NAG C Library Function Document

nag_2d_spline_fit_grid (e02dcc)

1 Purpose

nag_2d_spline_fit_grid (e02dcc) computes a bicubic spline approximation to a set of data values, given on a rectangular grid in the \(x-y \) plane. The knots of the spline are located automatically, but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit.

2 Specification

```c
#include <nag.h>
#include <nag02.h>

void nag_2d_spline_fit_grid(Nag_Start start, Integer mx, double x[],
    Integer my, double y[], double f[], double s, Integer nxest,
    Integer nyest, double fp[], Nag_Comm *warmstartinf,
    Nag_2dSpline *spline, NagError *fail)
```

3 Description

This function determines a smooth bicubic spline approximation \(s(x,y) \) to the set of data points \((x_q,y_r,f_{q,r})\), for \(q = 1, 2, \ldots, m_x \) and \(r = 1, 2, \ldots, m_y \).

The spline is given in the B-spline representation

\[
s(x,y) = \sum_{i=1}^{n_x-4} \sum_{j=1}^{n_y-4} c_{ij} M_i(x) N_j(y),
\]

where \(M_i(x) \) and \(N_j(y) \) denote normalised cubic B-splines, the former defined on the knots \(\lambda_i \) to \(\lambda_{i+4} \) and the latter on the knots \(\mu_j \) to \(\mu_{j+4} \). For further details, see Hayes and Halliday (1974) for bicubic splines and De Boor (1972) for normalised B-splines.

The total numbers \(n_x \) and \(n_y \) of these knots and their values \(\lambda_1, \ldots, \lambda_{n_x} \) and \(\mu_1, \ldots, \mu_{n_y} \) are chosen automatically by the function. The knots \(\lambda_5, \ldots, \lambda_{n_x-4} \) and \(\mu_5, \ldots, \mu_{n_y-4} \) are the interior knots; they divide the approximation domain \([x_1, x_{n_x}] \times [y_1, y_{n_y}]\) into \((n_x-7) \times (n_y-7)\) subpanels \([\lambda_i, \lambda_{i+1}] \times [\mu_j, \mu_{j+1}]\), for \(i = 4, 5, \ldots, n_x - 4 \) and \(j = 4, 5, \ldots, n_y - 4 \). Then, much as in the curve case (see nag_1d_spline_fit (e02bec)), the coefficients \(c_{ij} \) are determined as the solution of the following constrained minimization problem:

\[
\text{minimize } \eta,
\]

subject to the constraint

\[
\theta = \sum_{q=1}^{m_x} \sum_{r=1}^{m_y} \varepsilon_{q,r}^2 \leq S,
\]

where \(\eta \) is a measure of the (lack of) smoothness of \(s(x,y) \). Its value depends on the discontinuity jumps in \(s(x,y) \) across the boundaries of the subpanels. It is zero only when there are no discontinuities and is positive otherwise, increasing with the size of the jumps (see Dierckx (1982) for details). \(\varepsilon_{q,r} \) denotes the residual \(f_{q,r} - s(x_q,y_r) \), and \(S \) is a non-negative number to be specified by the user.

By means of the parameter \(S \), ‘the smoothing factor’, the user will then control the balance between smoothness and closeness of fit, as measured by the sum of squares of residuals in (3). If \(S \) is too large, the spline will be too smooth and signal will be lost (underfit); if \(S \) is too small, the spline will pick up too much noise (overfit). In the extreme cases the function will return an interpolating spline (\(\theta = 0 \)) if \(S \) is set...
to zero, and the least-squares bicubic polynomial ($\eta = 0$) if S is set very large. Experimenting with S
values between these two extremes should result in a good compromise. (See Section 6.4 for advice on
choice of S.)

The method employed is outlined in Section 6.6 and fully described in Dierckx (1981a) and Dierckx
(1982). It involves an adaptive strategy for locating the knots of the bicubic spline (depending on the
function underlying the data and on the value of S), and an iterative method for solving the constrained
minimization problem once the knots have been determined.

Values of the computed spline can subsequently be computed by calling nag_2d_spline_eval (e02dec) or
nag_2d_spline_eval_rect (e02dfc) as described in Section 6.7.

4 Parameters

1. **start** — Nag_Start

 Input

 On entry: **start** must be set to **Nag_Cold** or **Nag_Warm**.

 If **start** = **Nag_Cold**, (cold start), the function will build up the knot set starting with no interior
 knots. No values need be assigned to **spline.mx** and **spline.ny** and memory will be internally
 allocated to **spline.lamda**, **spline.mu**, **spline.c**, **warmstartinf.nag_w** and **warmstartinf.nag_iw**.

 If **start** = **Nag_Warm** (warm start), the function will restart the knot-placing strategy using the
 knots found in a previous call of the function. In this case, all parameters except **s** must be
 unchanged from that previous call. This warm start can save much time in searching for a
 satisfactory value of S.

 Constraint: **start** = **Nag_Cold** or **Nag_Warm**.

2. **mx** — Integer

 Input

 On entry: m_x, the number of grid points along the x axis.

 Constraint: $\text{mx} \geq 4$.

3. **x[mx]** — double

 Input

 On entry: $x[q-1]$ must be set to x_q, the x co-ordinate of the qth grid point along the x axis, for
 $q = 1, 2, \ldots, m_x$.

 Constraint: $x_1 < x_2 < \ldots < x_{m_x}$.

4. **my** — Integer

 Input

 On entry: m_y, the number of grid points along the y axis.

 Constraint: $\text{my} \geq 4$.

5. **y[my]** — double

 Input

 On entry: $y[r-1]$ must be set to y_r, the y co-ordinate of the rth grid point along the y axis, for
 $r = 1, 2, \ldots, m_y$.

 Constraint: $y_1 < y_2 < \ldots < y_{m_y}$.

6. **f[mx*my]** — double

 Input

 On entry: $f[q-1, (q-1) + r-1]$ must contain the data value $f_{q,r}$, for $q = 1, 2, \ldots, m_x$ and
 $r = 1, 2, \ldots, m_y$.

7. **s** — double

 Input

 On entry: the smoothing factor, S.

 If $S = 0.0$, the function returns an interpolating spline.

 If S is smaller than *machine precision*, it is assumed equal to zero.
For advice on the choice of S, see Section 3 and Section 6.4.

Constraint: $s \geq 0.0$.

8: **nxest** – Integer
nyest – Integer

Input

On entry: an upper bound for the number of knots n_x and n_y required in the x and y directions respectively.

In most practical situations, $\text{nxest} = m_x/2$ and $\text{nyest} = m_y/2$ is sufficient. nxest and nyest never need to be larger than $m_x + 4$ and $m_y + 4$ respectively, the numbers of knots needed for interpolation ($S = 0.0$). See also Section 6.5.

Constraints: $\text{nxest} \geq 8$ and $\text{nyest} \geq 8$.

9: **fp** – double

Output

On exit: the sum of squared residuals, θ, of the computed spline approximation. If $\text{fp} = 0.0$, this is an interpolating spline. fp should equal S within a relative tolerance of 0.001 unless $\text{spline.nx} = \text{spline.ny} = 8$, when the spline has no interior knots and so is simply a bicubic polynomial. For knots to be inserted, S must be set to a value below the value of fp produced in this case.

10: **warmstartinf** – Nag_Comm *

Pointer to structure of type Nag_Comm with the following members:

- **nag_w** – double

Input

On entry: if the warm start option is used, the values $\text{nag_w}[0], \ldots, \text{nag_w}[3]$ must be left unchanged from the previous call.

- **nag_iw** – Integer

Input

On entry: if the warm start option is used, the values $\text{nag_iw}[0], \ldots, \text{nag_iw}[2]$ must be left unchanged from the previous call.

Note that when the information contained in the pointers $\text{warmstartinf.nag_w}$ and $\text{warmstartinf.nag_iw}$ is no longer of use, or before a new call to nag_2d_spline_fit_grid with the same warmstartinf, the user should free this storage using the NAG macros NAG_FREE. This storage will have been allocated only if this function returns with $\text{fail.code} = \text{NE_NOERROR}$, $\text{NE_SPLINE_COEFF_CONV}$, or $\text{NE_NUM_KNOTS_2D_GT_RECT}$.

11: **spline** – Nag_2dSpline *

Pointer to structure of type Nag_Spline with the following members:

- **nx** – Integer

Input/Output

On entry: if the warm start option is used, the value of spline.nx must be left unchanged from the previous call.

On exit: the total number of knots, n_x, of the computed spline with respect to the x variable.

- **lamda** – double

Input/Output

On entry: a pointer to which if $\text{start} = \text{Nag_Cold}$, memory of size nxest is internally allocated. If the warm start option is used, the values $\text{spline.lamda}[0], \text{spline.lamda}[1], \ldots, \text{spline.lamda}[\text{spline.nx} - 1]$ must be left unchanged from the previous call.

On exit: spline.lamda contains the complete set of knots λ_i associated with the x variable, i.e., the interior knots $\text{spline.lamda}[4], \text{spline.lamda}[5], \ldots, \text{spline.lamda}[\text{spline.nx} - 5]$ as well as the additional knots $\text{spline.lamda}[0] = \text{spline.lamda}[1] = \text{spline.lamda}[2] = \text{spline.lamda}[3] = x[0]$ and $\text{spline.lamda}[\text{spline.nx} - 4] = \text{spline.lamda}[\text{spline.nx} - 3] = \text{spline.lamda}[\text{spline.nx} - 2] = \text{spline.lamda}[\text{spline.nx} - 1] = x[\text{mx} - 1]$ needed for the B-spline representation.
ny – Integer
\textit{Input/Output}

\textit{On entry:} if the warm start option is used, the value of \texttt{spline.ny} must be left unchanged from the previous call.

\textit{On exit:} the total number of knots, \(n_y\), of the computed spline with respect to the \(y\) variable.

mu – double *
\textit{Input/Output}

\textit{On entry:} a pointer to which if \texttt{start = Nag_Cold}, memory of size \texttt{nyest} is internally allocated. If the warm start option is used, the values \texttt{spline.mu[0]}, \texttt{spline.mu[1]}, \ldots, \texttt{spline.mu[spline.ny−1]} must be left unchanged from the previous call.

\textit{On exit:} \texttt{spline.mu} contains the complete set of knots \(\mu_i\), associated with the \(y\) variable, i.e., the interior knots \texttt{spline.mu[4]}, \texttt{spline.mu[5]}, \ldots, \texttt{spline.mu[spline.ny−5]} as well as the additional knots \texttt{spline.mu[0]} = \texttt{spline.mu[1]} = \texttt{spline.mu[2]} = \texttt{spline.mu[3]} = \texttt{y[0]} and \texttt{spline.mu[spline.ny−4]} = \texttt{spline.mu[spline.ny−3]} = \texttt{spline.mu[spline.ny−2]} = \texttt{spline.mu[spline.ny−1]} = \texttt{y[my−1]} needed for the B-spline representation.

c – double *
\textit{Output}

\textit{On exit:} a pointer to which if \texttt{start = Nag_Cold}, memory of size \((\texttt{nxest−4})\times(\texttt{nyest−4})\) is internally allocated. \texttt{spline.c} is the coefficient \(c_{ij}\) defined in Section 3.

Note that when the information contained in the pointers \texttt{spline.lamda}, \texttt{spline.mu} and \texttt{spline.c} is no longer of use, or before a new call to \texttt{nag_2d_spline_fit_grid} with the same \texttt{spline}, the user should free this storage using the NAG macro \texttt{NAG_FREE}. This storage will have been allocated only if this function returns with \texttt{fail.code = NE_NOERROR}, \texttt{NE_SPLINE_COEFF_CONV}, or \texttt{NE_NUM_KNOTS_2D_GT_RECT}.

13: fail – NagError *
\textit{Input/Output}

The NAG error parameter (see the Essential Introduction).

\section{5 Error Indicators and Warnings}

\textbf{NE_BAD_PARAM}

On entry, parameter \texttt{start} had an illegal value.

\textbf{NE_INT_ARG_LT}

On entry, \texttt{mx} must not be less than 4: \texttt{mx} = \texttt{<value>}. On entry, \texttt{my} must not be less than 4: \texttt{my} = \texttt{<value>}. On entry, \texttt{nxest} must not be less than 8: \texttt{nxest} = \texttt{<value>}. On entry, \texttt{nyest} must not be less than 8: \texttt{nyest} = \texttt{<value>}.

\textbf{NE_REAL_ARG_LT}

On entry, \texttt{s} must not be less than 0.0: \texttt{s} = \texttt{<value>}

\textbf{NE_SF_D_K_CONS}

On entry, \texttt{s} = \texttt{<value>}, \texttt{nxest} = \texttt{<value>}, \texttt{mx} = \texttt{<value>}. Constraint: \texttt{nxest \geq mx+4} when \texttt{s} = 0.0.

On entry, \texttt{s} = \texttt{<value>}, \texttt{nyest} = \texttt{<value>}, \texttt{my} = \texttt{<value>}. Constraint: \texttt{nyest \geq mx+4} when \texttt{s} = 0.0.

\textbf{NE_ALLOC_FAIL}

Memory allocation failed.
NE_ENUMTYPE_WARM

start has been set to Nag_Warm at the first call of this function. It must be set to Nag_Cold at the first call.

NE_NOT STRICTLY_INCREASING

The sequence x is not strictly increasing: x[<value>] = <value>, x[<value>] = <value>,
The sequence y is not strictly increasing: y[<value>] = <value>, y[<value>] = <value>.

NE_NUM_KNOTS_2D_GT_RECT

The number of knots required is greater than allowed by nxest or nyest, nxest = <value>, nyest =<value>. Possibly s is too small, especially if nxest, nyest > mx/2, my/2. s = <value>, mx =<value>, my = <value>.

NE_SPLINE_COEFF_CONV

The iterative process has failed to converge. Possibly s is too small: s = <value>.

If the function fails with an error exit of NE_NUM_KNOTS_2D_GT_RECT or NE_SPLINE_COEFF_CONV, then a spline approximation is returned, but it fails to satisfy the fitting criterion (see (2) and (3) in Section 3) [ndash] perhaps by only a small amount, however.

6 Further Comments

6.1 Accuracy

On successful exit, the approximation returned is such that its sum of squared residuals \(f_p \) is equal to the smoothing factor \(S \), up to a specified relative tolerance of 0.001 – except that if \(n_x = 8 \) and \(n_y = 8 \), \(f_p \) may be significantly less than \(S \) – in this case the computed spline is simply the least-squares bicubic polynomial approximation of degree 3, i.e., a spline with no interior knots.

6.2 Timing

The time taken for a call of nag_2d_spline_fit_grid depends on the complexity of the shape of the data, the value of the smoothing factor \(S \), and the number of data points. If nag_2d_spline_fit_grid is to be called for different values of \(S \), much time can be saved by setting start = Nag_Warm after the first call.

6.3 Weighting of Data Points

nag_2d_spline_fit_grid does not allow individual weighting of the data values. If these were determined to widely differing accuracies, it may be better to use nag_2d_spline_fit_scat (e02dcc). The computation time would be very much longer, however.

6.4 Choice of \(S \)

If the standard deviation of \(f_{q,r} \) is the same for all \(q \) and \(r \) (the case for which this function is designed – see Section 6.3.) and known to be equal, at least approximately, to \(\sigma \), say, then following Reinsch (1967) and choosing the smoothing factor \(S \) in the range \(\sigma^2(m \pm \sqrt{2m}) \), where \(m = m_xm_y \), is likely to give a good start in the search for a satisfactory value. If the standard deviations vary, the sum of their squares over all the data points could be used. Otherwise experimenting with different values of \(S \) will be required from the start, taking account of the remarks in Section 3.

In that case, in view of computation time and memory requirements, it is recommended to start with a very large value for \(S \) and so determine the least-squares bicubic polynomial; the value returned for \(f_p \), call it \(f_{p_0} \), gives an upper bound for \(S \). Then progressively decrease the value of \(S \) to obtain closer fits – say by a factor of 10 in the beginning, i.e., \(S = f_{p_0}/10, S = f_{p_0}/100 \), and so on, and more carefully as the approximation shows more details.

The number of knots of the spline returned, and their location, generally depend on the value of \(S \) and on the behaviour of the function underlying the data. However, if nag_2d_spline_fit_grid is called with start = Nag_Warm, the knots returned may also depend on the smoothing factors of the previous calls.
Therefore if, after a number of trials with different values of \(S \) and \texttt{start = Nag_Warm}, a fit can finally be accepted as satisfactory, it may be worthwhile to call \texttt{nag_2d_spline_fit_grid} once more with the selected value for \(S \) but now using \texttt{start = Nag_Cold}. Often, \texttt{nag_2d_spline_fit_grid} then returns an approximation with the same quality of fit but with fewer knots, which is therefore better if data reduction is also important.

6.5 Choice of \texttt{nkest} and \texttt{nyest}

The number of knots may also depend on the upper bounds \texttt{nkest} and \texttt{nyest}. Indeed, if at a certain stage in \texttt{nag_2d_spline_fit_grid} the number of knots in one direction (say \(n_x \)) has reached the value of its upper bound (\texttt{nkest}), then from that moment on all subsequent knots are added in the other (\(y \)) direction. Therefore the user has the option of limiting the number of knots the function locates in any direction. For example, by setting \texttt{nkest = 8} (the lowest allowable value for \texttt{nkest}), the user can indicate that he wants an approximation which is a simple cubic polynomial in the variable \(x \).

6.6 Outline of Method Used

If \(S = 0 \), the requisite number of knots is known in advance, i.e., \(n_x = m_x + 4 \) and \(n_y = m_y + 4 \); the interior knots are located immediately as \(\lambda_i = x_{i-2} \) and \(\mu_j = y_{j-2} \), for \(i = 5, 6, \ldots, n_x - 4 \) and \(j = 5, 6, \ldots, n_y - 4 \). The corresponding least-squares spline is then an interpolating spline and therefore a solution of the problem.

If \(S > 0 \), suitable knot sets are built up in stages (starting with no interior knots in the case of a cold start but with the knot set found in a previous call if a warm start is chosen). At each stage, a bicubic spline is fitted to the data by least-squares, and \(\theta \), the sum of squares of residuals, is computed. If \(\theta > S \), new knots are added to one knot set or the other so as to reduce \(\theta \) at the next stage. The new knots are located in intervals where the fit is particularly poor, their number depending on the value of \(S \) and on the progress made so far in reducing \(\theta \). Sooner or later, we find that \(\theta \leq S \) and at that point the knot sets are accepted.

The function then goes on to compute the (unique) spline which has these knot sets and which satisfies the full fitting criterion specified by (2) and (3). The theoretical solution has \(\theta = S \). The function computes the spline by an iterative scheme which is ended when \(\theta = S \) within a relative tolerance of 0.001. The main part of each iteration consists of a linear least-squares computation of special form, done in a similarly stable and efficient manner as in \texttt{nag_1d_spline_fit_knots (e02bac)} for least-squares curve fitting.

An exception occurs when the function finds at the start that, even with no interior knots \((n_x = n_y = 8)\), the least-squares spline already has its sum of residuals \(\leq S \). In this case, since this spline (which is simply a bicubic polynomial) also has an optimal value for the smoothness measure \(\eta \), namely zero, it is returned at once as the (trivial) solution. It will usually mean that \(S \) has been chosen too large.

For further details of the algorithm and its use see Dierckx (1982).

6.7 Evaluation of Computed Spline

The values of the computed spline at the points \((\texttt{tx}[r-1], \texttt{ty}[r-1])\), for \(r = 1, 2, \ldots, n \), may be obtained in the array \texttt{ff}, of length at least \(n \), by the following code:

\[
e02dec(n, \texttt{tx}, \texttt{ty}, \texttt{ff}, \&\texttt{spline}, \&\texttt{fail})
\]

where \texttt{spline} is a structure of type \texttt{Nag_2dSpline} which is an output parameter of \texttt{nag_2d_spline_fit_grid}.

To evaluate the computed spline on a \texttt{Kx} by \texttt{Ky} rectangular grid of points in the \(x-y \) plane, which is defined by the \(x \) co-ordinates stored in \texttt{tx}[q-1], for \(q = 1, 2, \ldots, \texttt{Kx} \), and the \(y \) co-ordinates stored in \texttt{ty}[r-1], for \(r = 1, 2, \ldots, \texttt{Ky} \), returning the results in the array \texttt{fg} which is of length at least \texttt{Kx} \(\times \) \texttt{Ky}, the following call may be used:

\[
e02dfc(\texttt{Kx}, \texttt{Ky}, \texttt{tx}, \texttt{ty}, \texttt{fg}, \&\texttt{spline}, \&\texttt{fail})
\]

where \texttt{spline} is a structure of type \texttt{Nag_2dSpline} which is an output parameter of \texttt{nag_2d_spline_fit_grid}. The result of the spline evaluated at grid point \((q, r)\) is returned in element \([\texttt{Ky} \times (q-1) + r-1]\) of the array \texttt{fg}.

"
6.8 References

De Boor C (1972) On calculating with B-splines *J. Approx. Theory* 6 50–62

Dierckx P (1981a) An improved algorithm for curve fitting with spline functions *Report TW54* Department of Computer Science, Katholieke Universiteit Leuven

7 See Also

nag_2d_spline_interpolant (e01dac)
nag_1d_spline_fit (e02bec)
nag_2d_spline_fit_scat (e02dxc)
nag_2d_spline_eval (e02dec)
nag_2d_spline_eval_rect (e02dfc)

8 Example

This example program reads in values of mx, my, xq, for q = 1, 2, ..., mx, and yr, for r = 1, 2, ..., my, followed by values of the ordinates f qr defined at the grid points (xq,yr). It then calls nag_2d_spline_fit_grid to compute a bicubic spline approximation for one specified value of s, and prints the values of the computed knots and B-spline coefficients. Finally it evaluates the spline at a small sample of points on a rectangular grid.

8.1 Program Text

```c
/* nag_2d_spline_fit_grid(e02dcc) Example Program */

*
*
* Mark 6 revised, 2000.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nag02.h>

#define MXMAX 11
#define MYMAX 9
#define NMAX 7
#define NEST MXMAX + 4
#define NYEST MYMAX + 4

main()
{
    Integer mx, my, nx, ny, npx, npy, i, j;
    double f[MXMAX*MYMAX], x[MXMAX], y[MYMAX], f[g NMAX*NMAX], px[NMAX], py[NMAX];
    double xhi, yhi, xlo, ylo, delta, s, fp;
    Nag_Start start;
    Nag_2dSpline spline;
    Nag_Comm warmstartinf;
```
```c
Vprintf("e02dcc Example Program Results\n");
Vscanf("%[\n"];  /* Skip heading in data file */
/* Input the number of x, y co-ordinates mx, my. */
Vscanf("%ld%ld", &mx, &my);

if (mx>0 && mx<=MXMAX && my>0 && my<=MYMAX)
{
    /* Input the x co-ordinates followed by the y co-ordinates. */
    for (i=0; i<mx; i++)
        Vscanf("%lf", &x[i]);
    for (i=0; i<my; i++)
        Vscanf("%lf", &y[i]);
    /* Input the mx*my function values f at the grid points. */
    for (i=0; i<mx*my; i++)
        Vscanf("%lf", &f[i]);
    start = Nag_Cold;
    Vscanf("%lf", &s);
    /* Determine the spline approximation. */

    e02dcc(start, mx, x, my, y, f, s, (Integer)(NXEST), (Integer)(NYEST),
            &f, &warmstartinf, &spline, NAGERR_DEFAULT);
    nx = spline.nx;
    ny = spline.ny;

    Vprintf("\nCalling with smoothing factor s = %11.4e:\n");
    spline.nx = %2ld, spline.ny = %2ld, n, nx, ny);
    /* Print the knot sets, lamma and mu. */
    Vprintf("Distinct knots in x direction located at\n");
    for (j=3; j<spline.nx-3; j++)
        Vprintf("%12.4f\n", spline.lamda[j], ((j-3)%5==4 || j==spline.nx-4)
    ? "\n" : " ");
    Vprintf("Distinct knots in y direction located at\n");
    for (j=3; j<spline.ny-3; j++)
        Vprintf("%12.4f\n", spline.mu[j], ((j-3)%5==4 || j==spline.ny-4)
    ? "\n" : " ");
    Vprintf("The B-spline coefficients:\n");
    for (i=0; i<ny-4; i++)
        { for (j=0; j<nx-4; j++)
            Vprintf("%9.4f\n", spline.c[i+j*(ny-4)]);
        Vprintf("\n");
    }
    Vprintf("The sum of squared residuals fp = %11.4e\n", fp);
    if (fp==0.0)
        Vprintf("The spline is an interpolating spline\n");
    else if (nx==8 && ny==8)
        Vprintf("The spline is the least-squares bi-cubic polynomial\n");

    /* Evaluate the spline on a rectangular grid at npx*npy points
     * over the domain (xlo to xhi) x (ylo to yhi).
     */
    Vscanf("%ld%ld%lf", &npx, &xlo, &xhi);
    Vscanf("%ld%ld%lf", &npy, &ylo, &yhi);
    if (npx<=NMAX && npy<=NMAX)
    {
        delta = (xhi-xlo) / (npx-1);
        for (i=0; i<npx; i++)
            px[i] = MIN(xlo+i*delta, xhi);
```
for (i=0; i<npy; i++)
 py[i] = MIN(ylo+i*delta,yhi);

e02dfc(npx, npy, px, py, fg, &spline, NAGERR_DEFAULT);

Vprintf("\nValues of computed spline:\n");
Vprintf("\n x\n");
for (i=0; i<npx; i++)
 Vprintf("%7.2f ",px[i]);
Vprintf("\n y\n");
for (i=npy-1; i>=0; i--)
{
 Vprintf("%7.2f ",py[i]);
 for (j=0; j<npx; ++j)
 Vprintf("%8.2f ",fg[npy*j+i]);
 Vprintf("\n");
}
NAG_FREE(spline.lamda);
NAG_FREE(spline.mu);
NAG_FREE(spline.c);
NAG_FREE(warmstartinf.naq_w);
NAG_FREE(warmstartinf.naq_iw);
}
else
{
 Vprintf(stderr,"npx or npy is out of range: npx = %4ld,\n
nenpy = %4ld\n", npx,npy);
 NAG_FREE(spline.lamda);
 NAG_FREE(spline.mu);
 NAG_FREE(spline.c);
 NAG_FREE(warmstartinf.naq_w);
 NAG_FREE(warmstartinf.naq_iw);
 exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);
} else
{
 Vprintf(stderr,"mx or my is out of range: mx = %4ld, my = %4ld\n",mx,my);
 exit(EXIT_FAILURE);
}
}

8.2 Program Data

e02dcc Example Program Data

11 9
0.0000E+00 5.0000E-01 1.0000E+00 1.5000E+00 2.0000E+00
2.5000E+00 3.0000E+00 3.5000E+00 4.0000E+00 4.5000E+00
5.0000E+00
0.0000E+00 5.0000E-01 1.0000E+00 1.5000E+00 2.0000E+00
2.5000E+00 3.0000E+00 3.5000E+00 4.0000E+00
1.0000E+00 8.8758E-01 5.4030E-01 7.0737E-02 4.1515E-01
-8.0114E-01 9.7999E-01 9.3446E-01 6.5664E-01 1.5000E+00
1.3564E+00 8.2045E-01 1.0611E-01 6.2422E-01 1.2317E+00
-1.4850E+00 1.3047E+00 9.8547E-01 2.0600E+00 1.7552E+00
1.0806E+00 1.5147E-01 8.3229E-01 1.6023E+00 1.9700E+00
-1.8729E+00 1.4073E+00 2.5700E+00 2.1240E+00 1.3508E+00
1.7684E-01 1.0404E+00 2.0029E+00 2.4750E+00 2.3511E+00
8.3 Program Results

e02dcc Example Program Results

Calling with smoothing factor s = 1.00000e-01: spline.nx = 10, spline.ny = 13.

Distinct knots in x direction located at

<table>
<thead>
<tr>
<th></th>
<th>0.0000</th>
<th>1.5000</th>
<th>2.5000</th>
<th>5.0000</th>
</tr>
</thead>
</table>

Distinct knots in y direction located at

<table>
<thead>
<tr>
<th></th>
<th>0.0000</th>
<th>1.0000</th>
<th>2.0000</th>
<th>2.5000</th>
<th>3.0000</th>
<th>3.5000</th>
<th>4.0000</th>
</tr>
</thead>
</table>

The B-spline coefficients:

<table>
<thead>
<tr>
<th></th>
<th>0.9918</th>
<th>1.5381</th>
<th>2.3913</th>
<th>3.9845</th>
<th>5.2138</th>
<th>5.9965</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0546</td>
<td>1.5270</td>
<td>2.2441</td>
<td>4.2217</td>
<td>5.0860</td>
<td>6.0821</td>
</tr>
<tr>
<td></td>
<td>0.6098</td>
<td>0.9557</td>
<td>1.5587</td>
<td>2.3485</td>
<td>3.3860</td>
<td>3.7716</td>
</tr>
<tr>
<td></td>
<td>-0.2915</td>
<td>-0.4199</td>
<td>-0.7399</td>
<td>-1.1763</td>
<td>-1.5527</td>
<td>-1.7775</td>
</tr>
<tr>
<td></td>
<td>-0.8476</td>
<td>-1.3296</td>
<td>-1.8521</td>
<td>-3.3468</td>
<td>-4.3628</td>
<td>-5.0085</td>
</tr>
<tr>
<td></td>
<td>-1.0168</td>
<td>-1.5952</td>
<td>-2.4022</td>
<td>-3.9390</td>
<td>-5.4680</td>
<td>-6.1656</td>
</tr>
<tr>
<td></td>
<td>-0.9529</td>
<td>-1.3381</td>
<td>-2.2844</td>
<td>-3.9559</td>
<td>-5.0032</td>
<td>-5.8709</td>
</tr>
<tr>
<td></td>
<td>-0.7711</td>
<td>-1.0914</td>
<td>-1.8488</td>
<td>-3.2549</td>
<td>-3.9444</td>
<td>-4.7297</td>
</tr>
<tr>
<td></td>
<td>-0.6476</td>
<td>-1.0373</td>
<td>-1.5936</td>
<td>-2.5887</td>
<td>-3.3485</td>
<td>-3.9330</td>
</tr>
</tbody>
</table>

Sum of squared residuals fp = 1.00040e-01

Values of computed spline:

<table>
<thead>
<tr>
<th>y</th>
<th>x</th>
<th>0.00</th>
<th>1.00</th>
<th>2.00</th>
<th>3.00</th>
<th>4.00</th>
<th>5.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.00</td>
<td></td>
<td>-0.65</td>
<td>-1.36</td>
<td>-1.99</td>
<td>-2.61</td>
<td>-3.25</td>
<td>-3.93</td>
</tr>
<tr>
<td>3.00</td>
<td></td>
<td>-0.98</td>
<td>-1.97</td>
<td>-2.91</td>
<td>-3.91</td>
<td>-4.97</td>
<td>-5.92</td>
</tr>
<tr>
<td>2.00</td>
<td></td>
<td>-0.42</td>
<td>-0.83</td>
<td>-1.24</td>
<td>-1.66</td>
<td>-2.08</td>
<td>-2.48</td>
</tr>
<tr>
<td>1.00</td>
<td></td>
<td>0.54</td>
<td>1.09</td>
<td>1.61</td>
<td>2.14</td>
<td>2.71</td>
<td>3.24</td>
</tr>
<tr>
<td>0.00</td>
<td></td>
<td>0.99</td>
<td>2.04</td>
<td>3.03</td>
<td>4.01</td>
<td>5.02</td>
<td>6.00</td>
</tr>
</tbody>
</table>