NAG C Library Function Document

nag_1d_ratnl_eval (e01rbc)

1 Purpose

nag_1d_ratnl_eval (e01rbc) evaluates continued fractions of the form produced by nag_1d_ratnl_interp (e01rac).

2 Specification

```c
void nag_1d_ratnl_eval (Integer m, const double a[], const double u[], double x, double *f, NagError *fail)
```

3 Description

nag_1d_ratnl_eval (e01rbc) evaluates the continued fraction

\[R(x) = a_1 + R_m(x) \]

where

\[R_i(x) = \frac{a_{m-i+2}(x - u_{m-i+1})}{1 + R_{i-1}(x)}, \quad \text{for} \quad i = m, m-1, \ldots, 2. \]

and

\[R_1(x) = 0 \]

for a prescribed value of \(x \). nag_1d_ratnl_eval (e01rbc) is intended to be used to evaluate the continued fraction representation (of an interpolatory rational function) produced by nag_1d_ratnl_interp (e01rac).

4 References

5 Parameters

1: \(m \) – Integer \(\quad \text{Input} \)

 On entry: \(m \), the number of terms in the continued fraction.

 Constraint: \(m \geq 1 \).

2: \(a[m] \) – const double \(\quad \text{Input} \)

 On entry: \(a[j-1] \) must be set to the value of the parameter \(a_j \) in the continued fraction, for \(j = 1, 2, \ldots, m \).

3: \(u[m] \) – const double \(\quad \text{Input} \)

 On entry: \(u[j-1] \) must be set to the value of the parameter \(u_j \) in the continued fraction, for \(j = 1, 2, \ldots, m-1 \). (The element \(u[m] \) is not used).

4: \(x \) – double \(\quad \text{Input} \)

 On entry: the value of \(x \) at which the continued fraction is to be evaluated.

5: \(f \) – double * \(\quad \text{Output} \)

 On exit: the value of the continued fraction corresponding to the value of \(x \).
6: fail – NagError *

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_POLE_PRESENT
x corresponds to a pole of $R(x)$, or is very close. $x = (value)$.

NE_BAD_PARAM
On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

See Section 7 of the document for nag_1d_ratnl_interp (e01rac).

8 Further Comments

The time taken by the function is approximately proportional to m.

9 Example

This example program reads in the parameters a_j and u_j of a continued fraction (as determined by the
example for nag_1d_ratnl_interp (e01rac)) and evaluates the continued fraction at a point x.

9.1 Program Text

/* nag_1d_ratnl_eval (e01rbc) Example Program.
 *
 * Copyright 2001 Numerical Algorithms Group.
 *
 */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage01.h>

int main(void)
{
 /* Scalars */
 double f, x;
 Integer exit_status, i, m;
 NagError fail;

 /* Arrays */
 double *a = 0, *u = 0;

 exit_status = 0;
 INIT_FAIL(fail);
 Vprintf("e01rbc Example Program Results\n");

 /* Skip heading in data file */
 Vscanf("%*[\n] ");
 m = 4;
/* Allocate memory */
if (!(a = NAG_ALLOC(m, double)) ||
!u = NAG_ALLOC(m, double))
{
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
}
for (i = 1; i <= m; ++i)
 Vscanf("%lf", &a[i-1]);
Vscanf("%*[\n] ");
for (i = 1; i <= m - 1; ++i)
 Vscanf("%lf", &u[i-1]);
Vscanf("%*[\n] ");
Vscanf("%lf%*[\n] ", &x);
Vprintf("\n");
Vprintf("x = %11.4e\n", x);
e01rbc(m, a, u, x, &f, &fail);
Vprintf("\n");
Vprintf("The value of R(x) is %12.4e\n", f);
END:
 if (a) NAG_FREE(a);
 if (u) NAG_FREE(u);
 return exit_status;
}

9.2 Program Data

9.3 Program Results

The value of R(x) is 1.7714e+01