nag_1d_cheb_deriv (e02ahc)

1 Purpose

nag_1d_cheb_deriv (e02ahc) determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form.

2 Specification

```c
void nag_1d_cheb_deriv (Integer n, double xmin, double xmax, const double a[], Integer ia1, double *patm1, double adif[], Integer iadif1, NagError *fail)
```

3 Description

nag_1d_cheb_deriv (e02ahc) forms the polynomial which is the derivative of a given polynomial. Both the original polynomial and its derivative are represented in Chebyshev-series form. Given the coefficients a_i, for $i = 0, 1, \ldots, n$, of a polynomial $p(x)$ of degree n, where

$$p(x) = \frac{1}{2}a_0 + a_1 T_1(\bar{x}) + \cdots + a_n T_n(\bar{x})$$

the function returns the coefficients \bar{a}_i, for $i = 0, 1, \ldots, n - 1$, of the polynomial $q(x)$ of degree $n - 1$, where

$$q(x) = \frac{dp(x)}{dx} = \frac{1}{2}a_0 + \bar{a}_1 T_1(\bar{x}) + \cdots + \bar{a}_{n-1} T_{n-1}(\bar{x})$$.

Here $T_j(\bar{x})$ denotes the Chebyshev polynomial of the first kind of degree j with argument \bar{x}. It is assumed that the normalised variable \bar{x} in the interval $[-1, 1]$ was obtained from the user’s original variable x in the interval $[x_{\min}, x_{\max}]$ by the linear transformation

$$\bar{x} = \frac{2x - (x_{\max} + x_{\min})}{x_{\max} - x_{\min}}$$

and that the user requires the derivative to be with respect to the variable x. If the derivative with respect to \bar{x} is required, set $x_{\max} = 1$ and $x_{\min} = -1$.

Values of the derivative can subsequently be computed, from the coefficients obtained, by using nag_1d_cheb_eval2 (e02akc).

The method employed is that of Chebyshev-series (see Chapter 8 of Modern Computing Methods (1961)), modified to obtain the derivative with respect to x. Initially setting $\bar{a}_{n+1} = \bar{a}_n = 0$, the function forms successively

$$\bar{a}_{i-1} = \bar{a}_{i+1} + \frac{2}{x_{\max} - x_{\min}} 2ia_i, \quad i = n, n - 1, \ldots, 1.$$

4 References

5 Parameters

1:
 n – Integer

 Input

 On entry: n, the degree of the given polynomial $p(x)$.

 Constraint: $n \geq 0$.

[NP3645/7] e02ahc.1
2: \(\text{xmin} \) – double \hspace{1cm} \text{Input} \\
3: \(\text{xmax} \) – double \hspace{1cm} \text{Input} \\

On entry: the lower and upper end-points respectively of the interval \([x_{\text{min}}, x_{\text{max}}]\). The Chebyshev-series representation is in terms of the normalised variable \(\bar{x}\), where
\[
\bar{x} = \frac{2x - (x_{\text{max}} + x_{\text{min}})}{x_{\text{max}} - x_{\text{min}}}.
\]

Constraint: \(\text{xmax} > \text{xmin}\).

4: \(a[dim] \) – const double \hspace{1cm} \text{Input} \\

Note: the dimension, \(dim \), of the array \(a \) must be at least \(1 + n \times \text{ia1} \).

On entry: the Chebyshev coefficients of the polynomial \(p(x) \). Specifically, element \(i \times \text{ia1} \) of \(a \) must contain the coefficient \(a_i \), for \(i = 0, 1, \ldots, n \). Only these \(n + 1 \) elements will be accessed.

5: \(\text{ia1} \) – Integer \hspace{1cm} \text{Input} \\

On entry: the index increment of \(a \). Most frequently the Chebyshev coefficients are stored in adjacent elements of \(a \), and \(\text{ia1} \) must be set to 1. However, if, for example, they are stored in \(a[0], a[3], a[6], \ldots \), then the value of \(\text{ia1} \) must be 3. See also Section 8.

Constraint: \(\text{ia1} \geq 1 \).

6: \(\text{patm1} \) – double * \hspace{1cm} \text{Output} \\

On exit: the value of \(p(x_{\text{min}}) \). If this value is passed to the integration routine \text{nag_1d_cheb_intg} (e02ajc) with the coefficients of \(q(x) \), then the original polynomial \(p(x) \) is recovered, including its constant coefficient.

7: \(\text{adif[dim]} \) – double \hspace{1cm} \text{Output} \\

Note: the dimension, \(dim \), of the array \(\text{adif} \) must be at least \(1 + n \times \text{iadif1} \).

On exit: the Chebyshev coefficients of the derived polynomial \(q(x) \). (The differentiation is with respect to the variable \(x \).) Specifically, element \(i \times \text{iadif1} \) of \(\text{adif} \) contains the coefficient \(\bar{a}_i \), \(i = 0, 1, \ldots, n - 1 \). Additionally, element \(n \times \text{iadif1} \) is set to zero.

8: \(\text{iadif1} \) – Integer \hspace{1cm} \text{Input} \\

On entry: the index increment of \(\text{adif} \). Most frequently the Chebyshev coefficients are required in adjacent elements of \(\text{adif} \), and \(\text{iadif1} \) must be set to 1. However, if, for example, they are to be stored in \(\text{adif}[0], \text{adif}[3], \text{adif}[6], \ldots \), then the value of \(\text{iadif1} \) must be 3. See Section 8.

Constraint: \(\text{iadif1} \geq 1 \).

9: \(\text{fail} \) – NagError * \hspace{1cm} \text{Input/Output} \\

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, \(n = \langle \text{value} \rangle \).
Constraint: \(n \geq 0 \).

On entry, \(\text{ia1} = \langle \text{value} \rangle \).
Constraint: \(\text{ia1} \geq 1 \).

On entry, \(\text{iadif1} = \langle \text{value} \rangle \).
Constraint: \(\text{iadif1} \geq 1 \).
NE_REAL_2
On entry, \(\text{xmax} \leq \text{xmin}: \text{xmax} = \left\langle \text{value} \right\rangle, \text{xmin} = \left\langle \text{value} \right\rangle\).

NE_BAD_PARAM
On entry, parameter \(\left\langle \text{value} \right\rangle\) had an illegal value.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy
There is always a loss of precision in numerical differentiation, in this case associated with the multiplication by \(2^i\) in the formula quoted in Section 3.

8 Further Comments
The time taken is approximately proportional to \(n + 1\).

The increments \(\text{ia1}, \text{iadif1}\) are included as parameters to give a degree of flexibility which, for example, allows a polynomial in two variables to be differentiated with respect to either variable without rearranging the coefficients.

9 Example
Suppose a polynomial has been computed in Chebyshev-series form to fit data over the interval \([-0.5, 2.5]\). The following program evaluates the first and second derivatives of this polynomial at 4 equally spaced points over the interval. (For the purposes of this example, \(\text{xmin}, \text{xmax}\) and the Chebyshev coefficients are simply supplied. Normally a program would first read in or generate data and compute the fitted polynomial.)

9.1 Program Text
/* nag_1d_cheb_deriv (e02ahc) Example Program. *
 * Copyright 2001 Numerical Algorithms Group. *
 * Mark 7, 2001. */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage02.h>

int main(void)
{
 /* Initialized data */
 const double xmin = -0.5;
 const double xmax = 2.5;
 const double a[7] = { 2.53213,1.13032,0.2715,0.04434,0.00547,5.4e-4,4e-5 };

 double *adif = 0, *adif2 = 0;
 INIT_FAIL(fail);
 exit_status = 0;
n = 6;
one = 1;

/* Allocate memory */
if (!(adif = NAG_ALLOC(n + 1, double)) || !(adif2 = NAG_ALLOC(n + 1, double)))
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}
e02ahc(n, xmin, xmax, a, one, &patm1, adif, one, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from e02ahc call 1.\n\ns\n", fail.message);
 exit_status = 1;
 goto END;
}
e02ahc(n, xmin, xmax, adif, one, &patm1, adif2, one, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from e02ahc call 2.\n\ns\n", fail.message);
 exit_status = 1;
 goto END;
}
m = 4;
Vprintf("\n");
Vprintf(" i Argument 1st deriv 2nd deriv\n");
for (i = 1; i <= m; ++i)
{
x = (xmin * (double)(m - i) + xmax * (double)(i - 1)) / (double)(m - 1);
e02akc(n, xmin, xmax, adif, one, x, &deriv, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from e02akc call 1.\n\ns\n", fail.message);
 exit_status = 1;
 goto END;
}
e02akc(n, xmin, xmax, adif2, one, x, &deriv2, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from e02akc call 2.\n\ns\n", fail.message);
 exit_status = 1;
 goto END;
}
Vprintf("%4ld%9.4f %9.4f %9.4f \n", i, x, deriv, deriv2);
}

END:
if (adif) NAG_FREE(adif);
if (adif2) NAG_FREE(adif2);
return exit_status;

9.2 Program Data

None.
9.3 Program Results

e02ahc Example Program Results

<table>
<thead>
<tr>
<th>i</th>
<th>Argument</th>
<th>1st deriv</th>
<th>2nd deriv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.5000</td>
<td>0.2453</td>
<td>0.1637</td>
</tr>
<tr>
<td>2</td>
<td>0.5000</td>
<td>0.4777</td>
<td>0.3185</td>
</tr>
<tr>
<td>3</td>
<td>1.5000</td>
<td>0.9304</td>
<td>0.6203</td>
</tr>
<tr>
<td>4</td>
<td>2.5000</td>
<td>1.8119</td>
<td>1.2056</td>
</tr>
</tbody>
</table>