of state[j] is as follows:
nag_opt_nlp

```c
state[j]  Meaning
-2 The constraint violates its lower bound by more than the appropriate feasibility tolerance (see the options **lin_feas_tol** and **nonlin_feas_tol**). This value can occur only when no feasible point can be found for a QP subproblem.
-1 The constraint violates its upper bound by more than the appropriate feasibility tolerance (see the options **lin_feas_tol** and **nonlin_feas_tol**). This value can occur only when no feasible point can be found for a QP subproblem.
0 The constraint is satisfied to within the feasibility tolerance, but is not in the QP working set.
1 This inequality constraint is included in the QP working set at its lower bound.
2 This inequality constraint is included in the QP working set at its upper bound.
3 This constraint is included in the working set as an equality. This value of **state** can occur only when **bl[j] = bu[j]**.
```

lambda – double *

Input: **lambda** need not be set if the default option of **start = Nag_Cold** is used as **n + nclin + ncnlin** values of memory will be automatically allocated by **nag_opt_nlp**.

If the option **start = Nag_Warm** has been chosen, **lambda** must point to a minimum of **n + nclin + ncnlin** elements of memory. This memory will already be available if the options structure has been used in a previous call to **nag_opt_nlp** from the calling program, with **start = Nag_Cold** and the same values of **n, nclin** and **ncnlin**. If a previous call has not been made with sufficient memory must be allocated by the user.

When a ‘warm start’ is chosen **lambda[j - 1]** must contain a multiplier estimate for each nonlinear constraint with a sign that matches the status of the constraint specified by **state**, for **j = n + nclin + 1, n + nclin + 2, ..., n + nclin + ncnlin**. The remaining elements need not be set.

Note that if the **j**th constraint is defined as ‘inactive’ by the initial value of the **state** array (i.e., **state[j - 1] = 1**), **lambda[j - 1]** should be zero; if the **j**th constraint is an inequality active at its lower bound (i.e., **state[j - 1] = 0**), **lambda[j - 1]** should be non-negative; if the **j**th constraint is an inequality active at its upper bound (i.e., **state[j - 1] = 2**), **lambda[j - 1]** should be non-positive. If necessary, the function will modify lambda to match these rules.

Output: the values of the Lagrange multipliers from the last QP subproblem. **lambda[j - 1]** should be non-negative if **state[j - 1] = 1** and non-positive if **state[j - 1] = 2**.

h – double *

Input: **h** need not be set if the default option of **start = Nag_Cold** is used as **n + n** values of memory will be automatically allocated by **nag_opt_nlp**.

If the option **start = Nag_Warm** has been chosen, **h** must point to a minimum of **n + n** elements of memory. This memory will already be available if the calling program has used the options structure in a previous call to **nag_opt_nlp** with **start = Nag_Cold** and the same value of **n**.

If a previous call has not been made sufficient memory must be allocated to by the user.

When **start = Nag_Warm** is chosen the memory pointed to by **h** must contain the upper triangular Cholesky factor **R** of the initial approximation of the Hessian of the Lagrangian function, with the variables in the natural order. Elements not in the upper triangular part of **R** are assumed to be zero and need not be assigned. If a previous call has been made, with **hessian = TRUE**, then **h** will already have been set correctly.

Output: if **hessian = FALSE**, **h** contains the upper triangular Cholesky factor **R** of **Q^T \tilde{H} Q**, an estimate of the transformed and re-ordered Hessian of the Lagrangian at **x** (see (6) in Section 7.1).

If **hessian = TRUE**, **h** contains the upper triangular Cholesky factor **R** of **H**, the approximate (untransformed) Hessian of the Lagrangian, with the variables in the natural order.

hessian – Boolean

Input: controls the contents of the optional parameter **h** on return from **nag_opt_nlp**. **nag_opt_nlp** works exclusively with the **transformed** and **re-ordered** Hessian **H_Q**, and hence extra computation is required to form the Hessian itself. If **hessian = FALSE**, **h** contains the
Cholesky factor of the transformed and re-ordered Hessian. If \texttt{hessian = TRUE}, the Cholesky factor of the approximate Hessian itself is formed and stored in \texttt{h}. This information is required by \texttt{nag_opt_nlp} if the next call to \texttt{nag_opt_nlp} will be made with optional parameter \texttt{start = Nag_Warm}.

iter – Integer

Output: the number of major iterations which have been performed in \texttt{nag_opt_nlp}.

nf – Integer

Output: the number of times the objective function has been evaluated (i.e., number of calls of \texttt{objfun}). The total excludes any calls made to \texttt{objfun} for purposes of derivative checking.

8.3. Description of Printed Output

The level of printed output can be controlled by the user with the structure members \texttt{options.list}, \texttt{options.print_deriv}, \texttt{options.print_level} and \texttt{options.minor_print_level} (see Section 8.2). If \texttt{list = TRUE} then the parameter values to \texttt{nag_opt_nlp} are listed, followed by the result of any derivative check if \texttt{print_deriv = Nag_D_Sum} or \texttt{Nag_D_Full}. The printout of results is governed by the values of \texttt{print_level} and \texttt{minor_print_level}. The default of \texttt{print_level = Nag_Soln_Iter} and \texttt{minor_print_level = Nag_NoPrint} provides a single line of output at each iteration and the final result. This section describes all of the possible levels of results printout available from \texttt{nag_opt_nlp}.

If a simple derivative check, \texttt{verify_grad = Nag_SimpleCheck}, is requested then a statement indicating success or failure is given. The largest error found in the constraint Jacobian is output together with the directional derivative, \(g^T p\), of the objective gradient and its finite difference approximation, where \(p\) is a random vector of unit length.

When a component derivative check (see \texttt{verify_grad} in Section 8.2) is selected the element with the largest relative error is identified for the objective gradient and the constraint Jacobian.

If the value of \texttt{options.print_deriv = Nag_D_Full} then the following results are printed for each component:

- \texttt{x[i]} the element of \(x\).
- \texttt{dx[i]} the optimal finite difference interval.
- \texttt{g[i]} or Jacobian value the gradient/Jacobian element.
- Difference approxn. the finite difference approximation.
- Itns the number of trials performed to find a suitable difference interval.

The indicator, \texttt{OK} or \texttt{BAD?}, states whether the gradient/Jacobian element and finite difference approximation are in agreement. If the derivatives are believed to be in error \texttt{nag_opt_nlp} will exit with \texttt{fail.code} set to \texttt{NE_DERIV_ERRORS}.

When \texttt{print_level = Nag_Iter} or \texttt{Nag_Soln_Iter} the following line of output is produced at every iteration. In all cases, the values of the quantities printed are those in effect \textit{on completion} of the given iteration.

- Maj is the major iteration count.
- Mnr is the number of minor iterations required by the feasibility and optimality phases of the QP subproblem. Generally, \texttt{Mnr} will be 1 in the later iterations, since theoretical analysis predicts that the correct active set will be identified near the solution (see Section 7).

Note that \texttt{Mnr} may be greater than the optional parameter \texttt{minor_max_iter} (default value = \texttt{max}(50,3(n + n_L + n_N)); see Section 8.2) if some iterations are required for the feasibility phase.

- Step is the step taken along the computed search direction. On reasonably well-behaved problems, the unit step will be taken as the solution is approached.

- Merit function is the value of the augmented Lagrangian merit function (12) at the current iterate. This function will decrease at each iteration unless it was necessary to
increase the penalty parameters (see Section 7.3). As the solution is approached, *Merit function* will converge to the value of the objective function at the solution.

If the QP subproblem does not have a feasible point (signified by I at the end of the current output line), the merit function is a large multiple of the constraint violations, weighted by the penalty parameters. During a sequence of major iterations with infeasible subproblems, the sequence of *Merit Function* values will decrease monotonically until either a feasible subproblem is obtained or nag_opt_nlp terminates with fail.code = NW_NONLIN_NOT_FEASIBLE (no feasible point could be found for the nonlinear constraints).

If no nonlinear constraints are present (i.e., ncnlin = 0), this entry contains *Objective*, the value of the objective function \(F(x) \). The objective function will decrease monotonically to its optimal value when there are no nonlinear constraints.

\[\text{Violtn} \] is the Euclidean norm of the residuals of constraints that are violated or in the predicted active set (not printed if ncnlin is zero). Violtn will be approximately zero in the neighbourhood of a solution.

\[\text{Norm Gz} \] is \(\| Z^T g_{FR} \| \), the Euclidean norm of the projected gradient (see Section 7.1). Norm Gz will be approximately zero in the neighbourhood of a solution.

\[\text{Cond Hz} \] is a lower bound on the condition number of the projected Hessian approximation \(H_Z \) (\(H_Z = Z^T H_{FR} Z = R_Z^T R_Z \); see (6) in Section 7.1 and (11) in Section 7.2). The larger this number, the more difficult the problem.

The line of output may be terminated by one of the following characters:

- **M** is printed if the quasi-Newton update was modified to ensure that the Hessian approximation is positive-definite (see Section 7.4).
- **I** is printed if the QP subproblem has no feasible point.
- **C** is printed if central differences were used to compute the unspecified objective and constraint gradients. If the value of Step is zero, the switch to central differences was made because no lower point could be found in the line search. (In this case, the QP subproblem is re-solved with the central difference gradient and Jacobian.) If the value of Step is non-zero, central differences were computed because Norm Gz and Violtn imply that \(x \) is close to a Kuhn–Tucker point (see Section 7.1).
- **L** is printed if the line search has produced a relative change in \(x \) greater than the value defined by the optional parameter step_limit (default value = 2.0; see Section 8.2). If this output occurs frequently during later iterations of the run, step_limit should be set to a larger value.
- **R** is printed if the approximate Hessian has been refactorized. If the diagonal condition estimator of \(R \) indicates that the approximate Hessian is badly conditioned, the approximate Hessian is refactorized using column interchanges. If necessary, \(R \) is modified so that its diagonal condition estimator is bounded.

If print_level = Nag_Iter_Long, Nag_Soln_Iter_Long, Nag_Soln_Iter_Const or Nag_Soln_Iter_Full the line of printout at every iteration is extended to give the following additional information. (Note this longer line extends over more than 80 characters.)

- **Nfun** is the cumulative number of evaluations of the objective function needed for the line search. Evaluations needed for the estimation of the gradients by finite differences are not included. Nfun is printed as a guide to the amount of work required for the linesearch.
- **Nz** is the number of columns of \(Z \) (see Section 7.1). The value of Nz is the number of variables minus the number of constraints in the predicted active set; i.e., \(Nz = n - (\text{Bnd} + \text{Lin} + \text{Nln}) \).
e04ucc

Bnd is the number of simple bound constraints in the predicted active set.

Lin is the number of general linear constraints in the predicted active set.

Nln is the number of nonlinear constraints in the predicted active set (not printed if `ncnlin` is zero).

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented Lagrangian merit function (not printed if `ncnlin` is zero).

Norm Gf is the Euclidean norm of g_{FR}, the gradient of the objective function with respect to the free variables.

Cond H is a lower bound on the condition number of the Hessian approximation H.

Cond T is a lower bound on the condition number of the matrix of predicted active constraints.

Conv is a three-letter indication of the status of the three convergence tests (16a)–(16c) defined in the description of the optional parameter `optim_tol` in Section 8.2. Each letter is T if the test is satisfied, and F otherwise. The three tests indicate whether:

(a) the sequence of iterates has converged;
(b) the projected gradient (Norm Gz) is sufficiently small; and
(c) the norm of the residuals of constraints in the predicted active set (Violtn) is small enough.

If any of these indicators is F when `nag_opt_nlp` terminates with the error indicator `NE_NOERROR`, the user should check the solution carefully.

When `print_level = Nag_Soln_Iter_Const` or `Nag_Soln_Iter_Full` more detailed results are given at each iteration. If `print_level = Nag_Soln_Iter_Const` these additional values are: the value of x currently held in x; the current value of the objective function; the Euclidean norm of nonlinear constraint violations; the values of the nonlinear constraints (the vector c); and the values of the linear constraints, (the vector Ax).

If `print_level = Nag_Soln_Iter_Full` then the diagonal elements of the matrix T associated with the TQ factorization (5) of the QP working set and the diagonal elements of R, the triangular factor of the transformed and re-ordered Hessian (6) (see Section 7.1) are also output at each iteration.

When `print_level = Nag_Soln, Nag_Soln_Iter, Nag_Soln_Iter_Long, Nag_Soln_Iter_Const` or `Nag_Soln_Iter_Full` the final printout from `nag_opt_nlp` includes a listing of the status of every variable and constraint. The following describes the printout for each variable.

Varbl gives the name (V) and index j, for $j=1, 2, ..., n$ of the variable.

State gives the state of the variable (FR if neither bound is in the active set, EQ if a fixed variable, LL if on its lower bound, UL if on its upper bound). If `Value` lies outside the upper or lower bounds by more than the feasibility tolerances specified by the optional parameters `lin_feas_tol` and `nonlin_feas_tol` (see Section 8.2), `State` will be ++ or -- respectively.

A key is sometimes printed before `State` to give some additional information about the state of a variable.

A **Alternative optimum possible.** The variable is active at one of its bounds, but its Lagrange Multiplier is essentially zero. This means that if the variable were allowed to start moving away from its bound, there would be no change to the objective function. The values of the other free variables might change, giving a genuine alternative solution. However, if there are any degenerate variables (labelled D), the actual change might prove to be zero, since one of them could encounter a bound immediately. In either case, the values of the Lagrange multipliers might also change.
nag_opt_nlp

\textbf{D} Degenerate. The variable is free, but it is equal to (or very close to) one of its bounds.

\textbf{I} Infeasible. The variable is currently violating one of its bounds by more than \texttt{lin_feas_tol}.

Value
is the value of the variable at the final iteration.

Lower bound
is the lower bound specified for the variable \(j\). (\texttt{None} indicates that \(bl[j-1] \leq \text{inf_bound}\), where \texttt{inf_bound} is the optional parameter.)

Upper bound
is the upper bound specified for the variable \(j\). (\texttt{None} indicates that \(bu[j-1] \geq \text{inf_bound}\), where \texttt{inf_bound} is the optional parameter.)

Lagr Mult
is the value of the Lagrange multiplier for the associated bound constraint. This will be zero if \texttt{State} is \texttt{FR} unless \(bl[j-1] \leq \text{inf_bound}\) and \(bu[j-1] \geq \text{inf_bound}\), in which case the entry will be blank. If \(x\) is optimal, the multiplier should be non-negative if \texttt{State} is \texttt{LL}, and non-positive if \texttt{State} is \texttt{UL}.

Residual
is the difference between the variable \texttt{Value} and the nearer of its (finite) bounds \(bl[j-1]\) and \(bu[j-1] \). A blank entry indicates that the associated variable is not bounded (i.e., \(bl[j-1] \leq \text{inf_bound}\) and \(bu[j-1] \geq \text{inf_bound}\)).

The meaning of the printout for linear and nonlinear constraints is the same as that given above for variables, with ‘variable’ replaced by ‘constraint’, \(bl[j-1]\) and \(bu[j-1]\) are replaced by \(bl[n+j-1]\) and \(bu[n+j-1]\) respectively, and with the following changes in the heading:

\textbf{L Con}
gives the name (L) and index \(j\), for \(j = 1, 2, ..., nL\) of the linear constraint.

\textbf{N Con}
gives the name (N) and index \((j-nL)\), for \(j = nL + 1, nL + 2, ..., nL + nN\) of the nonlinear constraint.

The I key in the \texttt{State} column is printed for general linear constraints which currently violate one of their bounds by more than \texttt{lin_feas_tol} and for nonlinear constraints which violate one of their bounds by more than \texttt{nonlin_feas_tol}.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be interpreted as allowing the entry in the \texttt{Residual} column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this precision.

For the output governed by \texttt{minor_print_level}, the user is referred to the documentation for nag_opt_lin lsq (e04ncc). The option \texttt{minor_print_level} in the current document is equivalent to \texttt{options.print_level} in the documentation for nag_opt_lin lsq (e04ncc).

If \texttt{options.print_level} = \texttt{Nag_NoPrint} then printout will be suppressed; the user can print the final solution when nag_opt_nlp returns to the calling program.

8.3.1. Output of Results via a User-defined Printing Function

The user may also specify their own print function for output of iteration results and the final solution by use of the \texttt{options.print_fun} function pointer, which has prototype

```c
void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);
```

This section may be skipped by a user who only wishes to use the default printing facilities.

When a user-defined function is assigned to \texttt{options.print_fun} this will be called in preference to the internal print function of nag_opt_nlp. Calls to the user-defined function are again controlled by means of the \texttt{options.print_level}, \texttt{options.minor_print_level} and \texttt{options.print_deriv} members. Information is provided through \texttt{st} and \texttt{comm}, the two structure arguments to \texttt{print_fun}.

If \texttt{comm->it_maj_prt} = \texttt{TRUE} then results from the last major iteration of nag_opt_nlp are provided through \texttt{st}. Note that \texttt{print_fun} will be called with \texttt{comm->it_maj_prt} = \texttt{TRUE} only if \texttt{print_level} = \texttt{Nag_Iter}, \texttt{Nag_Soln_Iter}, \texttt{Nag_Soln_Iter_Long} \texttt{Nag_Soln_Iter(Const or Nag_Soln_Iter_Full). The following members of st are set:}

- \texttt{n} – Integer
 - the number of variables.
nclin – Integer
 the number of linear constraints.

ncnlin – Integer
 the number of nonlinear constraints.

nactiv – Integer
 the total number of active elements in the current set.

iter – Integer
 the major iteration count.

minor_iter – Integer
 the minor iteration count for the feasibility and the optimality phases of the QP subproblem.

step – double
 the step taken along the computed search direction.

nfun – Integer
 the cumulative number of objective function evaluations needed for the line search.

merit – double
 the value of the augmented Lagrangian merit function at the current iterate.

objf – double
 the current value of the objective function.

norm_nlnviol – double
 the Euclidean norm of nonlinear constraint violations (only available if **st->ncnlin** > 0).

violtn – double
 the Euclidean norm of the residuals of constraints that are violated or in the predicted active set (only available if **st->ncnlin** > 0).

norm_gz – double
 $\|Z^T g_{FR}\|$, the Euclidean norm of the projected gradient.

nz – Integer
 the number of columns of Z (see Section 7.1).

bnd – Integer
 the number of simple bound constraints in the predicted active set.

lin – Integer
 the number of general linear constraints in the predicted active set.

nln – Integer
 the number of nonlinear constraints in the predicted active set (only available if **st->ncnlin** > 0).

penalty – double
 the Euclidean norm of the vector of penalty parameters used in the augmented Lagrangian merit function (only available if **st->ncnlin** > 0).

norm_gf – double
 the Euclidean norm of g_{FR}, the gradient of the objective function with respect to the free variables.

cond_h – double
 a lower bound on the condition number of the Hessian approximation H.

cond_hz – double
 a lower bound on the condition number of the projected Hessian approximation H_Z.

cond_t – double
 a lower bound on the condition number of the matrix of predicted active constraints.

iter_conv – Boolean
 TRUE if the sequence of iterates has converged, i.e., convergence condition (16a) (see description of **options.optim_tol** Section 8.2) is satisfied.
nag_opt_nlp

norm_gz_small – Boolean
 TRUE if the projected gradient is sufficiently small, i.e., convergence condition (16b) (see description of options.optim_tol Section 8.2) is satisfied.

violtn_small – Boolean
 TRUE if the violations of the nonlinear constraints are sufficiently small, i.e., convergence condition (16c) (see description of options.optim_tol Section 8.2) is satisfied.

update_modified – Boolean
 TRUE if the quasi-Newton update was modified to ensure that the Hessian is positive-definite.

qp_not_feasible – Boolean
 TRUE if the QP subproblem has no feasible point.

c_diff – Boolean
 TRUE if central differences were used to compute the unspecified objective and constraint gradients.

step_limit_exceeded – Boolean
 TRUE if the line search produced a relative change in x greater than the value defined by the optional parameter step_limit.

refactor – Boolean
 TRUE if the approximate Hessian has been refactorized.

x – double *
 contains the components x[j-1] of the current point x, for j = 1, 2, ..., st->n.

state – Integer *
 contains the status of the st->n variables, st->nclin linear, and st->ncnlin nonlinear constraints (if any). See Section 8.2 for a description of the possible status values.

ax – double *
 if st->nclin > 0, ax[j-1] contains the current value of the jth linear constraint, for j = 1, 2, ..., st->nclin.

cx – double *
 if st->ncnlin > 0, cx[j-1] contains the current value of nonlinear constraint cj, for j = 1, 2, ..., st->ncnlin.

diag_t – double *
 if st->nactiv > 0, the st->nactiv elements of the diagonal of the matrix T.

diag_r – double *
 contains the st->n elements of the diagonal of the upper triangular matrix R.

If comm->sol_sqpprt = TRUE then the final result from nag_opt_nlp is provided through st. Note that print.fun will be called with comm->sol_sqpprt = TRUE only if print_level = Nag_Soln, Nag_Soln_Iter, Nag_Soln_Iter_Long, Nag_Soln_Iter_Const or Nag_Soln_Iter_Full. The following members of st are set:

iter – Integer
 the number of iterations performed.

n – Integer
 the number of variables.

nclin – Integer
 the number of linear constraints.

ncnlin – Integer
 the number of nonlinear constraints.

x – double *
 contains the components x[j-1] of the final point x, for j = 1, 2, ..., st->n.

state – Integer *
 contains the status of the st->n variables, st->nclin linear, and st->ncnlin nonlinear constraints (if any). See Section 8.2 for a description of the possible status values.
ax – double *
if st->nclin > 0, ax[j - 1] contains the final value of the jth linear constraint, for j = 1, 2, ..., st->nclin.

cx – double *
if st->nclin > 0, cx[j - 1] contains the final value of nonlinear constraint c_j, for j = 1, 2, ..., st->nclin.

bl – double *
contains the st->n+st->nclin+st->ncnlin lower bounds on the variables.

bu – double *
contains the st->n+st->nclin+st->ncnlin upper bounds on the variables.

lambda – double *
contains the st->n+st->nclin+st->ncnlin final values of the Lagrange multipliers.

If comm->g.prt = TRUE then the results from derivative checking are provided through st. Note that print_fun will be called with comm->g.prt only if print_deriv = Nag_D_Sum or Nag_D_Full.
The following members of st are set:

n – Integer
the number of variables.

ncnlin – Integer
the number of nonlinear constraints.

x – double *
contains the components x[j - 1] of the initial point x_0, for j = 1, 2, ..., st->n.

g – double *
contains the components g[j - 1] of the gradient vector g(x) = (∂F/∂x_1, ∂F/∂x_2, ..., ∂F/∂x_n)^T
at the initial point x_0, for j = 1, 2, ..., st->n.

conjac – double *
contains the elements of the Jacobian matrix of nonlinear constraints at the initial point x_0
(∂f_i/∂x_j is held at location conjac[(i - 1)*st->n+j - 1], i = 1, 2, ..., st->ncnlin, j = 1, 2, ..., st->n).

In this case details of the derivative check performed by nag_opt_nlp are held in the following substructure of st:

gprint – Nag_GPrintSt *
which in turn contains three substructures g_chk, f_sim, c_sim and two pointers to arrays of
substructures, f_comp and c_comp.

The substructure g_chk contains the members:

type – Nag_GradChk
the type of derivative check performed by nag_opt_nlp. This will be the same
value as in options.verify_grad.

g_error – int
this member will be equal to one of the error codes NE_NOERROR or
NE_DERIV_ERRORS according to whether the derivatives were found to be
correct or not.

obj_start – Integer
specifies the gradient element at which any component check started. This value
will be equal to options.obj_check_start.

obj_stop – Integer
specifies the gradient element at which any component check ended. This value
will be equal to options.obj_check_stop.
nag_opt_nlp

con_start – Integer

specifies the element at which any component check of the constraint gradient started. This value will be equal to `options.con_check_start`.

con_stop – Integer

specifies the element at which any component check of the constraint gradient ended. This value will be equal to `options.con_check_stop`.

f_sim – `Nag_SimSt`

The result of a simple derivative check of the objective gradient, `gprint->g_chk.type = Nag_SimpleCheck`, will be held in this substructure in members:

- **correct** – Boolean
 - if `TRUE` then the objective gradient is consistent with the finite difference approximation according to a simple check.

- **dir_deriv** – double
 - the directional derivative $g^T p$ where p is a random vector of unit length with elements of approximately equal magnitude.

- **fd_approx** – double
 - the finite difference approximation, \((F(x + hp) - F(x))/h \), to the directional derivative.

c_sim – `Nag_SimSt`

The result of a simple derivative check of the constraint Jacobian, `gprint->g_chk.type = Nag_SimpleCheck`, will be held in this substructure in members:

- **n_elements** – Integer
 - the number of columns of the constraint Jacobian for which a simple check has been carried out, i.e., those columns which do not contain unknown elements.

- **correct** – Boolean
 - if `TRUE` then the Jacobian is consistent with the finite difference approximation according to a simple check.

- **max_error** – double
 - the maximum error found between the norm of a constraint gradient and its finite difference approximation.

- **max_constraint** – Integer
 - the constraint gradient which has the maximum error between its norm and its finite difference approximation.

f_comp – `Nag_CompSt` *

The results of a requested component derivative check of the objective gradient, `st->gprint.g_chk.type = Nag_CheckObj` or `Nag_CheckObjCon`, will be held in the array of `st->n` substructures of type `Nag_CompSt` pointed to by `f_comp`. The procedure for the derivative check is based on finding an interval that produces an acceptable estimate of the second derivative, and then using that estimate to compute an interval that should produce a reasonable forward-difference approximation. The gradient element is then compared with the difference approximation. (The method of finite difference interval estimation is based on Gill et al (1983).)

- **correct** – Boolean
 - if `TRUE` then this gradient element is consistent with its finite difference approximation.

- **hopt** – double
 - the optimal finite difference interval.

- **gdiff** – double
 - the finite difference approximation for this gradient component.

- **iter** – Integer
 - the number of trials performed to find a suitable difference interval.
comment – char *

a character string which describes the possible nature of the reason for which an estimation of the finite difference interval failed to produce a satisfactory relative condition error of the second-order difference. Possible strings are: "Constant?", "Linear or odd?", "Too nonlinear?" and "Small derivative?".

c_comp – Nag_ComponentsSt *
The results of a requested component derivative check of the Jacobian of nonlinear constraint functions, st->gprint_g_chk.type = Nag_CheckCon or Nag_CheckObjCon, will be held in the array of st->nlin+st->n substructures of type Nag_ComponentsSt pointed to by c_comp. The element st->gprint.f_comp[(i-1)*st->n+j-1] will hold the details of the component derivative check for Jacobian element i, j, for i = 1, 2, ..., st->nlin; j = 1, 2, ..., st->n. The procedure for the derivative check is based on finding an interval that produces an acceptable estimate of the second derivative, and then using that estimate to compute an interval that should produce a reasonable forward-difference approximation. The Jacobian element is then compared with the difference approximation. (The method of finite difference interval estimation is based on Gill et al (1983).)

The members of c_comp are as for f_comp where gdiff gives the difference approximation for the Jacobian element.

The relevant members of the structure comm are:

g_prt – Boolean

will be TRUE only when the print function is called with the result of the derivative check of objfun and confun.

it_maj_prt – Boolean

will be TRUE when the print function is called with information about the current major iteration.

sol_sqp_prt – Boolean

will be TRUE when the print function is called with the details of the final solution.

it_prt – Boolean

will be TRUE when the print function is called with information about the current minor iteration (i.e., an iteration of the current QP subproblem). See the documentation for nag_opt_lin_lsq (e04ncc) for details of which members of st are set.

new_lm – Boolean

will be TRUE when the Lagrange multipliers have been updated in a QP subproblem. See the documentation for nag_opt_lin_lsq (e04ncc) for details of which members of st are set.

sol_prt – Boolean

will be TRUE when the print function is called with the details of the solution of a QP subproblem, i.e., the solution at the end of a major iteration. See the documentation for nag_opt_lin_lsq (e04ncc) for details of which members of st are set.

user – double *
iuser – Integer *
p – Pointer

pointers for communication of user information. If used they must be allocated memory by the user either before entry to nag_opt_nlp or during a call to objfun, confun or printfun. The type Pointer will be void * with a C compiler that defines void * and char * otherwise.

9. Error Indications and Warnings

NE_USER_STOP

User requested termination, user flag value = ⟨value⟩.

This exit occurs if the user sets comm->flag to a negative value in objfun or confun. If fail is supplied the value of fail.errnum will be the same as the user’s setting of comm->flag.
NE_INT_OPT_ARG_LT
On entry, options.obj_check_start = ⟨value⟩.
Constraint: options.obj_check_start ≥ 1.
On entry, options.obj_check_stop = ⟨value⟩.
Constraint: options.obj_check_stop ≥ 1.
On entry, options.con_check_start = ⟨value⟩.
Constraint: options.con_check_start ≥ 1.
On entry, options.con_check_stop = ⟨value⟩.
Constraint: options.con_check_stop ≥ 1.

NE_INT_OPT_ARG_GT
On entry, options.obj_check_start = ⟨value⟩.
Constraint: options.obj_check_start ≤ n.
On entry, options.obj_check_stop = ⟨value⟩.
Constraint: options.obj_check_stop ≤ n.
On entry, options.con_check_start = ⟨value⟩.
Constraint: options.con_check_start ≤ n.
On entry, options.con_check_stop = ⟨value⟩.
Constraint: options.con_check_stop ≤ n.

NE_2_INT_OPT_ARG_CONS
On entry, options.con_check_start = ⟨value⟩ while options.con_check_stop = ⟨value⟩.
Constraint: options.con_check_start ≤ options.con_check_stop.
On entry, options.obj_check_start = ⟨value⟩ while options.obj_check_stop = ⟨value⟩.
Constraint: options.obj_check_start ≤ options.obj_check_stop.

NE_INT_ARG_LT
On entry, n must not be less than 1: n = ⟨value⟩.
On entry, nclin must not be less than 0: nclin = ⟨value⟩.
On entry, ncnlin must not be less than 0: ncnlin = ⟨value⟩.

NE_2_INT_ARG_LT
On entry, tda = ⟨value⟩ while n = ⟨value⟩. These parameters must satisfy tda ≥ n.

NE_OPT_NOT_INIT
Options structure not initialized.

NE_BAD_PARAM
On entry, parameter options.print_level had an illegal value.
On entry, parameter options.minor_print_level had an illegal value.
On entry, parameter options.start had an illegal value.
On entry, parameter options.verify_grad had an illegal value.
On entry, parameter options.print_deriv had an illegal value.

NE_INVALID_INT_RANGE_1
Value ⟨value⟩ given to options.max_iter not valid. Correct range is max_iter ≥ 0.
Value ⟨value⟩ given to options.minor_max_iter not valid. Correct range is minor_max_iter ≥ 0.

NE_INVALID_REAL_RANGE_F
Value ⟨value⟩ given to options.step_limit not valid. Correct range is step_limit > 0.0.
Value ⟨value⟩ given to options.inf_bound not valid. Correct range is inf_bound > 0.0.
Value ⟨value⟩ given to options.inf_step not valid. Correct range is inf_step > 0.0.

NE_INVALID_REAL_RANGE_EF
Value ⟨value⟩ given to options.f_prec not valid. Correct range is $\epsilon \leq f_{\text{prec}} < 1.0$.
Value ⟨value⟩ given to options.optim_tol not valid. Correct range is $f_{\text{prec}} \leq \text{optim_tol} < 1.0$.
Value ⟨value⟩ given to options.c_diff_int not valid. Correct range is $\epsilon \leq c_{\text{diff int}} < 1.0$.
Value ⟨value⟩ given to options.f_diff_int not valid. Correct range is $\epsilon \leq f_{\text{diff int}} < 1.0$.
Value ⟨value⟩ given to options.lin_feas_tol not valid. Correct range is $\epsilon \leq \text{lin feas tol} < 1.0$.
Value ⟨value⟩ given to options.nonlin_feas_tol not valid. Correct range is $\epsilon \leq \text{nonlin feas tol} < 1.0$.

NE_INVALID_REAL_RANGE_FF
Value ⟨value⟩ given to options.linesearch_tol not valid. Correct range is 0.0 ≤ linesearch_tol < 1.0.
Value ⟨value⟩ given to options.crash_tol not valid. Correct range is 0.0 ≤ crash_tol ≤ 1.0.

NE_BOUND
The lower bound for variable ⟨value⟩ (array element bl[⟨value⟩]) is greater than the upper bound.

NE_BOUND_LCON
The lower bound for linear constraint ⟨value⟩ (array element bl[⟨value⟩]) is greater than the upper bound.

NE_BOUND_NLCON
The lower bound for nonlinear constraint ⟨value⟩ (array element bl[⟨value⟩]) is greater than the upper bound.

NE_BOUND_EQ
The lower bound and upper bound for variable ⟨value⟩ (array elements bl[⟨value⟩] and bu[⟨value⟩]) are equal but they are greater than or equal to options.inf_bound.

NE_BOUND_EQ_LCON
The lower bound and upper bound for linear constraint ⟨value⟩ (array elements bl[⟨value⟩] and bu[⟨value⟩]) are equal but they are greater than or equal to options.inf_bound.

NE_BOUND_EQ_NLCON
The lower bound and upper bound for nonlinear constraint ⟨value⟩ (array elements bl[⟨value⟩] and bu[⟨value⟩]) are equal but they are greater than or equal to options.inf_bound.

NE_STATE_VAL
options.state[⟨value⟩] is out of range. state[⟨value⟩] = ⟨value⟩.

NE_ALLOC_FAIL
Memory allocation failed.

NW_NOT_CONVERGED
Optimal solution found, but the sequence of iterates has not converged with the requested accuracy.

The final iterate x satisfies the first-order Kuhn–Tucker conditions (see Section 7.1) to the accuracy requested, but the sequence of iterates has not yet converged. nag_opt_nlp was terminated because no further improvement could be made in the merit function (see Section 8.3).

This value of fail.code may occur in several circumstances. The most common situation is that the user asks for a solution with accuracy that is not attainable with the given precision of the problem (as specified by the optional parameter f.prec (default value = ϵ₀.⁹, where ϵ is the machine precision; see Section 8.2)). This condition will also occur if, by chance, an iterate is an ‘exact’ Kuhn–Tucker point, but the change in the variables was significant at the previous iteration. (This situation often happens when minimizing very simple functions, such as quadratics.)

If the four conditions listed in Section 10.1 are satisfied then x is likely to be a solution of (1) even if fail.code = NW_NOT_CONVERGED.

NW_LIN_NOT_FEASIBLE
No feasible point was found for the linear constraints and bounds.

nag_opt_nlp has terminated without finding a feasible point for the linear constraints and bounds, which means that either no feasible point exists for the given value of the optional parameter lin_feas_tol (default value = √ε, where ϵ is the machine precision; see Section 8.2), or no feasible point could be found in the number of iterations specified by the optional parameter minor_max_iter (default value = max(50,3(n + n_L + n_N)); see Section 8.2). The user should check that there are no constraint redundancies. If the data for the constraints are accurate only to an absolute precision σ, the user should ensure that the value of the optional parameter lin_feas_tol is greater than σ. For example, if all elements of A_L are of order unity and are accurate to only three decimal places, lin_feas_tol should be at least 10⁻³.
NW_NONLIN_NOT_FEASIBLE
No feasible point could be found for the nonlinear constraints.

The problem may have no feasible solution. This means that there has been a sequence of QP subproblems for which no feasible point could be found (indicated by I at the end of each terse line of output; see Section 4.1). This behaviour will occur if there is no feasible point for the nonlinear constraints. (However, there is no general test that can determine whether a feasible point exists for a set of nonlinear constraints.) If the infeasible subproblems occur from the very first major iteration, it is highly likely that no feasible point exists. If infeasibilities occur when earlier subproblems have been feasible, small constraint inconsistencies may be present. The user should check the validity of constraints with negative values of the optional parameter state. If the user is convinced that a feasible point does exist, nag_opt_nlp should be restarted at a different starting point.

NW_TOO_MANY_ITER
The maximum number of iterations, ⟨value⟩, have been performed.

The value of the optional parameter max_iter may be too small. If the method appears to be making progress (e.g., the objective function is being satisfactorily reduced), increase the value of the optional parameter max_iter and rerun nag_opt_nlp; alternatively, rerun nag_opt_nlp, setting the optional parameter start = Nag_Warm to specify the initial working set. If the algorithm seems to be making little or no progress, however, then the user should check for incorrect gradients or ill conditioning as described below under fail.code = NW_KT_CONDITIONS.

Note that ill conditioning in the working set is sometimes resolved automatically by the algorithm, in which case performing additional iterations may be helpful. However, ill conditioning in the Hessian approximation tends to persist once it has begun, so that allowing additional iterations without altering R is usually inadvisable. If the quasi-Newton update of the Hessian approximation was reset during the latter iterations (i.e., an R occurs at the end of each line of output; see Section 4.1), it may be worthwhile setting start = Nag_Warm and calling nag_opt_nlp from the final point.

NW_KT_CONDITIONS
The current point cannot be improved upon. The final point does not satisfy the first-order Kuhn–Tucker conditions and no improved point for the merit function could be found during the final line search.

The Kuhn–Tucker conditions are specified in Section 7.1, and the merit function is described in Sections 7.3 and 8.3.

This sometimes occurs because an overly stringent accuracy has been requested, i.e., the value of the optional parameter optim_tol (default value = $\epsilon_r^{0.8}$, where ϵ_r is the relative precision of $F(x)$; see Section 8.2) is too small. In this case the user should apply the four tests described in Section 10.1 to determine whether or not the final solution is acceptable (see Gill et al (1981) for a discussion of the attainable accuracy).

If many iterations have occurred in which essentially no progress has been made and nag_opt_nlp has failed completely to move from the initial point then functions objfun and/or confun may be incorrect. The user should refer to comments below under fail.code = NE_DERIV_ERRORS and check the gradients using the optional parameter verify_grad (default value = Nag_Simple_Check; see Section 8.2). Unfortunately, there may be small errors in the objective and constraint gradients that cannot be detected by the verification process. Finite difference approximations to first derivatives are catastrophically affected by even small inaccuracies. An indication of this situation is a dramatic alteration in the iterates if the finite difference interval is altered. One might also suspect this type of error if a switch is made to central differences even when Norm Gz and Violtn (see Section 4.1) are large.

Another possibility is that the search direction has become inaccurate because of ill conditioning in the Hessian approximation or the matrix of constraints in the working set; either form of ill conditioning tends to be reflected in large values of Mnr (the number of iterations required to solve each QP subproblem; see Section 4.1).

If the condition estimate of the projected Hessian (Cond Hz; see Section 4.1) is extremely large, it may be worthwhile rerunning nag_opt_nlp from the final point with the optional
parameter $\text{start} = \text{Nag_Warm}$ (see Section 8.2). In this situation, the optional parameters state and lambda should be left unaltered and R (in optional parameter h) should be reset to the identity matrix.

If the matrix of constraints in the working set is ill conditioned (i.e., Cond T is extremely large; see Section 8.3), it may be helpful to run nag_opt_nlp with a relaxed value of the optional parameters lin_feas_tol and nonlin_feas_tol (default values $\sqrt{\epsilon}$, and $\epsilon^{0.33}$ or $\sqrt{\epsilon}$, respectively, where ϵ is the machine precision; see Section 8.2). (Constraint dependencies are often indicated by wide variations in size in the diagonal elements of the matrix T, whose diagonals will be printed if $\text{print_level} = \text{Nag_Soln_Iter_Full}$ (default value = Nag_Soln_Iter; see Section 8.2).)

NE_DERIV_ERRORS

Large errors were found in the derivatives of the objective function and/or nonlinear constraints.

This failure will occur if the verification process indicated that at least one gradient or Jacobian element had no correct figures. The user should refer to the printed output to determine which elements are suspected to be in error.

As a first-step, the user should check that the code for the objective and constraint values is correct – for example, by computing the function at a point where the correct value is known. However, care should be taken that the chosen point fully tests the evaluation of the function. It is remarkable how often the values $x = 0$ or $x = 1$ are used to test function evaluation procedures, and how often the special properties of these numbers make the test meaningless. Gradient checking will be ineffective if the objective function uses information computed by the constraints, since they are not necessarily computed prior to each function evaluation.

Errors in programming the function may be quite subtle in that the function value is ‘almost’ correct. For example, the function may not be accurate to full precision because of the inaccurate calculation of a subsidiary quantity, or the limited accuracy of data upon which the function depends. A common error on machines where numerical calculations are usually performed in double precision is to include even one single precision constant in the calculation of the function; since some compilers do not convert such constants to double precision, half the correct figures may be lost by such a seemingly trivial error.

NW_OVERFLOW_WARN

Serious ill conditioning in the working set after adding constraint \langlevalue\rangle. Overflow may occur in subsequent iterations.

If overflow occurs preceded by this warning then serious ill conditioning has probably occurred in the working set when adding a constraint. It may be possible to avoid the difficulty by increasing the magnitude of the optional parameter lin_feas_tol (default value $= \sqrt{\epsilon}$, where ϵ is the machine precision; see Section 8.2) and/or the optional parameter nonlin_feas_tol (default value $\epsilon^{0.33}$ or $\sqrt{\epsilon}$; see Section 8.2), and rerunning the program. If the message recurs even after this change, the offending linearly dependent constraint j must be removed from the problem. If overflow occurs in one of the user-supplied functions (e.g., if the nonlinear functions involve exponentials or singularities), it may help to specify tighter bounds for some of the variables (i.e., reduce the gap between the appropriate l_j and u_j).

NE_NOT_APPEND_FILE

Cannot open file \langlestring\rangle for appending.

NE_WRITE_ERROR

Error occurred when writing to file \langlestring\rangle.

NE_NOT_CLOSE_FILE

Cannot close file \langlestring\rangle.

10. **Further Comments**

10.1 **Termination Criteria**

The function exits with $\text{fail_code} = \text{NE_NOERROR}$ if iterates have converged to a point x that satisfies the Kuhn–Tucker conditions (see Section 7.1) to the accuracy requested by the optional parameter optim_tol (default value $= \epsilon^{0.8}$, see Section 8.2).
The user should also examine the printout from nag_opt_nlp (see Section 4.1 or Section 8.3) to check whether the following four conditions are satisfied:

(i) the final value of Norm Gz is significantly less than at the starting point;

(ii) during the final major iterations, the values of Step and Mnr are both one;

(iii) the last few values of both Violtn and Norm Gz become small at a fast linear rate;

and

(iv) Cond Hz is small.

If all these conditions hold, x is almost certainly a local minimum.

10.2. Accuracy

If fail.code = NE_NOERROR on exit, then the vector returned in the array x is an estimate of the solution to an accuracy of approximately options.optim_tol (default value = $\epsilon_r^{0.8}$, where ϵ_r is the relative precision of $F(x)$; see Section 8.2).

11. References

12. See Also

nag_opt_lp (e04mfc)
nag_opt_lin_lsq (e04ncc)
nag_opt_qp (e04nfc)
nag_opt_init (e04xxc)
13. Example 2

This example shows the use of certain optional parameters. Option values are assigned directly within the program text and by reading values from a data file. The options structure is declared and initialized by nag_opt_init (e04xxc). Two options are read from the data file by use of nag_opt_read (e04xyc). nag_opt_nlp is then called to solve the problem using the function objfun1 and confun1 with elements of the objective gradient not being set at all and only some of the elements of the constraint Jacobian being provided. The memory freeing function nag_opt_free (e04xzc) is used to free the memory assigned to the pointers in the options structure. Users should not use the standard C function free() for this purpose.

13.1. Program Text

```c
static void ex2()
{
    #define NMAX 10
    #define NCLIN 10
    #define NCNLIN 10
    #define TOTALVARS NMAX+NCLIN+NCNLIN
    #define TDA NMAX

    /* Local variables */
    Integer i, j, n, tda;
    Integer nclin, ncnlin;

double objf;
    double x[NMAX], a[NCLIN][NMAX], bl[TOTALVARS], bu[TOTALVARS], objgrd[NMAX];

    Nag_E04_Opt options;
    static NagError fail;

    Vprintf("e04ucc example 2: using option setting.\n");
    /* Skip heading in data file */
    Vscanf("%*\n");
    Vscanf("%ld%ld%ld%*\[\n\]", &n, &nclin, &ncnlin);
    if (n <= 10 && nclin <= 10 && ncnlin <= 10)
    {
        tda = NMAX;
        /* Read a, bl, bu and x from data file */
    
        /* Read the matrix of linear constraint coefficients */
        if (nclin > 0)
        {
            for (i = 0; i < nclin; ++i)
            {
                for (j = 0; j < n; ++j)
                    Vscanf("%lf", &a[i][j]);
            }
        }
    
    
        Vscanf("%*\n"); /* Remove remainder of line */
    
        /* Read lower bounds */
        for (i = 0; i < n + nclin + ncnlin; ++i)
            Vscanf("%Lf", &bl[i]);
    
        /* Read upper bounds */
        for (i = 0; i < n + nclin + ncnlin; ++i)
            Vscanf("%Lf", &bu[i]);
    
        /* Read the initial point x */
        for (i = 0; i < n; ++i)
            Vscanf("%Lf", &x[i]);

```
Example data for ex2: using option setting

4 1 2 :Values of N, NCLIN and NCNLN
1.0 1.0 1.0 1.0 :End of matrix A
1.0 1.0 1.0 -1.0E+25 -1.0E+25 25.0 :End of BL
5.0 5.0 5.0 5.0 20.0 40.0 1.0E+25 :End of BU
1.0 5.0 5.0 1.0 :End of X

Begin e04ucc
con_deriv = FALSE
obj_deriv = FALSE
End

Optional parameter setting for e04ucc.

Option file: stdin
con_deriv set to FALSE
obj_deriv set to FALSE

Parameters to e04ucc

Number of variables........... 4
Linear constraints............ 1 Nonlinear constraints........ 2
start................... Nag_Cold
step_limit.............. 2.00e+00 machine precision....... 1.11e-16
lin_feas_tol............ 1.05e-08 nonlin_feas_tol......... 1.05e-08
optm_tol.............. 3.26e-12 linesrch_tol........ 9.00e-01
crash_tol............... 1.00e-02 f_prec.................. 4.37e-15
inf_bound............... 1.00e+20 inf_step................ 1.00e+20
max_iter................ 50 minor_max_iter.......... 50
hessian.................. FALSE
f_diff_int Automatic c_diff_int Automatic
obj_deriv............... FALSE con_deriv............... FALSE
verify_grad....... Nag_SimpleCheck print_grad............ Nag_D_Full
print_level........... Nag_Soln_Iter minor_print_level..... Nag_NoPrint
outfile................. stdout

Verification of the objective gradients.
--
The user sets 0 out of 4 objective gradient elements.
Each iteration 4 gradient elements will be estimated numerically.

Verification of the constraint gradients.
--
The user sets 3 out of 8 constraint gradient elements.
Each iteration, 5 gradient elements will be estimated numerically.

Simple Check:
The Jacobian seems to be ok.

The largest relative error was 5.22e-09 in constraint 1

Finite difference intervals.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00e+00</td>
<td>6.479651e-07</td>
<td>2.645420e-06</td>
<td>2.592083e-06</td>
</tr>
<tr>
<td>2</td>
<td>5.00e+00</td>
<td>7.825142e-07</td>
<td>7.936259e-06</td>
<td>1.565074e-06</td>
</tr>
<tr>
<td>3</td>
<td>5.00e+00</td>
<td>7.936259e-06</td>
<td>7.936259e-05</td>
<td>1.873839e-08</td>
</tr>
<tr>
<td>4</td>
<td>1.00e+00</td>
<td>9.163610e-07</td>
<td>2.645420e-06</td>
<td>1.832879e-06</td>
</tr>
</tbody>
</table>

Maj Mnr Step Merit function Violtn Norm Gz Cond Hz
0 5 0.0e+00 1.738281e+01 1.2e+01 7.1e-01 1.0e+00
1 1 1.0e+00 1.703169e+01 1.9e+00 4.6e-02 1.0e+00
2 1 1.0e+00 1.701442e+01 8.8e-02 2.1e-02 1.0e+00
3 1 1.0e+00 1.701402e+01 5.4e-04 3.1e-04 1.0e+00
4 1 1.0e+00 1.701402e+01 9.9e-08 7.0e-06 1.0e+00

Minor itn 1 -- Re-solve QP subproblem.
5 2 1.0e+00 1.701402e+01 4.7e-11 6.3e-08 1.0e+00 C

Exit from NP problem after 5 major iterations, 11 minor iterations.

<table>
<thead>
<tr>
<th>Varbl</th>
<th>State</th>
<th>Value</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Lagr Mult</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>V 1</td>
<td>LL</td>
<td>1.00000e+00</td>
<td>1.00000e+00</td>
<td>5.00000e+00</td>
<td>1.0879e+00</td>
<td>0.0000e+00</td>
</tr>
<tr>
<td>V 2</td>
<td>FR</td>
<td>4.74300e+00</td>
<td>1.00000e+00</td>
<td>5.00000e+00</td>
<td>0.0000e+00</td>
<td>2.5700e-01</td>
</tr>
<tr>
<td>V 3</td>
<td>FR</td>
<td>3.82115e+00</td>
<td>1.00000e+00</td>
<td>5.00000e+00</td>
<td>0.0000e+00</td>
<td>1.1789e+00</td>
</tr>
<tr>
<td>V 4</td>
<td>FR</td>
<td>1.37941e+00</td>
<td>1.00000e+00</td>
<td>5.00000e+00</td>
<td>0.0000e+00</td>
<td>3.7941e-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L Con</th>
<th>State</th>
<th>Value</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Lagr Mult</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 1</td>
<td>FR</td>
<td>1.09436e+01</td>
<td>None</td>
<td>2.00000e+01</td>
<td>0.0000e+00</td>
<td>9.0564e+00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N Con</th>
<th>State</th>
<th>Value</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Lagr Mult</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 1</td>
<td>UL</td>
<td>4.00000e+01</td>
<td>None</td>
<td>4.00000e+01</td>
<td>-1.6147e-01</td>
<td>-3.7168e-11</td>
</tr>
<tr>
<td>N 2</td>
<td>LL</td>
<td>2.50000e+01</td>
<td>2.50000e+01</td>
<td>None</td>
<td>5.5229e-01</td>
<td>-2.8759e-11</td>
</tr>
</tbody>
</table>

Optimal solution found.

Final objective value = 1.7014017e+01