nag_1d_cheb_fit_constr (e02agc) computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points.

2 Specification

```c
void nag_1d_cheb_fit_constr (Nag_OrderType order, Integer m, Integer k,
     double xmin, double xmax, const double x[], const double y[],
     const double w[], Integer mf, const double xf[], const double yf[],
     const Integer p[], double a[], double s[], Integer *n,
     double resid[], NagError *fail)
```

3 Description

nag_1d_cheb_fit_constr (e02agc) determines least-squares polynomial approximations of degrees up to \(k \) to the set of data points \((x_r, y_r)\) with weights \(w_r \), for \(r = 1, 2, \ldots, m \). The value of \(k \), the maximum degree required, is prescribed by the user. At each of the values \(x_{fr} \), for \(r = 1, 2, \ldots, m_f \), of the independent variable \(x \), the approximations and their derivatives up to order \(pr \) are constrained to have one of the user-specified values \(y_{fs} \), for \(s = 1, 2, \ldots, n \), where \(n = m_f + \sum_{r=0}^{m_f} p_r \).

The approximation of degree \(i \) has the property that, subject to the imposed constraints, it minimizes \(\Sigma \), the sum of the squares of the weighted residuals \(\epsilon_r \) for \(r = 1, 2, \ldots, m \) where

\[
\epsilon_r = w_r (y_r - f_i (x_r))
\]

and \(f_i (x_r) \) is the value of the polynomial approximation of degree \(i \) at the \(r \)th data point.

Each polynomial is represented in Chebyshev-series form with normalised argument \(\tilde{x} \). This argument lies in the range \(-1\) to \(+1\) and is related to the original variable \(x \) by the linear transformation

\[
\tilde{x} = \frac{2x - (x_{\text{max}} + x_{\text{min}})}{(x_{\text{max}} - x_{\text{min}})}
\]

where \(x_{\text{min}} \) and \(x_{\text{max}} \), specified by the user, are respectively the lower and upper end-points of the interval of \(x \) over which the polynomials are to be defined.

The polynomial approximation of degree \(i \) can be written as

\[
\sum_{j=0}^{i} a_{i,j} T_j (\tilde{x}) + \cdots + a_{i,j} T_j (\tilde{x}) + \cdots + a_{i,j} T_j (\tilde{x})
\]

where \(T_j (\tilde{x}) \) is the Chebyshev polynomial of the first kind of degree \(j \) with argument \(\tilde{x} \). For \(i = n, n + 1, \ldots, k \), the function produces the values of the coefficients \(a_{i,j} \), for \(j = 0, 1, \ldots, i \), together with the value of the root mean square residual, \(s_i \), defined as

\[
\sqrt{\frac{\sum_{r=0}^{m} \left| y_r - f_i (x_r) \right|^2}{m'}}
\]

where \(m' \) is the number of data points with non-zero weight.

Values of the approximations may subsequently be computed using nag_1d_cheb_eval (e02aec) or nag_1d_cheb_eval2 (e02akc).

First nag_1d_cheb_fit_constr (e02agc) determines a polynomial \(\mu (\tilde{x}) \), of degree \(n - 1 \), which satisfies the given constraints, and a polynomial \(\nu (\tilde{x}) \), of degree \(n_i \), which has value (or derivative) zero wherever a constrained value (or derivative) is specified. It then fits \(y_r - \mu (x_r) \), for \(r = 1, 2, \ldots, m \) with polynomials
of the required degree in \bar{x} each with factor $\nu(\bar{x})$. Finally the coefficients of $\mu(\bar{x})$ are added to the coefficients of these fits to give the coefficients of the constrained polynomial approximations to the data points (x_r, y_r), for $r = 1, 2, \ldots, m$. The method employed is given in Hayes (1970): it is an extension of Forsythe’s orthogonal polynomials method (Forsythe (1957)) as modified by Clenshaw (Clenshaw (1960)).

References

Parameters

1. `order` – Nag_OrderType

 Input

 On entry: the `order` parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by `order = Nag_RowMajor`. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

 Constraint: `order = Nag_RowMajor` or `Nag_ColMajor`.

2. `m` – Integer

 Input

 On entry: the number m of data points to be fitted.

 Constraint: $m \geq 1$.

3. `k` – Integer

 Input

 On entry: k, the maximum degree required.

 Constraint: $n \leq k \leq m'' + n - 1$, where n is the total number of constraints, and m'' is the number of data points with non-zero weights and distinct abscissae which do not coincide with any of the x_f_r.

4. `xmin` – double

 Input

 On entry: the lower and upper end-points, respectively, of the interval $[x_{\text{min}}, x_{\text{max}}]$. Unless there are specific reasons to the contrary, it is recommended that `xmin` and `xmax` be set respectively to the lowest and highest value among the x_r and x_f_r. This avoids the danger of extrapolation provided there is a constraint point or data point with non-zero weight at each end-point.

 Constraint: `xmax > xmin`.

5. `xmax` – double

 Input

 On entry: the lower and upper end-points, respectively, of the interval $[x_{\text{min}}, x_{\text{max}}]$. Unless there are specific reasons to the contrary, it is recommended that `xmin` and `xmax` be set respectively to the lowest and highest value among the x_r and x_f_r. This avoids the danger of extrapolation provided there is a constraint point or data point with non-zero weight at each end-point.

 Constraint: `xmax > xmin`.

6. `x[m]` – const double

 Input

 On entry: $x[r - 1]$ must contain the value x_r of the independent variable at the rth data point, for $r = 1, 2, \ldots, m$.

 Constraint: the $x[r]$ must be in non-decreasing order and satisfy $\text{xmin} \leq x[r] \leq \text{xmax}$.

7. `y[m]` – const double

 Input

 On entry: $y[r - 1]$ must contain y_r, the value of the dependent variable at the rth data point, for $r = 1, 2, \ldots, m$.

8. `w[m]` – const double

 Input

 On entry: $w[r - 1]$ must contain the weight w_r to be applied to the data point x_r, for $r = 1, 2, \ldots, m$.

 For advice on the choice of weights see the e02 Chapter Introduction. Negative weights are treated...
as positive. A zero weight causes the corresponding data point to be ignored. Zero weight should be given to any data point whose \(x \) and \(y \) values both coincide with those of a constraint (otherwise the denominators involved in the root-mean-square residuals \(s_i \) will be slightly in error).

9: \(\text{mf} \) – Integer
Input
On entry: the number, \(mf \), of values of the independent variable at which a constraint is specified.
Constraint: \(mf \geq 1 \).

10: \(\text{xf[mf]} \) – const double
Input
On entry: \(\text{xf}[r-1] \) must contain the \(r \)th value of the independent variable at which a constraint is specified, for \(r = 1, 2, \ldots, mf \).
Constraint: these values need not be ordered but must be distinct and satisfy \(x_{\text{min}} \leq \text{xf}[r] \leq x_{\text{max}} \).

11: \(\text{yf[dim]} \) – const double
Input
Note: the dimension, \(dim \), of the array \(\text{yf} \) must be at least \(\text{mf} + \sum_{i=0}^{mf-1} p[i] \).
On entry: the values which the approximating polynomials and their derivatives are required to take at the points specified in \(\text{xf} \). For each value of \(\text{xf}[r-1] \), \(\text{yf} \) contains in successive elements the required value of the approximation, its first derivative, second derivative, \(\ldots, p, \)th derivative, for \(r = 1, 2, \ldots, mf \). Thus the value which the \(k \)th derivative of each approximation (\(k = 0 \) referring to the approximation itself) is required to take at the point \(\text{xf}[r-1] \) must be contained in \(\text{yf}[s-1] \), where
\[
s = r + k + p_1 + p_2 + \cdots + p_{r-1},
\]
for \(k = 0, 1, \ldots, p_r \) and \(r = 1, 2, \ldots, mf \). The derivatives are with respect to the user’s variable \(x \).

12: \(\text{p[mf]} \) – const Integer
Input
On entry: \(\text{p}[r-1] \) must contain \(p_r \), the order of the highest-order derivative specified at \(\text{xf}[r-1] \), for \(r = 1, 2, \ldots, mf \). \(p_r = 0 \) implies that the value of the approximation at \(\text{xf}[r-1] \) is specified, but not that of any derivative.
Constraint: \(\text{p}[r-1] \geq 0 \) for \(r = 1, 2, \ldots, mf \).

13: \(\text{a[dim]} \) – double
Output
Note: the dimension, \(dim \), of the array \(\text{a} \) must be at least \((k + 1) \times (k + 1) \).
Where \(A(i,j) \) appears in this document, it refers to the array element

\[
\text{if } \text{order} = \text{Nag_ColMajor}, \quad A[(j-1) \times (k+1) + i - 1];
\]

\[
\text{if } \text{order} = \text{Nag_RowMajor}, \quad A[(i-1) \times (k+1) + j - 1].
\]

On exit: \(A(i+1, j+1) \) contains the coefficient \(a_{ij} \) in the approximating polynomial of degree \(i \), for \(i = n, n+1, \ldots, k; \) \(j = 0, 1, \ldots, i \).

14: \(\text{s[k+1]} \) – double
Output
On exit: \(s[i] \) contains \(s_i \), for \(i = n, n+1, \ldots, k \), the root-mean-square residual corresponding to the approximating polynomial of degree \(i \). In the case where the number of data points with non-zero weight is equal to \(k + 1 - n \), \(s_i \) is indeterminate: the function sets it to zero. For the interpretation of the values of \(s_i \) and their use in selecting an appropriate degree, see Section 3.1 of the e02 Chapter Introduction.

15: \(\text{n} \) – Integer *
Output
On exit: \(n \) contains the total number of constraint conditions imposed: \(n = mf + p_1 + p_2 + \cdots + p_{mf} \).
On exit: resid contains weighted residuals of the highest degree of fit determined \((k)\). The residual at \(x_r\) is in element resid\([r - 1]\), for \(r = 1, 2, \ldots, m\).

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, \(m = \langle \text{value} \rangle\).
Constraint: \(m \geq 1\).

On entry, \(mf = \langle \text{value} \rangle\).
Constraint: \(mf \geq 1\).

NE_INT_3

On entry, \(k + 1 > m\text{dist} + n\), where \(m\text{dist}\) is the number of data points with non-zero weight and distinct abscissae different from all the \(x_f\), and \(n\) is the total number of constraints: \(k + 1 = \langle \text{value} \rangle\), \(m\text{dist} = \langle \text{value} \rangle\), \(n = \langle \text{value} \rangle\).

NE_INT_ARRAY

On entry, \(p[r - 1] = \langle \text{value} \rangle\).
Constraint: \(p[r - 1] \geq 0\) for \(r = 1, \ldots, mf\).

NE_ILL_CONDITIONED

The polynomials \(mu(x)\) and/or \(nu(x)\) cannot be found. The problem is too ill-conditioned.

NE_NOT_MONOTONIC

On entry, \(x[i - 1] < x[i - 2]: i = \langle \text{value} \rangle, x[i - 1] = \langle \text{value} \rangle, x[i - 2] = \langle \text{value} \rangle\).

NE_REAL_2

On entry, \(x_{\text{min}} \geq x_{\text{max}}: x_{\text{min}} = \langle \text{value} \rangle, x_{\text{max}} = \langle \text{value} \rangle\).

NE_REAL_ARRAY

On entry, \(x_f[i - 1] \) lies outside interval \([x_{\text{min}}, x_{\text{max}}]: i = \langle \text{value} \rangle, x_f[i - 1] = \langle \text{value} \rangle, x_{\text{min}} = \langle \text{value} \rangle, x_{\text{max}} = \langle \text{value} \rangle\).

On entry, \(x[i - 1] \) lies outside interval \([x_{\text{min}}, x_{\text{max}}]\) for some \(i\).

On entry, \(x[i - 1] \) lies outside interval \([x_{\text{min}}, x_{\text{max}}]: i = \langle \text{value} \rangle, x[i - 1] = \langle \text{value} \rangle, x_{\text{min}} = \langle \text{value} \rangle, x_{\text{max}} = \langle \text{value} \rangle\).

On entry, \(x_f[i - 1] = x_f[j - 1]: i = \langle \text{value} \rangle, x_f[i - 1] = \langle \text{value} \rangle, j = \langle \text{value} \rangle, x_f[j - 1] = \langle \text{value} \rangle\).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter \(\langle \text{value} \rangle\) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.
7 Accuracy

No complete error analysis exists for either the interpolating algorithm or the approximating algorithm. However, considerable experience with the approximating algorithm shows that it is generally extremely satisfactory. Also the moderate number of constraints, of low-order, which are typical of data fitting applications, are unlikely to cause difficulty with the interpolating routine.

8 Further Comments

The time taken to form the interpolating polynomial is approximately proportional to n^3, and that to form the approximating polynomials is very approximately proportional to $m(k + 1)(k + 1 - n)$.

To carry out a least-squares polynomial fit without constraints, use nag_1d_cheb_fit (e02adc). To carry out polynomial interpolation only, use nag_1d_cheb_interp (e01aec).

9 Example

The example program reads data in the following order, using the notation of the parameter list above:

- mf
- $p[i-1]$, $x[i-1]$, $y[i-1]$, $w[i-1]$, for $i = 1, 2, \ldots, mf$
- m
- $x[i-1]$, $y[i-1]$, $w[i-1]$, for $i = 1, 2, \ldots, m$
- k, $xmin$, $xmax$

The output is:

- the root-mean-square residual for each degree from n to k;
- the Chebyshev coefficients for the fit of degree k;
- the data points, and the fitted values and residuals for the fit of degree k.

The program is written in a generalized form which will read any number of data sets.

The data set supplied specifies 5 data points in the interval $[0.0, 4.0]$ with unit weights, to which are to be fitted polynomials, p, of degrees up to 4, subject to the 3 constraints:

$p(0.0) = 1.0$, $p'(0.0) = -2.0$, $p(4.0) = 9.0$.

9.1 Program Text

/* nag_1d_cheb_fit_constr (e02agc) Example Program. */
* Copyright 2001 Numerical Algorithms Group.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage02.h>

int main(void)
{
 /* Scalars */
 double fiti, xmax, xmin;
 Integer exit_status, i, iy, j, k, h, m, mf, n, pda, stride;
 NagError fail;
 Nag_OrderType order;

 /* Arrays */
 double *a = 0, *s = 0, *w = 0, *resid = 0,
 *x = 0, *xf = 0, *y = 0, *yf = 0;
#include NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*p d a+I-1]
order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*p d a+J-1]
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);
exit_status = 0;
Vprintf("e02agc Example Program Results\n");
/* Skip heading in data file */
Vscanf="%[^\n] ");
while (scanf("%ld%[^\n] ", &mf) != EOF)
{
 if (mf > 0)
 { /* Allocate memory for p and xf. */
 if (!(p = NAG_ALLOC(mf, Integer)) || !(xf = NAG_ALLOC(mf, double))
 { Vprintf("Allocation failure\n"); exit_status = -1; goto END; }
 } /* Read p, xf and yf arrays */
 iy = 1;
 n = mf;
 for (i = 0; i < mf; ++i)
 { Vscanf("%ld%lf", &p[i], &xf[i]);
 h = iy + p[i] + 1;
 /* We need to extend array yf as we go along */
 if (!(yf = NAG_REALLOC(yf, h - 1, double)))
 { Vprintf("Allocation failure\n"); exit_status = -1; goto END; }
 for (j = iy-1; j < h - 1; ++j)
 Vscanf("%lf", &yf[j]);
 Vscanf="%[^\n] ");
 n += p[i];
 iy = h;
 }
 Vscanf="%[^\n] ", &m);
 if (m > 0)
 { /* Allocate memory for x, y and w. */
 if (!(x = NAG_ALLOC(m, double)) || !(y = NAG_ALLOC(m, double)) ||
 !(w = NAG_ALLOC(m, double)))
 { Vprintf("Allocation failure\n"); exit_status = -1; goto END; }
 for (i = 0; i < m; ++i)
 Vscanf("%lf%lf%lf", &x[i], &y[i], &w[i]);
 Vscanf="%[^\n] ");
 Vscanf("%ld%lf%lf%[^\n] ", &k, &xmin, &xmax);
pda = k + 1;
/* Allocate arrays a, s and resid */
if (!(a = NAG_ALLOC((k + 1) * (k + 1), double)) ||
 !(s = NAG_ALLOC((k + 1), double)) ||
 !(resid = NAG_ALLOC(m, double)))
 {
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

e02agc(order, m, k, xmin, xmax, x, y, w, mf, xf, yf,
 p, a, s, &n, resid, &fail);
if (fail.code != NE_NOERROR)
 {
 Vprintf("Error from e02agc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }
Vprintf("\n");
Vprintf("Degree RMS residual\n");
for (i = n; i <= k; ++i)
 Vprintf("%4ld%15.2e\n", i, s[i]);
Vprintf("\n");
Vprintf("Details of the fit of degree %2ld\n", k);
Vprintf("\n");
Vprintf(" Index Coefficient\n");
for (i = 0; i < k + 1; ++i)
 Vprintf("%6ld%11.4f\n", i, A(k+1, i+1));
Vprintf("\n");
Vprintf(" i x(i) y(i) Fit Residual\n");
for (i = 0; i < m; ++i)
 {
 /* Note that the coefficients of polynomial are stored in the
 * rows of A hence when the storage is in Nag_ColMajor order
 * then stride is the first dimension of A, k + 1.
 * When the storage is in Nag_RowMajor order then stride is 1.
 */
 #ifdef NAG_COLUMN_MAJOR
 stride = k + 1;
 #else
 stride = 1;
 #endif
 e02akc(k, xmin, xmax, &A(k+1, 1), stride, x[i], &fiti, &fail);
 if (fail.code != NE_NOERROR)
 {
 Vprintf("Error from e02akc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }
 Vprintf("%6ld%11.4f%11.4f%11.4f", i, x[i], y[i], fiti);
 Vprintf("%11.2e\n", fiti - y[i]);
 }
}
)

END:
if (a) NAG_FREE(a);
if (s) NAG_FREE(s);
if (w) NAG_FREE(w);
if (resid) NAG_FREE(resid);
if (x) NAG_FREE(x);
if (xf) NAG_FREE(xf);
if (y) NAG_FREE(y);
if (yf) NAG_FREE(yf);
if (p) NAG_FREE(p);
return exit_status;
9.2 Program Data

```
e02agc Example Program Data
  2
  1  0.0  1.0  -2.0
  0  4.0  9.0
  5
  0.5  0.03  1.0
  1.0  -0.75  1.0
  2.0  -1.0  1.0
  2.5  -0.1  1.0
  3.0  1.75  1.0
  4  0.0  4.0
```

9.3 Program Results

```
e02agc Example Program Results

Degree RMS residual
  3  2.55e-03
  4  2.94e-03

Details of the fit of degree 4

<table>
<thead>
<tr>
<th>Index</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.9980</td>
</tr>
<tr>
<td>1</td>
<td>3.4995</td>
</tr>
<tr>
<td>2</td>
<td>3.0010</td>
</tr>
<tr>
<td>3</td>
<td>0.5005</td>
</tr>
<tr>
<td>4</td>
<td>-0.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i</th>
<th>x(i)</th>
<th>y(i)</th>
<th>Fit</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5000</td>
<td>0.0300</td>
<td>0.0310</td>
<td>1.02e-03</td>
</tr>
<tr>
<td>1</td>
<td>1.0000</td>
<td>-0.7500</td>
<td>-0.7508</td>
<td>-7.81e-04</td>
</tr>
<tr>
<td>2</td>
<td>2.0000</td>
<td>-1.0000</td>
<td>-1.0020</td>
<td>-2.00e-03</td>
</tr>
<tr>
<td>3</td>
<td>2.5000</td>
<td>-0.1000</td>
<td>-0.0961</td>
<td>3.95e-03</td>
</tr>
<tr>
<td>4</td>
<td>3.0000</td>
<td>1.7500</td>
<td>1.7478</td>
<td>-2.17e-03</td>
</tr>
</tbody>
</table>
```