nag_opt_lsq_no_deriv (e04fcc)

1. **Purpose**

nag_opt_lsq_no_deriv (e04fcc) is a comprehensive algorithm for finding an unconstrained minimum of a sum of squares of *m* nonlinear functions in *n* variables (*m* ≥ *n*). No derivatives are required.

The function *nag_opt_lsq_no_deriv* is intended for objective functions which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

2. **Specification**

```c
#include <nag.h>
#include <nage04.h>

void nag_opt_lsq_no_deriv(Integer m, Integer n,
    void (*lsqfun)(Integer m, Integer n, double x[],
    double fvec[], Nag_Comm *comm),
    double x[], double *fsumsq, double fvec[], double fjac[],
    Integer tdj, Nag_E04_Opt *options, Nag_Comm *comm, NagError *fail)
```

3. **Description**

This function is applicable to problems of the form:

\[
F(x) = \sum_{i=1}^{m} |f_i(x)|^2 \]

where \(x = (x_1, x_2, \ldots, x_n)^T \) and \(m \geq n \). (The functions \(f_i(x) \) are often referred to as ‘residuals’.)

The user must supply a C function, *lsqfun*, to calculate the values of the \(f_i(x) \) at any point \(x \).

From a starting point \(x^{(1)} \), supplied by the user, *nag_opt_lsq_no_deriv* generates a sequence of points \(x^{(2)}, x^{(3)}, \ldots \), which is intended to converge to a local minimum of \(F(x) \). The sequence of points is given by

\[
x^{(k+1)} = x^{(k)} + \alpha^{(k)} p^{(k)}
\]

where the vector \(p^{(k)} \) is a direction of search, and \(\alpha^{(k)} \) is chosen such that \(F(x^{(k)} + \alpha^{(k)} p^{(k)}) \) is approximately a minimum with respect to \(\alpha^{(k)} \).

The vector \(p^{(k)} \) used depends upon the reduction in the sum of squares obtained during the last iteration. If the sum of squares was sufficiently reduced, then \(p^{(k)} \) is an approximation to the Gauss-Newton direction; otherwise additional function evaluations are made so as to enable \(p^{(k)} \) to be a more accurate approximation to the Newton direction.

The method is designed to ensure that steady progress is made whatever the starting point, and to have the rapid ultimate convergence of Newton’s method.

4. **Parameters**

- **m**

 Input: the number \(m \) of residuals, \(f_i(x) \)

- **n**

 Input: the number \(n \) of variables, \(x_j \).

 Constraint: \(1 \leq n \leq m \).

- **lsqfun**

 The function *lsqfun*, supplied by the user, must calculate the vector of values \(f_i(x) \) at any point \(x \). (However, if the user does not wish to calculate the residuals at a particular \(x \), there is the option of setting a parameter to cause *nag_opt_lsq_no_deriv* to terminate immediately.)
The specification of `lsqfun` is:

```c
void lsqfun(Integer m, Integer n, double x[], double fvec[], Nag_Comm *comm)
```

- **m**
 - Input: the numbers \(m \) and \(n \) of residuals and variables, respectively.

- **n**
 - Input: the point \(x \) at which the values of the \(f_i \) are required.

- **fvec[m]**
 - Output: unless `comm->flag` is reset to a negative number, on exit `fvec[i-1]` must contain the value of \(f_i \) at the point \(x \), for \(i = 1, 2, \ldots, m \).

- **comm**
 - Pointer to structure of type `Nag_Comm`; the following members are relevant to `lsqfun`.
 - **flag** – Integer
 - Input: `comm->flag` contains a non-negative number.
 - Output: if `lsqfun` resets `comm->flag` to some negative number then `nag_opt_lsq_no_deriv` will terminate immediately with the error indicator `NE_USER_STOP`. If `fail` is supplied to `nag_opt_lsq_no_deriv`, `fail.errnum` will be set to the user’s setting of `comm->flag`.
 - **first** – Boolean
 - Input: the value TRUE on the first call to `lsqfun` and FALSE for all subsequent calls.
 - **nf** – Integer
 - Input: the number of calls made to `lsqfun` including the current one.
 - **user** – double *
 - **iuser** – Integer *
 - **p** – Pointer
 - The type Pointer will be `void *` with a C compiler that defines `void *` and `char *` otherwise.
 - Before calling `nag_opt_lsq_no_deriv` these pointers may be allocated memory by the user and initialised with various quantities for use by `lsqfun` when called from `nag_opt_lsq_no_deriv`.

Note: `lsqfun` should be tested separately before being used in conjunction with `nag_opt_lsq_no_deriv`. The array \(x \) must not be changed within `lsqfun`.

- **x[n]**
 - Input: \(x[j-1] \) must be set to a guess at the \(j \)th component of the position of the minimum, for \(j = 1, 2, \ldots, n \).
 - Output: the final point \(x^* \). On successful exit, \(x[j-1] \) is the \(j \)th component of the estimated position of the minimum.

- **fsumsq**
 - Output: the value of \(F(x) \), the sum of squares of the residuals \(f_i(x) \), at the final point given in \(x \).

- **fvec[m]**
 - Output: `fvec[i-1]` is the value of the residual \(f_i(x) \) at the final point given in \(x \), for \(i = 1, 2, \ldots, m \).

- **fjac[m][tdj]**
 - Output: `fjac[i-1][j-1]` contains the estimate of the first derivative \(\frac{\partial f_i}{\partial x_j} \) at the final point given in \(x \), for \(i = 1, 2, \ldots, m; j = 1, 2, \ldots, n \).
Input: the last dimension of the array **fjac** as declared in the function from which **nag_opt_lsq_no_deriv** is called.

Constraint: \(\text{tdj} \geq n \).

options

Input/Output: a pointer to a structure of type Nag_E04_Opt whose members are optional parameters for **nag_opt_lsq_no_deriv**. These structure members offer the means of adjusting some of the parameter values of the algorithm and on output will supply further details of the results. A description of the members of **options** is given below in Section 7.

If any of these optional parameters are required then the structure **options** should be declared and initialised by a call to **nag_opt_init** (e04xzc) and supplied as an argument to **nag_opt_lsq_no_deriv**. However, if the optional parameters are not required the NAG defined null pointer, **E04_DEFAULT**, can be used in the function call.

comm

Input/Output: structure containing pointers for communication to user-supplied functions; see the above description of **lsqfun** for details. If the user does not need to make use of this communication feature the null pointer **NAGCOMM_NULL** may be used in the call to **nag_opt_lsq_no_deriv**; **comm** will then be declared internally for use in calls to user-supplied functions.

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library. Users are recommended to declare and initialise **fail** and set **fail.print** = **TRUE** for this function.

4.1. Description of Printed Output

Intermediate and final results are printed out by default. The level of printed output can be controlled by the user with the option **print_level** (see Section 7.2.). The default print level of **Nag_Soln_Iter** provides a single line of output at each iteration and the final result.

The line of results printed at each iteration gives:

- **Itn**: the current iteration number \(k \).
- **Nfun**: the cumulative number of calls to **lsqfun**.
- **Objective**: the current value of the objective function, \(F(x^{(k)}) \).
- **Norm g**: the Euclidean norm of the gradient of \(F(x^{(k)}) \).
- **Norm x**: the Euclidean norm of \(x^{(k)} \).
- **Norm(x(k-1)-x(k))**: the Euclidean norm of \(x^{(k-1)} - x^{(k)} \).
- **Step**: the step \(\alpha^{(k)} \) taken along the computed search direction \(p^{(k)} \).

The printout of the final result consists of:

- **x**: the final point \(x^* \).
- **g**: the estimate of the gradient of \(F \) at the final point.
- **Residuals**: the values of the residuals \(f_i \) at the final point.
- **Sum of squares**: the value of \(F(x^*) \), the sum of squares of the residuals at the final point.

5. Comments

A list of possible error exits and warnings from **nag_opt_lsq_no_deriv** is given in Section 8.

5.1. Preliminary comments on accuracy

If the problem is reasonably well scaled and a successful exit is made, then, for a computer with a mantissa of \(t \) decimals, one would expect to get about \(t/2 - 1 \) decimals accuracy in the components of \(x \) and between \(t - 1 \) (if \(F(x) \) is of order 1 at the minimum) and \(2t - 2 \) (if \(F(x) \) is close to zero at the minimum) decimals accuracy in \(F(x) \).

Further details about accuracy are given in Section 9.
6. Example 1

To find least-squares estimates of \(x_1, x_2 \) and \(x_3 \) in the model

\[
y = x_1 + \frac{t_1}{x_2 t_2 + x_3 t_3}
\]

using the 15 sets of data given in the following table.

<table>
<thead>
<tr>
<th>(y)</th>
<th>(t_1)</th>
<th>(t_2)</th>
<th>(t_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.14</td>
<td>1.0</td>
<td>15.0</td>
<td>1.0</td>
</tr>
<tr>
<td>0.18</td>
<td>2.0</td>
<td>14.0</td>
<td>2.0</td>
</tr>
<tr>
<td>0.22</td>
<td>3.0</td>
<td>13.0</td>
<td>3.0</td>
</tr>
<tr>
<td>0.25</td>
<td>4.0</td>
<td>12.0</td>
<td>4.0</td>
</tr>
<tr>
<td>0.29</td>
<td>5.0</td>
<td>11.0</td>
<td>5.0</td>
</tr>
<tr>
<td>0.32</td>
<td>6.0</td>
<td>10.0</td>
<td>6.0</td>
</tr>
<tr>
<td>0.35</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td>0.39</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>0.37</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>0.58</td>
<td>10.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>0.73</td>
<td>11.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>0.96</td>
<td>12.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>1.34</td>
<td>13.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2.10</td>
<td>14.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>4.39</td>
<td>15.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

The program uses \((0.5, 1.0, 1.5)\) as the initial guess at the position of the minimum.

This example shows the simple use of \texttt{nag_opt_lsq_no_deriv} where default values are used for all optional parameters. An example showing the use of optional parameters is given in Section 12. There is however only one example program file, the main program of which calls both examples. The main program and example 1 are given below.

6.1. Program Text

```c
/* nag_opt_lsq_no_deriv(e04fcc) Example Program */
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nage04.h>
#include <nagx02.h>

#ifdef NAG_PROTO
static void lsqfun1(Integer m, Integer n, double x[], double fvec[],
    Nag_Comm *comm);
static void lsqfun2(Integer m, Integer n, double x[], double fvec[],
    Nag_Comm *comm);
#else
static void lsqfun1();
static void lsqfun2();
#endif

static void ex1(void);
static void ex2(void);

#define MMAX 15
#define NMAX 3
#define TMAX 3
```
/* Define a user structure template to store data in lsqfun. */
struct user
{
 double y[MMAX];
 double t[MMAX][TMAX];
};

main()
{
 /* Two examples are called, ex1() which uses the
 * default settings to solve the problem and
 * ex2() which solves the same problem with
 * some optional parameters set by the user.
 */

 Vprintf("e04fcc Example Program Results.
 ");
 Vscanf(" %*
 "); /* Skip heading in data file */
 ex1();
 ex2();
 exit(EXIT_SUCCESS);
}
static void ex1()
{
 double fjac[MMAX][NMAX], fvec[MMAX], x[NMAX];
 Integer m, n, tdj;
 double fsumsq;
 static NagError fail;

 Vprintf("\ne04fcc example 1: no option setting.
 ");
 Vscanf(" %*[\n""); /* Skip heading in data file */
 n = 3;
 m = 15;
 tdj = NMAX;

 /* Set up the starting point */
 x[0] = 0.5;
 x[1] = 1.0;
 x[2] = 1.5;

 /* Call the optimization routine */
 fail.print = TRUE;
 e04fcc(m, n, lsqfun1, x, &fsumsq, fvec, (double *)fjac, tdj,
 E04_DEFAULT, NAGCOMM_NULL, &fail);
 if (fail.code != NE_NOERROR && fail.code != NW_COND_MIN) exit(EXIT_FAILURE);
}

static void lsqfun1(Integer m, Integer n, double x[], double fvec[],
 Nag_Comm *comm)
{
 /* Function to evaluate the residuals for example 1. *
 * In this example a static variable is used to hold the
 * initial observations. The data is read into the structure
 * gs on the first call to lsqfun1(), it could alternatively
 * be read in from within main(). */

 static struct user gs;
 Integer i, j, nt;
if (comm->first)
{
 /* First call to lsfun1(), read data into structure.
 * Observations t (j = 0, 1, 2) are held in gs.t[i][j]
 * (i = 0, 1, 2, . . ., 14)
 */
 nt = 3;
 for (i = 0; i < m; ++i)
 {
 Vscanf("%lf", &gs.y[i]);
 for (j = 0; j < nt; ++j) Vscanf("%lf", &gs.t[i][j]);
 }
 for (i = 0; i < m; ++i)
 fvec[i] = x[0] + gs.t[i][0] / (x[1]*gs.t[i][1] + x[2]*gs.t[i][2]) - gs.y[i];
}

6.2. Program Data

e04fcc Example Program Data

Example data for ex1: no option setting

0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0

6.3. Program Results

e04fcc Example Program Results.
e04fcc example 1: no option setting.

Parameters to e04fcc

Number of residuals........... 15 Number of variables........... 3
optim_tol.................. 1.05e-08 linesearch_tol.......... 5.00e-01
step_max................... 1.00e+05 max_iter.................. 50
print_level...........Nag_Soln_Iter machine precision....... 1.11e-16
outfile................. stdout
Memory allocation:
s....................... Nag tdv..................... 3
v....................... Nag

Results from e04fcc:

Iteration results:

<table>
<thead>
<tr>
<th>Itn</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm (x(k-1)-x(k))</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>1.0210e+01</td>
<td>3.2e+01</td>
<td>1.9e+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>1.9873e-01</td>
<td>2.8e+00</td>
<td>2.4e+00</td>
<td>7.2e-01</td>
<td>1.0e+00</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>9.2324e-03</td>
<td>1.9e-01</td>
<td>2.6e+00</td>
<td>2.5e-01</td>
<td>1.0e+00</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>8.2149e-03</td>
<td>1.2e-03</td>
<td>2.6e+00</td>
<td>2.7e-02</td>
<td>1.0e+00</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>8.2149e-03</td>
<td>1.2e-07</td>
<td>2.6e+00</td>
<td>3.8e-04</td>
<td>1.0e+00</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>8.2149e-03</td>
<td>1.7e-10</td>
<td>2.6e+00</td>
<td>4.2e-06</td>
<td>1.0e+00</td>
</tr>
</tbody>
</table>
Final solution:

<table>
<thead>
<tr>
<th>x</th>
<th>g</th>
<th>Residuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.24106e-02</td>
<td>-6.1762e-12</td>
<td>-5.8811e-03</td>
</tr>
<tr>
<td>1.13304e+00</td>
<td>1.4264e-10</td>
<td>-2.6535e-04</td>
</tr>
<tr>
<td>2.34370e+00</td>
<td>9.4150e-11</td>
<td>2.7469e-04</td>
</tr>
<tr>
<td>6.5415e-03</td>
<td>-8.2299e-04</td>
<td>-1.2995e-03</td>
</tr>
<tr>
<td>1.4915e-02</td>
<td>-1.4710e-02</td>
<td>-1.1208e-02</td>
</tr>
<tr>
<td></td>
<td>8.2216e-02</td>
<td>-1.8212e-02</td>
</tr>
<tr>
<td>-8.2216e-02</td>
<td>1.13304e+00</td>
<td>-8.2299e-04</td>
</tr>
<tr>
<td>-1.2995e-03</td>
<td>2.34370e+00</td>
<td>6.5415e-03</td>
</tr>
<tr>
<td>-4.4631e-03</td>
<td>1.13304e+00</td>
<td>-8.2299e-04</td>
</tr>
<tr>
<td>-1.9963e-02</td>
<td>2.34370e+00</td>
<td>6.5415e-03</td>
</tr>
<tr>
<td>8.2216e-02</td>
<td>1.13304e+00</td>
<td>-8.2299e-04</td>
</tr>
<tr>
<td>-1.8212e-02</td>
<td>2.34370e+00</td>
<td>6.5415e-03</td>
</tr>
<tr>
<td>-1.4710e-02</td>
<td>1.13304e+00</td>
<td>-8.2299e-04</td>
</tr>
<tr>
<td>-1.1208e-02</td>
<td>2.34370e+00</td>
<td>6.5415e-03</td>
</tr>
<tr>
<td>8.2216e-02</td>
<td>1.13304e+00</td>
<td>-8.2299e-04</td>
</tr>
<tr>
<td>-1.8212e-02</td>
<td>2.34370e+00</td>
<td>6.5415e-03</td>
</tr>
<tr>
<td>-1.4710e-02</td>
<td>1.13304e+00</td>
<td>-8.2299e-04</td>
</tr>
<tr>
<td>-1.1208e-02</td>
<td>2.34370e+00</td>
<td>6.5415e-03</td>
</tr>
</tbody>
</table>

The sum of squares is 8.2149e-03.

7. Optional Parameters

A number of optional input and output parameters to nag_opt_lsq_no_deriv are available through the structure argument options, type Nag_E04_Opt. A parameter may be selected by assigning an appropriate value to the relevant structure member; those parameters not selected will be assigned default values. If no use is to be made of any of the optional parameters the user should use the NAG defined null pointer, E04_DEFAULT, in place of options when calling nag_opt_lsq_no_deriv; the default settings will then be used for all parameters.

Before assigning values to options directly the structure must be initialised by a call to the function nag_opt_init (e04xcc). Values may then be assigned to the structure members in the normal C manner.

Option settings may also be read from a text file using the function nag_opt_read (e04xcy) in which case initialisation of the options structure will be performed automatically if not already done. Any subsequent direct assignment to the options structure must not be preceded by initialisation.

If assignment of functions and memory to pointers in the options structure is required, this must be done directly in the calling program, they cannot be assigned using nag_opt_read (e04xcy).

7.1. Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for nag_opt_lsq_no_deriv together with their default values where relevant. The number ϵ is a generic notation for machine precision (see nag_machine_precision (X02AJC)).

<table>
<thead>
<tr>
<th>Boolean list</th>
<th>TRUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nag_PrintType print_level</td>
<td>Nag_Soln_Iter</td>
</tr>
<tr>
<td>char outfile[80]</td>
<td>stdout</td>
</tr>
<tr>
<td>void (*print_fun)()</td>
<td>NULL</td>
</tr>
<tr>
<td>Integer max_iter</td>
<td>max(50, 5n)</td>
</tr>
<tr>
<td>double optim_tol</td>
<td>$\sqrt{\epsilon}$</td>
</tr>
<tr>
<td>double linesearch_tol</td>
<td>0.5 (0.0 if n = 1)</td>
</tr>
<tr>
<td>double step_max</td>
<td>100000.0</td>
</tr>
<tr>
<td>double *s</td>
<td>size n</td>
</tr>
<tr>
<td>double *v</td>
<td>size n*n</td>
</tr>
<tr>
<td>Integer tdv</td>
<td>n</td>
</tr>
<tr>
<td>Integer grade</td>
<td></td>
</tr>
<tr>
<td>Integer iter</td>
<td></td>
</tr>
<tr>
<td>Integer nf</td>
<td></td>
</tr>
</tbody>
</table>

7.2. Description of Optional Parameters

| list - Boolean | Default = TRUE |

Input: if options.list = TRUE the parameter settings in the call to nag_opt_lsq_no_deriv will be printed.
print_level – Nag_PrintType
Input: the level of results printout produced by nag_opt_lsq_no_deriv. The following values are available.

Nag_NoPrint No output.
Nag_Soln The final solution.
Nag_Iter One line of output for each iteration.
Nag_Soln_Iter The final solution and one line of output for each iteration.
Nag_Soln_Iter_Full The final solution and detailed printout at each iteration.

Details of each level of results printout are described in Section 7.3.
Constraint: options.print_level = Nag_NoPrint or Nag_Soln or Nag_Iter or Nag_Soln_Iter or Nag_Soln_Iter_Full.

outfile – char[80]
Input: the name of the file to which results should be printed. If options.outfile[0] = ‘\0’ then the stdout stream is used.

print_fun – pointer to function
Input: printing function defined by the user; the prototype of print_fun is
void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);
See Section 7.3.1. below for further details.

max_iter – Integer
Input: the limit on the number of iterations allowed before termination.
Constraint: options.max_iter \geq 0.

optim_tol – double
Input: the accuracy in x to which the solution is required.
If x_{true} is the true value of x at the minimum, then x_{sol}, the estimated position prior to a normal exit, is such that
\[||x_{sol} - x_{true}|| < \text{optim}_\text{tol} \times (1.0 + ||x_{true}||), \]
where ||y|| = \sqrt{\sum_{j=1}^{n} y_j^2}. For example, if the elements of x_{sol} are not much larger than 1.0 in modulus and if \text{optim}_\text{tol} = 1.0 \times 10^{-5}, then x_{sol} is usually accurate to about 5 decimal places. (For further details see Section 9.)
If F(x) and the variables are scaled roughly as described in Section 9)and \epsilon is the machine precision, then a setting of order \text{optim}_\text{tol} = \sqrt{\epsilon} will usually be appropriate.
Constraint: 10^{-6} \leq \text{options.optim}_\text{tol} < 1.0.

linesearch_tol – double
Input: Every iteration of nag_opt_lsq_no_deriv involves a linear minimization i.e., minimization of F(x(k) + \alpha(k)p(k)) with respect to \alpha(k).
linesearch_tol specifies how accurately the linear minimizations are to be performed. The minimum with respect to \alpha(k) will be located more accurately for small values of linesearch_tol (say 0.01) than for large values (say 0.9). Although accurate linear minimizations will generally reduce the number of iterations performed by nag_opt_lsq_no_deriv, they will increase the number of calls of lsqfun made each iteration. On balance it is usually more efficient to perform a low accuracy minimization.
Constraint: 0.0 \leq \text{options.linesearch}_\text{tol} < 1.0.

step_max – double
Input: an estimate of the Euclidean distance between the solution and the starting point supplied by the user. (For maximum efficiency, a slight overestimate is preferable.)
nag_opt_lsq_no_deriv will ensure that, for each iteration,
\[\sum_{j=1}^{n} (x_j^{(k)} - x_j^{(k-1)})^2 \leq (\text{step}_\text{max})^2 \]
where \(k \) is the iteration number. Thus, if the problem has more than one solution, nag_opt lsq no_deriv is most likely to find the one nearest to the starting point. On difficult problems, a realistic choice can prevent the sequence \(x^{(k)} \) entering a region where the problem is ill-behaved and can help avoid overflow in the evaluation of \(F(x) \). However, an underestimate of options.step_max can lead to inefficiency.

Constraint: \(\text{options.step_max} \geq \text{options.optim_tol} \).

\[s - \text{double *} \]

Input: \(n \) values of memory will be automatically allocated by nag_opt lsq no_deriv and this is the recommended method of use of options.s. However a user may supply memory from the calling program.

Output: the singular values of the estimated Jacobian matrix at the final point. Thus options.s may be useful as information about the structure of the user's problem.

\[v - \text{double *} \]

Default memory = \(n^*n \)

Input: \(n^*n \) values of memory will be automatically allocated by nag_opt lsq no_deriv and this is the recommended method of use of options.v. However a user may supply memory from the calling program.

Output: the matrix \(V \) associated with the singular value decomposition

\[J = USV^T \]

of the estimated Jacobian matrix at the final point, stored by rows. This matrix may be useful for statistical purposes, since it is the matrix of orthonormalised eigenvectors of \(J^T J \).

\[\text{tdv} - \text{Integer} \]

Default = \(n \)

Input: if memory is supplied by the user then options.tdv must contain the last dimension of the array assigned to options.tdv as declared in the function from which nag_opt lsq no_deriv is called.

Output: the trailing dimension used by options.v. If the Nag default memory allocation has been used this value will be \(n \).

Constraint: \(\text{options.tdv} \geq n \).

\[\text{grade} - \text{Integer} \]

Output: the grade of the Jacobian at the final point. nag_opt lsq no_deriv estimates the dimension of the subspace for which the Jacobian matrix can be used as a valid approximation to the curvature (see Gill and Murray, 1978); this estimate is called the grade.

\[\text{iter} - \text{Integer} \]

Output: the number of iterations which have been performed in nag_opt lsq no_deriv.

\[\text{nf} - \text{Integer} \]

Output: the number of times the residuals have been evaluated (i.e., number of calls of lsqfun).

7.3. Description of Printed Output

The level of printed output can be controlled with the structure members options.list and options.print_level (see Section 7.2.). If list = TRUE then the parameter values to nag_opt lsq no_deriv are listed, whereas the printout of results is governed by the value of print_level. The default of print_level = Nag_Soln_Iter provides a single line of output at each iteration and the final result. This section describes all of the possible levels of results printout available from nag_opt lsq no_deriv.

When options.print_level = Nag_Iter or Nag_Soln_Iter a single line of output is produced on completion of each iteration, this gives the following values:

- **Itn** the current iteration number \(k \).
- **Nfun** the cumulative number of calls to lsqfun.
- **Objective** the value of the objective function, \(F(x^{(k)}) \).
- **Norm g** the Euclidean norm of the gradient of \(F(x^{(k)}) \).
- **Norm x** the Euclidean norm of \(x^{(k)} \).
- **Norm(x(k-1)-x(k))** the Euclidean norm of \(x^{(k-1)} - x^{(k)} \).
Step
the step $\alpha^{(k)}$ taken along the computed search direction $p^{(k)}$.

When options.print_level = Nag_Soln_Iter_Full more detailed results are given at each iteration.
Additional values output are
Grade
the grade of the Jacobian matrix. (See description of grade, Section 7.2)
x
the current point $x^{(k)}$.
g
the current estimate of the gradient of $F(x^{(k)})$.
Singular values
the singular values of the current approximation to the Jacobian matrix.

If options.print_level = Nag_Soln or Nag_Soln_Iter or Nag_Soln_Iter_Full the final result is printed out. This consists of:
x
the final point x^*.
g
the estimate of the gradient of F at the final point.
Residuals
the values of the residuals f_i at the final point.
Sum of squares
the value of $F(x^*)$, the sum of squares of the residuals at the final point.

If options.print_level = Nag_NoPrint then printout will be suppressed; the user can print the final solution when nag_opt_lsq_no_deriv returns to the calling program.

7.3.1. Output of results via a user defined printing function

Users may also specify their own print function for output of iteration results and the final solution by use of the options.print_fun function pointer, which has prototype

```c
void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);
```

The rest of this section can be skipped if the default printing facilities provide the required functionality.

When a user defined function is assigned to options.print_fun this will be called in preference to the internal print function of nag_opt_lsq_no_deriv. Calls to the user defined function are again controlled by means of the options.print_level member. Information is provided through st and comm, the two structure arguments to print_fun. If comm->it_prt = TRUE then the results from the last iteration of nag_opt_lsq_no_deriv are in the following members of st:

- m – Integer
 the number of residuals.

- n – Integer
 the number of variables.

- x – double *
 points to the n memory locations holding the current point $x^{(k)}$.

- fvec – double *
 points to the m memory locations holding the values of the residuals f_i at the current point $x^{(k)}$.

- fjac – double *
 points to m*st->tdj memory locations. fjac[(i-1)*st->tdj + (j-1)] contains the value of $\frac{\partial f_i}{\partial x_j}$, for $i = 1, 2, \ldots , m; j = 1, 2, \ldots , n$ at the current point $x^{(k)}$.

- tdj – Integer
 the trailing dimension for st->fjac[].

- step – double
 the step $\alpha^{(k)}$ taken along the search direction $p^{(k)}$.

- xk_norm – double
 the Euclidean norm of $x^{(k-1)} - x^{(k)}$.

- g – double *
 points to the n memory locations holding the estimated gradient of F at the current point $x^{(k)}$.

- grade – Integer
 the grade of the Jacobian matrix.
s – double *
 points to the n memory locations holding the singular values of the current approximation to
 the Jacobian.

iter – Integer
 the number of iterations, k, performed by nag_opt_lsq_no_deriv.

nf – Integer
 the cumulative number of calls made to lsqfun.

The relevant members of the structure comm are:

it_prt – Boolean
 will be TRUE when the print function is called with the result of the current iteration.

sol_prt – Boolean
 will be TRUE when the print function is called with the final result.

user – double *

iuser – Integer *

p – Pointer
 pointers for communication of user information. If used they must be allocated memory by
 the user either before entry to nag_opt_lsq_no_deriv or during a call to lsqfun or printfun. The type Pointer will be void * with a C compiler that defines void * and char * otherwise.

8. Error Indications and Warnings

NE_USER_STOP
 User requested termination, user flag value = ⟨value⟩.

 This exit occurs if the user sets comm->flag to a negative value in lsqfun. If fail is supplied the value of fail.errnum will be the same as the user’s setting of comm->flag.

NE_INT_ARG_LT
 On entry, n must not be less than 1: n = ⟨value⟩.

NE_2_INT_ARG_LT
 On entry, m = ⟨value⟩ while n = ⟨value⟩. These parameters must satisfy m ≥ n.
 On entry, tdj = ⟨value⟩ while n = ⟨value⟩. These parameters must satisfy tdj ≥ n.
 On entry, options.tdv = ⟨value⟩ while n = ⟨value⟩. These parameters must satisfy tdv ≥ n.

NE_OPT_NOT_INIT
 Options structure not initialised.

NE_BAD_PARAM
 On entry parameter options.print_level had an illegal value.

NE_2_REAL_ARG_LT
 On entry, options.step_max = ⟨value⟩ while options.optim_tol = ⟨value⟩. These parameters must satisfy step_max ≥ optim_tol.

NE_INVALID_INT_RANGE_1
 Value ⟨value⟩ given to options.max_iter not valid. Correct range is max_iter ≥ 0.

NE_INVALID_REAL_RANGE_EF
 Value ⟨value⟩ given to options.optim_tol not valid. Correct range is ⟨value⟩ ≤ optim_tol < 1.0.

NE_INVALID_REAL_RANGE_FF
 Value ⟨value⟩ given to options.linesearch_tol not valid. Correct range is 0.0 ≤ linesearch_tol < 1.0.

NE_ALLOC_FAIL
 Memory allocation failed.

If one of the above exits occurs, no values will have been assigned to fsmsq, or to the elements of fvec, jac, options.s or options.v.
9. Further Comments

The number of iterations required depends on the number of variables, the number of residuals, the behaviour of \(F(x) \), the accuracy demanded and the distance of the starting point from the solution. The number of multiplications performed per iteration of nag_opt_lsq_no_deriv varies, but for \(m >> n \) is approximately \(n \times m^2 + O(n^3) \). In addition, each iteration makes at least \(n + 1 \) calls of \textit{lsqfun}. So, unless the residuals can be evaluated very quickly, the run time will be dominated by the time spent in \textit{lsqfun}.

Ideally, the problem should be scaled so that, at the solution, \(F(x) \) and the corresponding values of the \(x_j \) are each in the range \((-1, +1)\), and so that at points one unit away from the solution, \(F(x) \) differs from its value at the solution by approximately one unit. This will usually imply that the Hessian matrix of \(F(x) \) at the solution is well-conditioned. It is unlikely that the user will be able to follow these recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the difficulty of the minimization problem, so that nag_opt_lsq_no_deriv will take less computer time.

When the sum of squares represents the goodness of fit of a nonlinear model to observed data, elements of the variance-covariance matrix of the estimated regression coefficients can be computed by a subsequent call to nag_opt_lsq_covariance (e04ycf), using information returned in the arrays options.s and options.v. See nag_opt_lsq_covariance (e04ycf) for further details.

9.1. Accuracy

A successful exit (\texttt{fail.code = NE_NOERROR}) is made from nag_opt_lsq_no_deriv when (B1, B2 and B3) or B4 or B5 hold, where

\[
B1 \equiv \alpha(k) \times p(k) < (\texttt{optim.tol} + \epsilon) \times (1.0 + \| x(k) \|)
\]

\[
B2 \equiv |F(k) - F(k-1)| < (\texttt{optim.tol} + \epsilon)^2 \times (1.0 + F(k))
\]
\[B3 \equiv \| g^{(k)} \| < (\epsilon^{1/3} + \text{optim_tol}) \times (1.0 + F^{(k)}) \]
\[B4 \equiv F^{(k)} < \epsilon^2 \]
\[B5 \equiv \| g^{(k)} \| < (\epsilon \times \sqrt{F^{(k)}})^{1/2} \]

and where \(\| \cdot \| \), \(\epsilon \) and the optional parameter \text{optim_tol} are as defined in Section 7.2, while \(F^{(k)} \) and \(g^{(k)} \) are the values of \(F(x) \) and its vector of estimated first derivatives at \(x^{(k)} \).

If \text{fail_code = NE_NOERROR} then the vector in \(x \) on exit, \(x_{sol} \), is almost certainly an estimate of \(x_{true} \), the position of the minimum to the accuracy specified by \text{options_optim_tol}.

If \text{fail_code = NW_COND_MIN}, then \(x_{sol} \) may still be a good estimate of \(x_{true} \), but to verify this the user should make the following checks. If

(a) the sequence \(\{ F(x^{(k)}) \} \) converges to \(F(x_{sol}) \) at a superlinear or a fast linear rate, and

(b) \(g(x_{sol})^T g(x_{sol}) < 10\epsilon \),

where \(T \) denotes transpose, then it is almost certain that \(x_{sol} \) is a close approximation to the minimum. When (b) is true, then usually \(F(x_{sol}) \) is a close approximation to \(F(x_{true}) \).

Further suggestions about confirmation of a computed solution are given in the Chapter Introduction.

10. References

11. See Also

\texttt{nag_opt_lsq_covariance (e04ycc)}
\texttt{nag_opt_init (e04xxc)}
\texttt{nag_opt_read (e04xyc)}
\texttt{nag_opt_free (e04xzc)}

12. Example 2

Example 2 solves the same problem as Example 1 but shows the use of certain optional parameters. This example shows option values being assigned directly within the program text and by reading values from a data file. The \texttt{options} structure is declared and initialised by \texttt{nag_opt_init (e04xxc)}, a value is then assigned directly to option \texttt{optim_tol} and two further options are read from the data file by use of \texttt{nag_opt_read (e04xyc)}. The memory freeing function \texttt{nag_opt_free (e04xzc)} is used to free the memory assigned to the pointers in the option structure. Users should \texttt{not} use the standard C function \texttt{free()} for this purpose.

12.1. Program Text

\begin{verbatim}
static void ex2()
{
 double fjac[MMAX][NMAX], fvec[MMAX], x[NMAX];
 Integer i, j, m, n, nt, tdj;
 double fsumsq;
 Boolean print;
 Nag_E04_Opt options;
 Nag_Comm comm;
 static NagError fail, fail2;
 struct user s;

 Vprintf("\n\n\ne04fcc example 2: using option setting.\n\n");
 Vscanf(" %*\[\nu\]n"); /* Skip heading in data file */
 n = 3;
 m = 15;
 tdj = NMAX;
 nt = 3;

 ... (program code continues here) ...
\end{verbatim}
/ * Read data into structure. * Observations t (j = 0, 1, 2) are held in s->t[i][j] * (i = 0, 1, 2, ..., 14) */ nt = 3; for (i = 0; i < m; ++i) { Vscanf("%lf", &s.y[i]); for (j = 0; j < nt; ++j) Vscanf("%lf", &s.t[i][j]); } /* Set up the starting point */ x[0] = 0.5; x[1] = 1.0; x[2] = 1.5; e04xxc(&options); /* Initialise options structure */ /* Set one option directly. */ options.optim_tol = 10.0*sqrt(X02AJC); /* Read remaining option values from file */ fail.print = TRUE; print = FALSE; e04xyc("e04fcc", "stdin", &options, print, "", &fail); /* Assign address of user defined structure to * comm.p for communication to lsqfun2(). */ comm.p = (Pointer)&s; if (fail.code == NE_NOERROR) e04fcc(m, n, lsqfun2, x, &fsumsq, fvec, (double *)fjac, tdj, &options, &comm, &fail); /* Free memory allocated to pointers s and v */ fail2.print = TRUE; e04xxc(&options, "all", &fail2); if ((fail.code != NE_NOERROR && fail.code != NW_COND_MIN) || fail2.code != NE_NOERROR) exit(EXIT_FAILURE); } /* ex2 */ #ifdef NAG_PROTO static void lsqfun2(Integer m, Integer n, double x[], double fvec[], Nag_Comm *comm) #else static void lsqfun2(m, n, x, fvec, comm) Integer m, n; double x[], fvec[]; Nag_Comm *comm; #endif { /* Function to evaluate the residuals for example 2. * To avoid the use of a global variable this example assigns the address * of a user defined structure to comm.p in the main program (where the * data was also read in). * The address of this structure is recovered in each call to lsqfun2() * from comm->p and the structure used in the calculation of the residuals. */ Integer i; struct user *s = (struct user *)comm->p; for (i = 0; i < m; ++i) fvec[i] = x[0] + s->t[i][0] / (x[1]*s->t[i][1] + x[2]*s->t[i][2]) - s->y[i]; }
12.2. Program Data

Example data for ex2: using option setting

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.14</td>
<td>1.0</td>
<td>15.0</td>
<td>1.0</td>
</tr>
<tr>
<td>0.18</td>
<td>2.0</td>
<td>14.0</td>
<td>2.0</td>
</tr>
<tr>
<td>0.22</td>
<td>3.0</td>
<td>13.0</td>
<td>3.0</td>
</tr>
<tr>
<td>0.25</td>
<td>4.0</td>
<td>12.0</td>
<td>4.0</td>
</tr>
<tr>
<td>0.29</td>
<td>5.0</td>
<td>11.0</td>
<td>5.0</td>
</tr>
<tr>
<td>0.32</td>
<td>6.0</td>
<td>10.0</td>
<td>6.0</td>
</tr>
<tr>
<td>0.35</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td>0.39</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>0.37</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>0.58</td>
<td>10.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>0.73</td>
<td>11.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>0.96</td>
<td>12.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>1.34</td>
<td>13.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2.10</td>
<td>14.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>4.39</td>
<td>15.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Following optional parameter settings are read by e04xyc

begin e04fcc
/* Results printout set to fullest detail */
print_level = Nag_Soln_Iter_Full

/* Estimate minimum will be within 10 units of the *
* starting point. */
step_max = 10.0

dend

12.3. Program Results

e04fcc example 2: using option setting.

Parameters to e04fcc

Number of residuals........... 15
Number of variables........... 3

optim_tol................ 1.05e-07
linesearch_tol............ 5.00e-01
step_max................ 1.00e+01
max_iter................ 50
print_level....Nag_Soln_Iter_Full
machine precision....... 1.11e-16
outfile................. stdout

Memory allocation:

s....................... Nag
ev....................... Nag
tdv..................... 3

Results from e04fcc:

Iteration results:

<table>
<thead>
<tr>
<th>Itn</th>
<th>Nfun</th>
<th>Objective</th>
<th>Norm g</th>
<th>Norm x</th>
<th>Norm (x(k-1)-x(k))</th>
<th>Step</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>1.0210e+01</td>
<td>3.2e+01</td>
<td>1.9e+00</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.00000e-01</td>
<td>2.1202e+01</td>
<td>4.9542e+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.00000e+00</td>
<td>-1.6838e+01</td>
<td>2.5672e+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.50000e+00</td>
<td>-1.6353e+01</td>
<td>9.6486e-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>1.9873e-01</td>
<td>2.8e+00</td>
<td>2.4e+00</td>
<td>7.2e-01</td>
<td>1.0e+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.24763e-02</td>
<td>1.8825e+00</td>
<td>4.1973e+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.13575e+00</td>
<td>-1.5133e+00</td>
<td>1.8396e+00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Final solution:

\[
\begin{array}{ccccccc}
\text{x} & \text{g} & \text{Residuals} \\
8.24106e-02 & -6.1762e-12 & -5.8811e-03 \\
1.13304e+00 & 1.4264e-10 & -2.6535e-04 \\
2.34370e+00 & 9.4150e-11 & 2.7492e-04 \\
\end{array}
\]

The sum of squares is 8.2149e-03.