NAG C Library Function Document
nag_pde_interp_1d_fd (d03pzc)

1 Purpose
nag_pde_interp_1d_fd (d03pzc) interpolates in the spatial co-ordinate the solution and derivative of a
system of partial differential equations (PDEs). The solution must first be computed using one of the finite
difference schemes nag_pde_parab_1d_fd (d03pcc), nag_pde_parab_1d_fd_ode (d03phc) or
nag_pde_parab_1d_fd_ode_remesh (d03ppc), or one of the Keller box schemes
nag_pde_parab_1d_keller (d03pec), nag_pde_parab_1d_keller_ode (d03pke) or
nag_pde_parab_1d_keller_ode_remesh (d03ppc).

2 Specification

```c
void nag_pde_interp_1d_fd (Integer npde, Integer m, const double u[],
    Integer npts, const double x[], const double xp[], Integer intpts, Integer itype,
    double up[], NagError *fail)
```

3 Description
nag_pde_interp_1d_fd (d03pzc) is an interpolation function for evaluating the solution of a system of
partial differential equations (PDEs), at a set of user-specified points. The solution of the system of
equations (possibly with coupled ordinary differential equations) must be computed using a finite
difference scheme or a Keller box scheme on a set of mesh points. nag_pde_interp_1d_fd (d03pzc) can
then be employed to compute the solution at a set of points anywhere in the range of the mesh. It can also
evaluate the first spatial derivative of the solution. It uses linear interpolation for approximating the
solution.

4 References
None.

5 Parameters

Note: the parameters x, m, u, npts and npde must be supplied unchanged from the PDE function.

1: npde – Integer

 Input

 On entry: the number of PDEs.

 Constraint: npde ≥ 1.

2: m – Integer

 Input

 On entry: the co-ordinate system used. If the call to nag_pde_interp_1d_fd (d03pzc) follows one of
 the finite difference functions then m must be the same parameter m as used in that call. For the
 Keller box scheme only Cartesian co-ordinate systems are valid and so m must be set to zero. No
 check will be made by nag_pde_interp_1d_fd (d03pzc) in this case.

 m = 0

 Indicates Cartesian co-ordinates.

 m = 1

 Indicates cylindrical polar co-ordinates.

 m = 2

 Indicates spherical polar co-ordinates.
Constraints:

\[0 \leq m \leq 2 \] following a finite difference function;
\[m = 0 \] following a Keller box scheme function.

3: \(u[npde \times npts] \) – const double
Input

Note: where \(U(i, j) \) appears in this document it refers to the array element \(u[npde \times (j - 1) + i - 1] \). We recommend using a \#define to make the same definition in your calling program.

On entry: the PDE part of the original solution returned in the parameter \(u \) by the PDE function.

Constraint: \(npde \geq 1 \).

4: \(npts \) – Integer
Input

On entry: the number of mesh points.

Constraint: \(npts \geq 3 \).

5: \(x[npts] \) – const double
Input

On entry: \(x[i - 1] \), for \(i = 1, 2, \ldots, npts \), must contain the mesh points as used by the PDE function.

6: \(xp[intpts] \) – const double
Input

On entry: \(xp[i - 1] \), for \(i = 1, 2, \ldots, intpts \), must contain the spatial interpolation points.

Constraint: \(x[0] \leq xp[0] < xp[1] < \cdots < xp[intpts - 1] \leq x[npts - 1] \).

7: \(intpts \) – Integer
Input

On entry: the number of interpolation points.

Constraint: \(intpts \geq 1 \).

8: \(itype \) – Integer
Input

On entry: specifies the interpolation to be performed.

If \(itype = 1 \), the solutions at the interpolation points are computed. If \(itype = 2 \), both the solutions and their first derivatives at the interpolation points are computed.

Constraint: \(itype = 1 \) or \(2 \).

9: \(up[npde \times intpts \times itype] \) – double
Output

Note: where \(UP(i, j, k) \) appears in this document it refers to the array element \(up[npde \times (intpts \times (k - 1) + j - 1) + i - 1] \). We recommend using a \#define to make the same definition in your calling program.

On exit: if \(itype = 1 \), \(UP(i, j, 1) \) contains the value of the solution \(U_i(x_j, t_{out}) \), at the interpolation points \(x_j = xp[j - 1] \), for \(j = 1, 2, \ldots, intpts \); \(i = 1, 2, \ldots, npde \).

If \(itype = 2 \), \(UP(i, j, 1) \) contains \(U_i(x_j, t_{out}) \) and \(UP(i, j, 2) \) contains \(\frac{\partial U_i}{\partial x} \) at these points.

10: \(fail \) – NagError *
Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, \(itype \) is not equal to 1 or 2: \(itype = \langle value \rangle \).
On entry, \(m \) is not equal to 0, 1, or 2: \(m = \langle \text{value} \rangle \).

On entry, \(\text{intpts} \leq 0: \text{intpts} = \langle \text{value} \rangle \).

On entry, \(\text{npts} = \langle \text{value} \rangle \).
Constraint: \(\text{npts} > 2 \).

On entry, \(\text{npde} = \langle \text{value} \rangle \).
Constraint: \(\text{npde} > 0 \).

NE_EXTRAPOLATION

On entry, interpolating point \(\langle \text{value} \rangle \) with the value \(\langle \text{value} \rangle \) is outside the \(x \) range.

NE_NOT_STRICTLY_INCREASING

On entry, interpolation points \(\text{xp} \) badly ordered: \(i = \langle \text{value} \rangle, \text{xp}[i-1] = \langle \text{value} \rangle, j = \langle \text{value} \rangle, \text{xp}[j-1] = \langle \text{value} \rangle \).

On entry, mesh points \(\text{x} \) badly ordered: \(i = \langle \text{value} \rangle, \text{x}[i-1] = \langle \text{value} \rangle, j = \langle \text{value} \rangle, \text{x}[j-1] = \langle \text{value} \rangle \).

NE_BAD_PARAM

On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

See the PDE function documents.

8 Further Comments

None.

9 Example

See Section 9 of the documents for nag_pde_parab_1d_fd (d03pcc), nag_pde_parab_1d_fd_ode_remesh (d03ppc) and nag_pde_parab_1d_keller_ode_remesh (d03pre).