NAG C Library Function Document

nag_pde_parab_1d_euler_osher (d03pvc)

1 Purpose

nag_pde_parab_1d_euler_osher (d03pvc) calculates a numerical flux function using Osher’s Approximate Riemann Solver for the Euler equations in conservative form. It is designed primarily for use with the upwind discretisation schemes nag_pde_parab_1d_cd (d03pfc), nag_pde_parab_1d_cd_ode (d03plc) or nag_pde_parab_1d_cd_ode_remesh (d03psc), but may also be applicable to other conservative upwind schemes requiring numerical flux functions.

2 Specification

```c
void nag_pde_parab_1d_euler_osher (const double uleft[], const double uright[],
double gamma, Nag_OsherVersion path, double flux[], Nag_D03_Save *saved,
NagError *fail)
```

3 Description

nag_pde_parab_1d_euler_osher (d03pvc) calculates a numerical flux function at a single spatial point using Osher’s Approximate Riemann Solver (Hemker and Spekreijse (1986), Pennington and Berzins (1994)) for the Euler equations (for a perfect gas) in conservative form. The user must supply the left and right solution values at the point where the numerical flux is required, i.e., the initial left and right states of the Riemann problem defined below. In the functions nag_pde_parab_1d_cd (d03pfc), nag_pde_parab_1d_cd_ode (d03plc) and nag_pde_parab_1d_cd_ode_remesh (d03psc), the left and right solution values are derived automatically from the solution values at adjacent spatial points and supplied to the function argument numflx from which the user may call nag_pde_parab_1d_euler_osher (d03pvc).

The Euler equations for a perfect gas in conservative form are:

\[
\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} = 0; \quad (1)
\]

with

\[
U = \begin{bmatrix}
\rho \\
n \\
e
\end{bmatrix} \quad \text{and} \quad F = \begin{bmatrix}
m^2 \\
m \gamma e + (\gamma - 1) \left(e - \frac{m^2}{2\rho} \right) \\
\frac{m e}{\rho} + m \gamma e - (\gamma - 1) \left(e - \frac{m^2}{2\rho} \right)
\end{bmatrix}, \quad (2)
\]

where \(\rho\) is the density, \(m\) is the momentum, \(e\) is the specific total energy, and \(\gamma\) is the (constant) ratio of specific heats. The pressure \(p\) is given by

\[
p = (\gamma - 1) \left(e - \frac{\rho u^2}{2} \right), \quad (3)
\]

where \(u = m/\rho\) is the velocity.

The function calculates the Osher approximation to the numerical flux function \(F(U_L, U_R) = F(U^*(U_L, U_R))\), where \(U = U_L\) and \(U = U_R\) are the left and right solution values, and \(U^*(U_L, U_R)\) is the intermediate state \(\omega(0)\) arising from the similarity solution \(U(y, t) = \omega(y/t)\) of the Riemann problem defined by

\[
\frac{\partial U}{\partial t} + \frac{\partial F}{\partial y} = 0; \quad (4)
\]

with \(U\) and \(F\) as in (2), and initial piecewise constant values \(U = U_L\) for \(y < 0\) and \(U = U_R\) for \(y > 0\). The spatial domain is \(-\infty < y < \infty\), where \(y = 0\) is the point at which the numerical flux is required. Osher’s solver carries out an integration along a path in the phase space of \(U\) consisting of subpaths which are piecewise parallel to the eigenvectors of the Jacobian of the PDE system. There are two variants of the
Osher solver termed O (original) and P (physical), which differ in the order in which the subpaths are taken. The P-variant is generally more efficient, but in some rare cases may fail (see Hemker and Spekreijse (1986) for details). The parameter path specifies which variant is to be used. The algorithm for Osher’s solver for the Euler equations is given in detail in the Appendix of Pennington and Berzins (1994).

4 References

5 Parameters

1: \(uleft[3] \) – const double

 On entry: \(uleft[i-1] \) must contain the left value of the component \(U_i \) for \(i = 1, 2, 3 \). That is, \(uleft[0] \) must contain the left value of \(\rho \), \(uleft[1] \) must contain the left value of \(m \) and \(uleft[2] \) must contain the left value of \(e \).

 Constraints:

 \(uleft[0] \geq 0.0 \); Left pressure, \(pl \), calculated using (3) \(\geq 0.0 \).

2: \(uright[3] \) – const double

 On entry: \(uright[i-1] \) must contain the right value of the component \(U_i \) for \(i = 1, 2, 3 \). That is, \(uright[0] \) must contain the right value of \(\rho \), \(uright[1] \) must contain the right value of \(m \) and \(uright[2] \) must contain the right value of \(e \).

 Constraints:

 \(uright[0] \geq 0.0 \); Right pressure, \(pr \), calculated using (3) \(\geq 0.0 \).

3: \(gamma \) – double

 On entry: the ratio of specific heats \(\gamma \).

 Constraint: \(gamma > 0.0 \).

4: \(path \) – Nag_OsherVersion

 On entry: the variant of the Osher scheme. The possible choices are:

 \(path = \) Nag_OsherOriginal

 Original.

 \(path = \) Nag_OsherPhysical

 Physical.

 Constraint: \(path = \) Nag_OsherOriginal or Nag_OsherPhysical.

5: \(flux[3] \) – double

 On exit: \(flux[i-1] \) contains the numerical flux component \(\hat{F}_i \) for \(i = 1, 2, 3 \).
6: **saved** — Nag_D03_Save

Input

Note: saved is a NAG defined structure. See Section 2.2.1.1 of the Essential Introduction.

On entry: data concerning the computation required by nag_pde_parab_1d_euler_osher (d03pvc) and passed through to numflx from one of the integrator functions nag_pde_parab_1d_cd (d03pfc), nag_pde_parab_1d_cd_ode (d03plc), or nag_pde_parab_1d_cd_ode_remesh (d03psc).

7: **fail** — NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_REAL

Right pressure value \(pr < 0.0 \): \(pr = \langle \text{value} \rangle \).

Left pressure value \(pl < 0.0 \): \(pl = \langle \text{value} \rangle \).

On entry, \(\text{uright}[0] < 0.0 \): \(\text{uright}[0] = \langle \text{value} \rangle \).

On entry, \(\text{uleft}[0] < 0.0 \): \(\text{uleft}[0] = \langle \text{value} \rangle \).

On entry, \(\text{gamma} = \langle \text{value} \rangle \).

Constraint: \(\text{gamma} > 0.0 \).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter \(\langle \text{value} \rangle \) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

The function performs an exact calculation of the Osher numerical flux function, and so the result will be accurate to machine precision.

8 Further Comments

The function must only be used to calculate the numerical flux for the Euler equations in exactly the form given by (2), with \(\text{uleft}[i-1] \) and \(\text{uright}[i-1] \) containing the left and right values of \(\rho, m \) and \(e \) for \(i = 1, 2, 3 \) respectively. It should be noted that Osher’s scheme, in common with all Riemann solvers, may be unsuitable for some problems (see Quirk (1994) for examples). The time taken depends on the input parameter \(\text{path} \) and on the left and right solution values, since inclusion of each subpath depends on the signs of the eigenvalues. In general this cannot be determined in advance.

9 Example

See Section 9 of the document for nag_pde_parab_1d_cd_ode (d03plc).