NAG C Library Function Document

nag_pde_parab_1d_keller_ode_remesh (d03prc)

1 Purpose

nag_pde_parab_1d_keller_ode_remesh (d03prc) integrates a system of linear or nonlinear, first-order, time-dependent partial differential equations (PDEs) in one space variable, with scope for coupled ordinary differential equations (ODEs), and automatic adaptive spatial remeshing. The spatial discretisation is performed using the Keller box scheme (Keller (1970)) and the method of lines is employed to reduce the PDEs to a system of ODEs. The resulting system is solved using a Backward Differentiation Formula (BDF) method or a Theta method (switching between Newton’s method and functional iteration).

2 Specification

void nag_pde_parab_1d_keller_ode_remesh (Integer npde, double *ts, double tout,
void (*pdedef) (Integer npde, double t, double x, const double u[],
const double udot[], const double ux[], Integer ncode, const double v[],
const double vdot[], double res[], Integer *ires, Nag_Comm *comm),

void (*bndary) (Integer npde, double t, Integer ibnd, Integer nobc,
const double u[], const double udot[], Integer ncode, const double v[],
const double vdot[], double res[], Integer *ires, Nag_Comm *comm),

void (*uvinit) (Integer npde, Integer npts, Integer nxi, const double x[],
const double xi[], double u[], Integer ncode, double v[],
Nag_Comm *comm),

double u[], Integer npts, double x[], Integer nleft, Integer ncode,

void (*odedef) (Integer npde, double t, Integer ncode, const double v[],
const double vdot[], Integer nxi, const double xi[], const double u[],
const double ucp[], const double ucpx[], const double ucpt[], double f[], Integer *ires,
Nag_Comm *comm),

Integer nxi, const double xi[], Integer neqn, const double rtol[],
const double atol[], Integer itol, Nag_NormType norm, Nag_LinAlgOption laopt,
const double algopt[], Boolean remesh, Integer nfix, const double xfix[],
Integer nrmesh, double dxmesh, double trmesh, Integer ipminf, double xratio,
double con,

void (*monitf) (double t, Integer npts, Integer npde, const double x[],
const double u[], double fmon[], Nag_Comm *comm),

double rsave[], Integer lrsave, Integer isave[], Integer lsave, Integer itask,
Integer itrace, const char *outfile, Integer *nst, Nag_Comm *comm,
Nag_D03_Save *saved, NagError *fail)

3 Description

nag_pde_parab_1d_keller_ode_remesh (d03prc) integrates the system of first-order PDEs and coupled ODEs given by the master equations:

\[G_i(x, t, U, U_x, U_t, V, \dot{V}) = 0, \quad i = 1, 2, \ldots, \text{npde}, \quad a \leq x \leq b, \quad t \geq t_0, \quad (1) \]

\[F_i(t, V, \dot{V}, \xi, U^*, U_x^*, U_t^*) = 0, \quad i = 1, 2, \ldots, \text{ncode}. \quad (2) \]

In the PDE part of the problem given by (1), the functions \(G_i \) must have the general form

\[G_i = \sum_{j=1}^{\text{npde}} P_{ij} \frac{\partial U_j}{\partial t} + \sum_{j=1}^{\text{ncode}} Q_{ij} \dot{V}_j + R_i = 0, \quad i = 1, 2, \ldots, \text{npde}, \quad (3) \]

where \(P_{ij}, Q_{ij} \) and \(R_i \) depend on \(x, t, U, U_x, \text{and} \ V. \)
The vector U is the set of PDE solution values

$$U(x, t) = [U_1(x, t), \ldots, U_{\text{npde}}(x, t)]^T,$$

and the vector U_x is the partial derivative with respect to x. The vector V is the set of ODE solution values

$$V(t) = [V_1(t), \ldots, V_{\text{ncode}}(t)]^T,$$

and V denotes its derivative with respect to time.

In the ODE part given by (2), ξ represents a vector of n_ξ spatial coupling points at which the ODEs are coupled to the PDEs. These points may or may not be equal to some of the PDE spatial mesh points. U_t, U_x and U_{x_j} are the functions U, U_x and U_{x_j} evaluated at these coupling points. Each F_i may only depend linearly on time derivatives. Hence equation (2) may be written more precisely as

$$F = A - B \dot{V} - C \dot{U}_t,$$

where $F = [F_1, \ldots, F_{\text{ncode}}]^T$, A is a vector of length ncode, B is an ncode by ncode matrix, C is an ncode by $(n_\xi \times \text{npde})$ matrix and the entries in A, B and C may depend on t, ξ, U_t, U_x and V. In practice the user only needs to supply a vector of information to define the ODEs and not the matrices B and C (See Section 5 for the specification of the user-supplied function odedef.)

The integration in time is from t_0 to t_{out}, over the space interval $a \leq x \leq b$, where $a = x_1$ and $b = x_{\text{npnts}}$ are the leftmost and rightmost points of a mesh $x_1, x_2, \ldots, x_{\text{npnts}}$ defined initially by the user and (possibly) adapted automatically during the integration according to user-specified criteria.

The PDE system which is defined by the functions G_i must be specified in the user-supplied function pdefdef. The initial ($t = t_0$) values of the functions $U(x, t)$ and $V(t)$ must be specified in a function uvinit supplied by the user. Note that uvinit will be called again following any remeshing, and so $U(x, t_0)$ should be specified for all values of x in the interval $a \leq x \leq b$, and not just the initial mesh points.

For a first-order system of PDEs, only one boundary condition is required for each PDE component U_j. The npde boundary conditions are separated into n_a at the left-hand boundary $x = a$, and n_b at the right-hand boundary $x = b$ such that $n_a + n_b = \text{npde}$. The position of the boundary condition for each component should be chosen with care; the general rule is that if the characteristic direction of U_j at the left-hand boundary (say) points into the interior of the solution domain, then the boundary condition for U_j should be specified at the left-hand boundary. Incorrect positioning of boundary conditions generally results in initialisation or integration difficulties in the underlying time integration functions.

The boundary conditions have the master equation form:

$$G_i^L(x, t, U, U_t, V, \dot{V}) = 0 \quad \text{at } x = a, \quad i = 1, 2, \ldots, n_a,$$

and

$$G_i^R(x, t, U, U_t, V, \dot{V}) = 0 \quad \text{at } x = b, \quad i = 1, 2, \ldots, n_b,$$

at the right-hand boundary.

Note that the functions G_i^L and G_i^R must not depend on U_x, since spatial derivatives are not determined explicitly in the Keller box scheme functions. If the problem involves derivative (Neumann) boundary conditions then it is generally possible to restate such boundary conditions in terms of permissible variables. Also note that G_i^L and G_i^R must be linear with respect to time derivatives, so that the boundary conditions have the general form:

$$\sum_{j=1}^{\text{npde}} E_{ij}^L \frac{\partial U_j}{\partial t} + \sum_{j=1}^{\text{ncode}} H_{ij}^L \dot{V}_j + S_i^L = 0, \quad i = 1, 2, \ldots, n_a,$$

at the left-hand boundary, and
\[\sum_{j=1}^{npde} E_{i,j}^{L} \frac{\partial U_{j}}{\partial t} + \sum_{j=1}^{ncode} H_{i,j}^{R} \dot{V}_{j} + S_{i}^{R} = 0, \quad i = 1, 2, \ldots, n_{b}, \quad (8) \]

at the right-hand boundary, where \(E_{i,j}^{L} \), \(E_{i,j}^{R} \), \(H_{i,j}^{L} \), \(H_{i,j}^{R} \), \(S_{i}^{L} \), and \(S_{i}^{R} \) depend on \(x, t, U \) and \(V \) only.

The boundary conditions must be specified in a function `bndary` provided by the user.

The problem is subject to the following restrictions:

(i) \(P_{i,j}, Q_{i,j} \) and \(R_{i} \) must not depend on any time derivatives;

(ii) \(t_{0} < t_{\text{out}} \), so that integration is in the forward direction;

(iii) The evaluation of the function \(G_{i} \) is done approximately at the mid-points of the mesh \(x[i - 1] \), for \(i = 1, 2, \ldots, \text{npts} \), by calling the function `pdedef` for each mid-point in turn. Any discontinuities in the function `must` therefore be at one or more of the fixed mesh points specified by `xfix`;

(iv) At least one of the functions \(P_{i,j} \) must be non-zero so that there is a time derivative present in the PDE problem;

The algebraic-differential equation system which is defined by the functions \(F_{i} \) must be specified in the user-supplied function `odedef`. The user must also specify the coupling points \(\xi \) in the array `xi`.

The first-order equations are approximated by a system of ODEs in time for the values of \(U_{i} \) at mesh points. In this method of lines approach the Keller box scheme is applied to each PDE in the space variable only, resulting in a system of ODEs in time for the values of \(U_{i} \) at each mesh point. In total there are \(npde \times \text{npts} + ncode \) ODEs in time direction. This system is then integrated forwards in time using a Backward Differentiation Formula (BDF) or a Theta method.

The adaptive space remeshing can be used to generate meshes that automatically follow the changing time-dependent nature of the solution, generally resulting in a more efficient and accurate solution using fewer mesh points than may be necessary with a fixed uniform or non-uniform mesh. Problems with travelling wavefronts or variable-width boundary layers for example will benefit from using a moving adaptive mesh. The discrete time-step method used here (developed by Furzeland (1984)) automatically creates a new mesh based on the current solution profile at certain time-steps, and the solution is then interpolated onto the new mesh and the integration continues.

The method requires the user to supply a function `monitf` which specifies in an analytic or numeric form the particular aspect of the solution behaviour the user wishes to track. This so-called monitor function is used to choose a mesh which equally distributes the integral of the monitor function over the domain. A typical choice of monitor function is the second space derivative of the solution value at each point (or some combination of the second space derivatives if more than one solution component), which results in refinement in regions where the solution gradient is changing most rapidly.

The user specifies the frequency of mesh updates along with certain other criteria such as adjacent mesh ratios. Remeshing can be expensive and the user is encouraged to experiment with the different options in order to achieve an efficient solution which adequately tracks the desired features of the solution.

Note that unless the monitor function for the initial solution values is zero at all user-specified initial mesh points, a new initial mesh is calculated and adopted according to the user-specified remeshing criteria. The function `uvinit` will then be called again to determine the initial solution values at the new mesh points (there is no interpolation at this stage) and the integration proceeds.

4 References

Furzeland R M (1984) The construction of adaptive space meshes TNER.85.022 Thornton Research Centre, Chester

5 Parameters

1: \textbf{npde} – Integer \hspace{1cm} \textit{Input}
\hspace{0.5cm} \textit{On entry:} the number of PDEs to be solved.
\hspace{0.5cm} \textit{Constraint:} npde \geq 1.

2: \textbf{ts} – double * \hspace{0.5cm} \textit{Input/Output}
\hspace{0.5cm} \textit{On entry:} the initial value of the independent variable \(t\).
\hspace{0.5cm} \textit{Constraint:} ts < tout.
\hspace{0.5cm} \textit{On exit:} the value of \(t\) corresponding to the solution values in \(u\). Normally ts = tout.

3: \textbf{tout} – double \hspace{0.5cm} \textit{Input}
\hspace{0.5cm} \textit{On entry:} the final value of \(t\) to which the integration is to be carried out.

4: \textbf{pdedef} \hspace{1cm} \textit{Function}
\hspace{0.5cm} \textit{On entry:} \textbf{pdedef} must evaluate the functions \(G_i\), which define the system of PDEs. \textbf{pdedef} is called approximately midway between each pair of mesh points in turn by \texttt{nag_pde_parab_1d_keller_ode_remesh} (d03prc).

Its specification is:

```c
void pdedef (Integer npde, double t, double x, const double u[],
            const double udot[], const double ux[], Integer ncode, const double v[],
            const double vdot[], double res[], Integer *ires, Nag_Comm *comm)
```

1: \textbf{npde} – Integer \hspace{0.5cm} \textit{Input}
\hspace{0.5cm} \textit{On entry:} the number of PDEs in the system.

2: \textbf{t} – double \hspace{0.5cm} \textit{Input}
\hspace{0.5cm} \textit{On entry:} the current value of the independent variable \(t\).

3: \textbf{x} – double \hspace{0.5cm} \textit{Input}
\hspace{0.5cm} \textit{On entry:} the current value of the space variable \(x\).

4: \textbf{u[npde]} – const double \hspace{0.5cm} \textit{Input}
\hspace{0.5cm} \textit{On entry:} \textbf{u}[i - 1] contains the value of the component \(U_i(x,t)\), for \(i = 1, 2, \ldots, \text{npde}\).

5: \textbf{udot[npde]} – const double \hspace{0.5cm} \textit{Input}
\hspace{0.5cm} \textit{On entry:} \textbf{udot}[i - 1] contains the value of the component \(\frac{\partial U_i(x,t)}{\partial t}\), for \(i = 1, 2, \ldots, \text{npde}\).
6: \(\text{ux[npde]} \) – const double
\(\text{Input} \)

On entry: \(\text{ux[i]} \) contains the value of the component \(\frac{\partial U_i(x,t)}{\partial x} \), for \(i = 1,2,\ldots,\text{npde} \).

7: \(\text{ncode} \) – Integer
\(\text{Input} \)

On entry: the number of coupled ODEs in the system.

8: \(\text{v[ncode]} \) – const double
\(\text{Input} \)

On entry: \(\text{v[i]} \) contains the value of component \(V_i(t) \), for \(i = 1,2,\ldots,\text{ncode} \).

9: \(\text{vdot[ncode]} \) – const double
\(\text{Input} \)

On entry: \(\text{vdot[i]} \) contains the value of component \(\dot{V}_i(t) \), for \(i = 1,2,\ldots,\text{ncode} \).

10: \(\text{res[npde]} \) – double
\(\text{Output} \)

On exit: \(\text{res[i]} \) must contain the \(i \)th component of \(G \), for \(i = 1,2,\ldots,\text{npde} \), where \(G \) is defined as

\[
G_i = \sum_{j=1}^{\text{npde}} P_{ij} \frac{\partial U_j}{\partial t} + \sum_{j=1}^{\text{ncode}} Q_{ij} \dot{V}_j, \tag{9}
\]

i.e., only terms depending explicitly on time derivatives, or

\[
G_i = \sum_{j=1}^{\text{npde}} P_{ij} \frac{\partial U_j}{\partial t} + \sum_{j=1}^{\text{ncode}} Q_{ij} \dot{V}_j + R_i, \tag{10}
\]

i.e., all terms in equation (3).

The definition of \(G \) is determined by the input value of \(\text{ires} \).

11: \(\text{ires} \) – Integer *
\(\text{Input/Output} \)

On entry: the form of \(G_i \) that must be returned in the array \(\text{res} \). If \(\text{ires} = -1 \), then equation (9) above must be used. If \(\text{ires} = 1 \), then equation (10) above must be used.

On exit: should usually remain unchanged. However, the user may set \(\text{ires} \) to force the integration function to take certain actions, as described below:

- \(\text{ires} = 2 \)
 Indicates to the integrator that control should be passed back immediately to the calling function with the error indicator set to \(\text{fail.code} = \text{NE.USER_STOP} \).

- \(\text{ires} = 3 \)
 Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. The user may wish to set \(\text{ires} = 3 \) when a physically meaningless input or output value has been generated. If the user consecutively sets \(\text{ires} = 3 \), then \(\text{nag_pde_parab_1d_keller_ode_remesh (d03prc)} \) returns to the calling function with the error indicator set to \(\text{fail.code} = \text{NE.FAILED_DERIV} \).

12: \(\text{comm} \) – NAG_Comm *
\(\text{Input/Output} \)

The NAG communication parameter (see the Essential Introduction).

5: \(\text{bndary} \)
\(\text{Function} \)

\(\text{bndary} \) must evaluate the functions \(G_i^L \) and \(G_i^R \) which describe the boundary conditions, as given in (5) and (6).

Its specification is:
```c
void bndary (Integer npde, double t, Integer ibnd, Integer nobc, const double u[], const double udot[], Integer ncode, const double v[], const double vdot[], double res[], Integer *ires, Nag_Comm *comm)
```

1: `npde` – Integer
 Input
 On entry: the number of PDEs in the system.

2: `t` – double
 Input
 On entry: the current value of the independent variable *t*.

3: `ibnd` – Integer
 Input
 On entry: specifies which boundary conditions are to be evaluated. If *ibnd* = 0, then *bndary* must compute the left-hand boundary condition at *x* = *a*. If *ibnd* ≠ 0, then *bndary* must compute of the right-hand boundary condition at *x* = *b*.

4: `nobc` – Integer
 Input
 On entry: nobc specifies the number *na* of boundary conditions at the boundary specified by *ibnd*.

5: `u[npde]` – const double
 Input
 On entry: `u[i-1]` contains the value of the component *U*(_i_, *x*, *t*) at the boundary specified by *ibnd*, for *i* = 1, 2, ..., *npde*.

6: `udot[npde]` – const double
 Input
 On entry: `udot[i-1]` contains the value of the component ∂*U*(_i_, *x*, *t*)/∂*t*, for *i* = 1, 2, ..., *npde*.

7: `ncode` – Integer
 Input
 On entry: the number of coupled ODEs in the system.

8: `v[ncode]` – const double
 Input
 On entry: `v[i-1]` contains the value of component *V*(_i_, *t*), for *i* = 1, 2, ..., *ncode*.

9: `vdot[ncode]` – const double
 Input
 On entry: `vdot[i-1]` contains the value of component ∂*V*(_i_, *t*)/∂*t*, for *i* = 1, 2, ..., *ncode*.

 Note: *vdot[i-1], for i = 1, 2, ..., ncode*, may only appear linearly as in (11) and (12).

10: `res[nobc]` – double
 Output
 On exit: `res[i-1]` must contain the *i*th component of *GL* or *GR*, depending on the value of *ibnd*, for *i* = 1, 2, ..., *nobc*, where *GL* is defined as

 $\text{GL}_i = \sum_{j=1}^{npde} E_{i,j} \frac{\partial U_j}{\partial t} + \sum_{j=1}^{ncode} H_{i,j}^L \dot{V}_j,$

 i.e., only terms depending explicitly on time derivatives, or

 $\text{GL}_i = \sum_{j=1}^{npde} E_{i,j} \frac{\partial U_j}{\partial t} + \sum_{j=1}^{ncode} H_{i,j}^L \dot{V}_j + S_i,$

 i.e., all terms in equation (7), and similarly for *GR*.

 The definitions of *GL* and *GR* are determined by the input value of *ires*.
11: **ires** – Integer *

Input/Output

On entry: the form of \(G_i^L \) (or \(G_i^R \)) that must be returned in the array \(\text{res} \). If \(\text{ires} = -1 \), then equation (11) above must be used. If \(\text{ires} = 1 \), then equation (12) above must be used.

On exit: should usually remain unchanged. However, the user may set \(\text{ires} \) to force the integration function to take certain actions as described below:

- \(\text{ires} = 2 \)
 - Indicates to the integrator that control should be passed back immediately to the calling function with the error indicator set to \(\text{fail.code} = \text{NE_USER_STOP} \).

- \(\text{ires} = 3 \)
 - Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. The user may wish to set \(\text{ires} = 3 \) when a physically meaningless input or output value has been generated. If the user consecutively sets \(\text{ires} = 3 \), then \text{nag_pde_parab_1d_keller_ode_remesh} (d03prc) returns to the calling function with the error indicator set to \(\text{fail.code} = \text{NE_FAILED_DERIV} \).

12: **comm** – NAG_Comm *

Input/Output

The NAG communication parameter (see the Essential Introduction).

6: **uvinit**

Function

uvinit must supply the initial \((t = t_0)\) values of \(U(x, t) \) and \(V(t) \) for all values of \(x \) in the interval \([a, b]\).

Its specification is:

```c
void uvinit (Integer npde, Integer npts, Integer nxi, const double x[],
            const double xi[], double u[], Integer ncode, double v[],
            Nag_Comm *comm)
```

1: **npde** – Integer

Input

On entry: the number of PDEs in the system.

2: **npts** – Integer

Input

On entry: the number of mesh points in the interval \([a, b]\).

3: **nxi** – Integer

Input

On entry: the number of ODE/PDE coupling points.

4: **x[npts]** – const double

Input

On entry: the current mesh. \(x[i - 1] \) contains the value of \(x_i \) for \(i = 1, 2, \ldots, \text{npts} \).

5: **xi[nxi]** – const double

Input

On entry: \(\xi_i \) contains the ODE/PDE coupling point, \(\xi_i \), for \(i = 1, 2, \ldots, \text{nxi} \).

6: **u[npde × npts]** – double

Output

Note: where \(U(i,j) \) appears in this document it refers to the array element \(u[npde × (j - 1) + i - 1] \). We recommend using a #define to make the same definition in your calling program.

On exit: \(U(i,j) \) contains the value of the component \(U_i(x_j, t_0) \), for \(i = 1, 2, \ldots, \text{npde}; j = 1, 2, \ldots, \text{npts} \).
7: \textbf{ncode} – Integer \hspace{1cm} \textit{Input}\n
\textit{On entry:} the number of coupled ODEs in the system.

8: \textbf{v[ncode]} – double \hspace{1cm} \textit{Output}\n
\textit{On exit:} \(v[i-1]\) must contain the value of component \(V_i(t_0)\) for \(i = 1, 2, \ldots, \text{ncode}\).

9: \textbf{comm} – NAG_Comm * \hspace{1cm} \textit{Input/Output}\n
The NAG communication parameter (see the Essential Introduction).

7: \textbf{u[neqn]} – double \hspace{1cm} \textit{Input/Output}\n
\textit{On entry:} if \textbf{ind} = 1 the value of \textbf{u} must be unchanged from the previous call.

\textit{On exit:} \textbf{u[npde \times (j - 1) + i - 1]} contains the computed solution \(U_i(x_j, t)\), for \(i = 1, 2, \ldots, \text{npde}\); \(j = 1, 2, \ldots, \text{npts}\), and \textbf{u[npts \times npde + k - 1]} contains \(V_k(t)\), for \(k = 1, 2, \ldots, \text{ncode}\), evaluated at \(t = ts\).

8: \textbf{npts} – Integer \hspace{1cm} \textit{Input}\n
\textit{On entry:} the number of mesh points in the interval \([a, b]\).\n
\textit{Constraint:} \textbf{npts} \geq 3.

9: \textbf{x[npts]} – double \hspace{1cm} \textit{Input/Output}\n
\textit{On entry:} the initial mesh points in the space direction. \textbf{x[0]} must specify the left-hand boundary, \(a\), and \textbf{x[npts - 1]} must specify the right-hand boundary, \(b\).\n
\textit{Constraint:} \textbf{x[0]} < \textbf{x[1]} < \cdots < \textbf{x[npts - 1]}.

\textit{On exit:} the final values of the mesh points.

10: \textbf{nleft} – Integer \hspace{1cm} \textit{Input}\n
\textit{On entry:} the number \(n_a\) of boundary conditions at the left-hand mesh point \textbf{x[0]}.\n
\textit{Constraint:} 0 \leq \textbf{nleft} \leq \textbf{npde}.

11: \textbf{ncode} – Integer \hspace{1cm} \textit{Input}\n
\textit{On entry:} the number of coupled ODE components.

\textit{Constraint:} \textbf{ncode} \geq 0.

12: \textbf{odedef} \hspace{1cm} \textit{Function}\n
\textbf{odedef} must evaluate the functions \(F\), which define the system of ODEs, as given in (4). If the user wishes to compute the solution of a system of PDEs only (i.e., \textbf{ncode} = 0), \textbf{odedef} must be the dummy function \textbf{d03pek}. (\textbf{d03pek} is included in the NAG C Library; however, its name may be implementation-dependent: see the Users’ Note for your implementation for details.) It is specification is:

```c
void odedef (Integer npde, double t, Integer ncode, const double v[],
            const double vdot[], Integer nxi, const double xi[],
            const double ucp[], const double ucpx[],
            const double ucpt[], double f[], Integer *ires,
            Nag_Comm *comm)
```

1: \textbf{npde} – Integer \hspace{1cm} \textit{Input}\n
\textit{On entry:} the number of PDEs in the system.
On entry: the current value of the independent variable \(t \).

ncode – Integer

On entry: the number of coupled ODEs in the system.

\(\text{v[ncode]} \) – const double

On entry: \(\text{v[i - 1]} \) contains the value of component \(V_i(t) \), for \(i = 1, 2, \ldots, \text{ncode} \).

\(\text{vdot[ncode]} \) – const double

On entry: \(\text{vdot[i - 1]} \) contains the value of component \(\dot{V}_i(t) \), for \(i = 1, 2, \ldots, \text{ncode} \).

nxi – Integer

On entry: the number of ODE/PDE coupling points.

\(\text{xi[nxi]} \) – const double

On entry: \(\text{xi[i - 1]} \) contains the ODE/PDE coupling point, \(\xi_i \), for \(i = 1, 2, \ldots, \text{nxi} \).

\(\text{ucp[npde x nxi]} \) – const double

Note: where \(\text{UCP}(i, j) \) appears in this document it refers to the array element \(\text{ucp[npde x (j - 1) + i - 1]} \). We recommend using a #define to make the same definition in your calling program.

On entry: \(\text{UCP}(i, j) \) contains the value of \(U_i(x, t) \) at the coupling point \(x = \xi_j \), for \(i = 1, 2, \ldots, \text{npde}; j = 1, 2, \ldots, \text{nxi} \).

\(\text{ucpx[npde x nxi]} \) – const double

Note: where \(\text{UCPX}(i, j) \) appears in this document it refers to the array element \(\text{ucpx[npde x (j - 1) + i - 1]} \). We recommend using a #define to make the same definition in your calling program.

On entry: \(\text{UCPX}(i, j) \) contains the value of \((\partial U_i(x, t))/(\partial x) \) at the coupling point \(x = \xi_j \), for \(i = 1, 2, \ldots, \text{npde}; j = 1, 2, \ldots, \text{nxi} \).

\(\text{ucpt[npde x nxi]} \) – const double

Note: where \(\text{UCPT}(i, j) \) appears in this document it refers to the array element \(\text{ucpt[npde x (j - 1) + i - 1]} \). We recommend using a #define to make the same definition in your calling program.

On entry: \(\text{UCPT}(i, j) \) contains the value of \((\partial U_i)/(\partial t) \) at the coupling point \(x = \xi_j \), for \(i = 1, 2, \ldots, \text{npde}; j = 1, 2, \ldots, \text{nxi} \).

f[ncode] – double

On exit: \(\text{f[i - 1]} \) must contain the \(i \)th component of \(\text{f} \), for \(i = 1, 2, \ldots, \text{ncode} \), where \(\text{f} \) is defined as

\[
F = -B \dot{V} - CU_i^t, \tag{13}
\]

that is, only terms depending explicitly on time derivatives, or

\[
F = A - B \dot{V} - CU_t^i, \tag{14}
\]

that is, all terms in equation (4). The definition of \(\text{f} \) is determined by the input value of \(\text{ires} \).
On entry: the form of f that must be returned in the array f. If $ires = -1$, then equation (13) above must be used. If $ires = 1$, then equation (14) above must be used.

On exit: should usually remain unchanged. However, the user may reset $ires$ to force the integration function to take certain actions, as described below:

ires = 2

Indicates to the integrator that control should be passed back immediately to the calling function with the error indicator set to fail.code = NE_USER_STOP.

ires = 3

Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. The user may wish to set $ires = 3$ when a physically meaningless input or output value has been generated. If the user consecutively sets $ires = 3$, then nag_pde_parab_1d_keller_ode_remesh (d03prc) returns to the calling function with the error indicator set to fail.code = NE_FAILED_DERIV.

comm – NAG_Comm *

The NAG communication parameter (see the Essential Introduction).

nxi – Integer

On entry: the number of ODE/PDE coupling points.

Constraints:

if $ncode = 0$, $nxi = 0$;

if $ncode > 0$, $nxi \geq 0$.

$xi[dim]$ – const double

Note: the dimension, dim, of the array xi must be at least max($1,nxi$).

On entry: $xi[i - 1]$, $i = 1,2,\ldots,nxi$, must be set to the ODE/PDE coupling points, ξ_i.

Constraint: $x[0] \leq xi[0] < xi[1] < \cdots < xi[nxi - 1] \leq x[npts - 1]$.

$neqn$ – Integer

On entry: the number of ODEs in the time direction.

Constraint: $neqn = npde \times npts + ncode$.

$rtol[dim]$ – const double

Note: the dimension, dim, of the array $rtol$ must be at least 1 when $itol = 1$ or 2 and at least $neqn$ when $itol = 3$ or 4.

On entry: the relative local error tolerance.

Constraint: $rtol[i - 1] \geq 0$ for all relevant i.

$atol[dim]$ – const double

Note: the dimension, dim, of the array $atol$ must be at least 1 when $itol = 1$ or 3 and at least $neqn$ when $itol = 2$ or 4.

On entry: the absolute local error tolerance.

Constraint: $atol[i - 1] \geq 0$ for all relevant i.
18: *itol — Integer*

A value to indicate the form of the local error test. *itol* indicates to nag_pde_parab_1d_keller_ode_remesh (d03prc) whether to interpret either or both of *rtol* or *atol* as a vector or scalar. The error test to be satisfied is $\|e_i/w_i\| < 1.0$, where w_i is defined as follows:

On entry:

<table>
<thead>
<tr>
<th>itol</th>
<th>rtol</th>
<th>atol</th>
<th>w_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>scalar</td>
<td>scalar</td>
<td>$rtol[0] \times</td>
</tr>
<tr>
<td>2</td>
<td>scalar</td>
<td>vector</td>
<td>$rtol[0] \times</td>
</tr>
<tr>
<td>3</td>
<td>vector</td>
<td>scalar</td>
<td>$rtol[i-1] \times</td>
</tr>
<tr>
<td>4</td>
<td>vector</td>
<td>vector</td>
<td>$rtol[i-1] \times</td>
</tr>
</tbody>
</table>

In the above, e_i denotes the estimated local error for the ith component of the coupled PDE/ODE system in time, $u[i-1]$, for $i = 1, 2, \ldots, \text{neqn}$.

The choice of norm used is defined by the parameter *norm*, see below.

Constraint: $1 \leq \text{itol} \leq 4$.

19: *norm — Nag_NormType*

On entry: the type of norm to be used. Two options are available:

- **norm = Nag_MaxNorm**

 Maximum norm.

- **norm = Nag_TwoNorm**

 Averaged L_2 norm.

If U_{norm} denotes the norm of the vector u of length neqn, then for the averaged L_2 norm

$$U_{\text{norm}} = \left(\frac{1}{\text{neqn}} \sum_{i=1}^{\text{neqn}} (U(i)/w_i)^2 \right)^{1/2},$$

while for the maximum norm

$$U_{\text{norm}} = \max_i |u[i-1]/w_i|.$$

See the description of the *itol* parameter for the formulation of the weight vector w.

Constraint: *norm = Nag_MaxNorm* or *Nag_TwoNorm*.

20: *laopt — Nag_LinAlgOption*

On entry: the type of matrix algebra required. The possible choices are:

- **laopt = Nag_LinAlgFull**

 Full matrix methods to be used.

- **laopt = Nag_LinAlgBand**

 Banded matrix methods to be used.

- **laopt = Nag_LinAlgSparse**

 Sparse matrix methods to be used.

Constraint: *laopt = Nag_LinAlgFull*, *Nag_LinAlgBand* or *Nag_LinAlgSparse*

Note: the user is recommended to use the banded option when no coupled ODEs are present (i.e., $n\text{code} = 0$).
algopt[30] – const double

On entry: algopt may be set to control various options available in the integrator. If the user wishes
to employ all the default options, then algopt[0] should be set to 0.0. Default values will also be
used for any other elements of algopt set to zero. The permissible values, default values, and
meanings are as follows:

algopt[0] selects the ODE integration method to be used. If algopt[0] = 1.0, a BDF method is used
and if algopt[0] = 2.0, a Theta method is used. The default value is algopt[0] = 1.0.

If algopt[0] = 2.0, then algopt[i], for i = 1, 2, 3 are not used.

algopt[1] specifies the maximum order of the BDF integration formula to be used. algopt[1] may
be 1.0, 2.0, 3.0, 4.0 or 5.0. The default value is algopt[1] = 5.0.

algopt[2] specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the BDF method. If algopt[2] = 1.0 a modified Newton iteration is used and if
algopt[2] = 2.0 a functional iteration method is used. If functional iteration is selected and the
integrator encounters difficulty, then there is an automatic switch to the modified Newton iteration.
The default value is algopt[2] = 1.0.

algopt[3] specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as
\[R_{ij} = 0.0, \text{ for } j = 1, 2, \ldots, \text{npde} \text{ for some } i \text{ or when there is no } V_j(t) \text{ dependence in the coupled}
\] ODE system. If algopt[3] = 1.0, then the Petzold test is used. If algopt[3] = 2.0, then the Petzold
test is not used. The default value is algopt[3] = 1.0.

If algopt[0] = 1.0, then algopt[i], for i = 4, 5, 6 are not used.

algopt[4], specifies the value of Theta to be used in the Theta integration method.

\[0.51 \leq \text{algopt}[4] \leq 0.99. \] The default value is algopt[4] = 0.55;

algopt[5] specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the Theta method. If algopt[5] = 1.0, a modified Newton iteration is used and if

algopt[6] specifies whether or not the integrator is allowed to switch automatically between
modified Newton and functional iteration methods in order to be more efficient. If algopt[6] = 1.0,
then switching is allowed and if algopt[6] = 2.0, then switching is not allowed. The default value is

algopt[10] specifies a point in the time direction, \(t_{\text{crit}} \), beyond which integration must not be
attempted. The use of \(t_{\text{crit}} \) is described under the parameter itask. If algopt[0] \neq 0.0, a value of 0.0
for algopt[10], say, should be specified even if itask subsequently specifies that \(t_{\text{crit}} \) will not be
used.

algopt[11] specifies the minimum absolute step size to be allowed in the time integration. If this
option is not required, algopt[11] should be set to 0.0.

algopt[12] specifies the maximum absolute step size to be allowed in the time integration. If this
option is not required, algopt[12] should be set to 0.0.

algopt[13] specifies the initial step size to be attempted by the integrator. If algopt[13] = 0.0, then
the initial step size is calculated internally.

algopt[14] specifies the maximum number of steps to be attempted by the integrator in any one call.
If algopt[14] = 0.0, then no limit is imposed.

algopt[22] specifies what method is to be used to solve the nonlinear equations at the initial point to
initialise the values of \(U, U_t, V \) and \(\dot{V} \). If algopt[22] = 1.0, a modified Newton iteration is used
and if algopt[22] = 2.0, functional iteration is used. The default value is algopt[22] = 1.0.

algopt[28] and algopt[29] are used only for the sparse matrix algebra option, i.e.,
laopt = Nag_LinAlgSparse.

algopt[28] governs the choice of pivots during the decomposition of the first Jacobian matrix. It
should lie in the range \(0.0 < \text{algopt}[28] < 1.0 \), with smaller values biasing the algorithm towards
maintaining sparsity at the expense of numerical stability. If \(\text{algopt}[28] \) lies outside this range then the default value is used. If the functions regard the Jacobian matrix as numerically singular then increasing \(\text{algopt}[28] \) towards 1.0 may help, but at the cost of increased fill-in. The default value is \(\text{algopt}[28] = 0.1. \)

\(\text{algopt}[29] \) is used as a relative pivot threshold during subsequent Jacobian decompositions (see \(\text{algopt}[28] \)) below which an internal error is invoked. \(\text{algopt}[29] \) must be greater than zero, otherwise the default value is used. If \(\text{algopt}[29] \) is greater than 1.0 no check is made on the pivot size, and this may be a necessary option if the Jacobian is found to be numerically singular (see \(\text{algopt}[28] \)). The default value is \(\text{algopt}[29] = 0.0001. \)

22: \(\text{remesh} \) – Boolean

\(\text{remesh} \) indicates whether or not spatial remeshing should be performed.

\(\text{remesh} = \text{TRUE} \)

Indicates that spatial remeshing should be performed as specified.

\(\text{remesh} = \text{FALSE} \)

Indicates that spatial remeshing should be suppressed.

Note: \(\text{remesh} \) should not be changed between consecutive calls to \(\text{nag_pde_parab_1d_keller_ode_remesh (d03prc)} \). Remeshing can be switched off or on at specified times by using appropriate values for the parameters \(\text{nrmesh} \) and \(\text{trmesh} \) at each call.

23: \(\text{nfix} \) – Integer

\(\text{nfix} \) is the number of fixed mesh points.

Constraint: \(0 \leq \text{nfix} \leq \text{npts} - 2 \)

Note: the end-points \(x[0] \) and \(x[\text{npts} - 1] \) are fixed automatically and hence should not be specified as fixed points.

24: \(\text{xfix}[\dim] \) – const double

\(\text{xfix}[\dim] \) is the position of the fixed mesh points.

Note: the dimension, \(\dim \), of the array \(\text{xfix} \) must be at least \(\max(1, \text{nfix}) \).

Constraint: \(\text{xfix}[i-1], i = 1, 2, \ldots, \text{nfix}, \) must contain the value of the \(x \) coordinate at the \(i \)th fixed mesh point.

Constraint: \(\text{xfix}[i-1] < \text{xfix}[j], i = 1, 2, \ldots, \text{nfix} - 1, \) and each fixed mesh point must coincide with a user-supplied initial mesh point, that is \(\text{xfix}[i-1] = \text{x}[j-1] \) for some \(j, 2 \leq j \leq \text{npts} - 1. \)

Note: the positions of the fixed mesh points in the array \(x \) remain fixed during remeshing, and so the number of mesh points between adjacent fixed points (or between fixed points and end-points) does not change. The user should take this into account when choosing the initial mesh distribution.

25: \(\text{nrmesh} \) – Integer

\(\text{nrmesh} \) indicates that a new mesh is adopted according to the parameter \(\text{dxmesh} \) below. The mesh is tested every \(|\text{nrmesh}| \) timesteps.

\(\text{nrmesh} = 0 \)

Indicates that remeshing should take place just once at the end of the first time step reached when \(t > \text{trmesh} \) (see below).

\(\text{nrmesh} > 0 \)

Indicates that remeshing will take place every \(\text{nrmesh} \) time steps, with no testing using \(\text{dxmesh} \).
Note: nrmesh may be changed between consecutive calls to nag_pde_parab_1d_keller_ode_remesh (d03prc) to give greater flexibility over the times of remeshing.

26: dxmesh – double

On entry: determines whether a new mesh is adopted when nrmesh is set less than zero. A possible new mesh is calculated at the end of every \(|\text{nrmesh}|\) time steps, but is adopted only if

\[x_i^{\text{new}} > x_i^{\text{old}} + \text{dxmesh} \times (x_{i+1}^{\text{old}} - x_i^{\text{old}}), \]

or

\[x_i^{\text{new}} < x_i^{\text{old}} - \text{dxmesh} \times (x_i^{\text{old}} - x_{i-1}^{\text{old}}). \]

\(\text{dxmesh}\) thus imposes a lower limit on the difference between one mesh and the next.

Constraint: \(\text{dxmesh} \geq 0.0\).

27: trmesh – double

On entry: specifies when remeshing will take place when nrmesh is set to zero. Remeshing will occur just once at the end of the first time step reached when \(t\) is greater than trmesh.

Note: trmesh may be changed between consecutive calls to nag_pde_parab_1d_keller_ode_remesh (d03prc) to force remeshing at several specified times.

28: ipminf – Integer

On entry: the level of trace information regarding the adaptive remeshing.

\(\text{ipminf} = 0\)

No trace information.

\(\text{ipminf} = 1\)

Brief summary of mesh characteristics.

\(\text{ipminf} = 2\)

More detailed information, including old and new mesh points, mesh sizes and monitor function values.

Constraint: \(0 \leq \text{ipminf} \leq 2\).

29: xratio – double

On entry: input bound on adjacent mesh ratio (greater than 1.0 and typically in the range 1.5 to 3.0). The resmeshing functions will attempt to ensure that

\[(x_i - x_{i-1})/\text{xratio} < x_{i+1} - x_i < \text{xratio} \times (x_i - x_{i-1}). \]

Suggested value: \(\text{xratio} = 1.5\).

Constraint: \(\text{xratio} > 1.0\).

30: con – double

On entry: an input bound on the sub-integral of the monitor function \(F^{\text{mon}}(x)\) over each space step. The remeshing functions will attempt to ensure that

\[\int_{x_i}^{x_{i+1}} F^{\text{mon}}(x)dx \leq \text{con} \int_{x_1}^{x_npts} F^{\text{mon}}(x)dx, \]

(see Furzeland (1984)). \(\text{con}\) gives the user more control over the mesh distribution e.g., decreasing \(\text{con}\) allows more clustering. A typical value is \(2/(\text{npts} - 1)\), but the user is encouraged to experiment with different values. Its value is not critical and the mesh should be qualitatively correct for all values in the range given below.
Suggested value: \(\text{con} = 2.0/(\text{npts} - 1) \).

Constraint: \(0.1/(\text{npts} - 1) \leq \text{con} \leq 10.0/(\text{npts} - 1) \).

monitf

Function

`monitf` must supply and evaluate a remesh monitor function to indicate the solution behaviour of interest.

If the user specifies `remesh = FALSE`, i.e., no remeshing, then `monitf` will not be called and the dummy function `d03pel` may be used for `monitf`. (`d03pel` is included in the NAG C Library; however, its name may be implementation-dependent: see the Users’ Note for your implementation for details.)

Its specification is:

```c
void monitf (double t, Integer npts, Integer npde, const double x[], const double u[][], double fmon[], Nag_Comm *comm)
```

1: \(t \) – double
 Input

 On entry: the current value of the independent variable \(t \).

2: \(npts \) – Integer
 Input

 On entry: the number of mesh points in the interval \([a; b]\).

3: \(npde \) – Integer
 Input

 On entry: the number of PDEs in the system.

4: \(x[npts] \) – const double
 Input

 On entry: the current mesh. \(x[i - 1] \) contains the value of \(x_i \) for \(i = 1, 2, \ldots, \text{npts} \).

5: \(u[npde \times npts] \) – const double
 Input

 Note: where \(U(i, j) \) appears in this document it refers to the array element \(u[npde \times (j - 1) + i - 1] \). We recommend using a `#define` to make the same definition in your calling program.

 On entry: \(U(i, j) \) contains the value of \(U_i(x, t) \) at \(x = x[j - 1] \) and time \(t \), for \(i = 1, 2, \ldots, \text{npde} \), \(j = 1, 2, \ldots, \text{npts} \).

6: \(fmon[npts] \) – double
 Output

 On exit: \(fmon[i - 1] \) must contain the value of the monitor function \(F^{\text{mon}}(x) \) at mesh point \(x = x[i - 1] \).

 Constraint: \(fmon[i - 1] \geq 0 \).

7: \(comm \) – NAG_Comm *
 Input/Output

 The NAG communication parameter (see the Essential Introduction).

rsave[lrsave]

Input/Output

On entry: if `ind = 0`, `rsave` need not be set. If `ind = 1` then it must be unchanged from the previous call to the function.

On exit: contains information about the iteration required for subsequent calls.
33: lrsave – Integer

On entry: the dimension of the array rsave as declared in the function from which nag_pde_parab_1d_keller_ode_remesh (d03pfc) is called. Its size depends on the type of matrix algebra selected:

if laopt = Nag_LinAlgFull, lrsave ≥ neqn × neqn + nqum + nwkres + lenode;
if laopt = Nag_LinAlgBand, lrsave ≥ (3 × ml + 1) × neqn + nwkres + lenode;
if laopt = Nag_LinAlgSparse, lrsave ≥ 4 × neqn + 11 × neqn/2 + 1 + nwkres + lenode,

where \(ml \) and \(mu \) are the lower and upper half bandwidths given by \(npde + nleft - 1 \), and
\(mu = 2 \times npde - nleft - 1 \), for problems involving PDEs only, and
\(ml = mu = neqn - 1 \), for coupled PDE/ODE problems.

\(nwkres = npde \times (3 \times npde + 6 \times nxi + npts + 15) + nxi + ncode + 7 \times npts +
\(nfix + 1 \), when \(ncode > 0 \) and \(nxi > 0 \), and
\(nwkres = npde \times (3 \times npde + npts + 21) + ncode + 7 \times npts + nfix + 2 \),
when \(ncode > 0 \) and \(nxi = 0 \), and
\(nwkres = npde \times (3 \times npde + npts + 21) + 7 \times npts + nfix + 3 \), when \(ncode = 0 \).

\(lenode = (6 + \text{int(algopt}[1])] \times neqn + 50 \), when the BDF method is used, and
\(lenode = 9 \times neqn + 50 \), when the Theta method is used.

Note: when using the sparse option, the value of lrsave may be too small when supplied to the integrator. An estimate of the minimum size of lrsave is printed on the current error message unit if itrace > 0 and the function returns with fail.code = NE_INT_2.

34: isave|lisave| – Integer

On exit: the following components of the array isave concern the efficiency of the integration.

isave[0] contains the number of steps taken in time.

isave[1] contains the number of residual evaluations of the resulting ODE system used. One such evaluation involves evaluating the PDE functions at all the mesh points, as well as one evaluation of the functions in the boundary conditions.

isave[2] contains the number of Jacobian evaluations performed by the time integrator.

isave[3] contains the order of the ODE method last used in the time integration.

isave[4] contains the number of Newton iterations performed by the time integrator. Each iteration involves residual evaluation of the resulting ODE system followed by a back-substitution using the LU decomposition of the Jacobian matrix.

The rest of the array is used as workspace.

35: lisave – Integer

On entry: the dimension of the array lisave as declared in the function from which nag_pde_parab_1d_keller_ode_remesh (d03pfc) is called. Its size depends on the type of matrix algebra selected:

if laopt = Nag_LinAlgFull, lisave ≥ 25 + nfix
if laopt = Nag_LinAlgBand, lisave ≥ neqn + 25 + nfix
if laopt = Nag_LinAlgSparse, lisave ≥ 25 × neqn + 25 + nfix

Note: when using the sparse option, the value of lisave may be too small when supplied to the integrator. An estimate of the minimum size of lisave is printed on the current error message unit if itrace > 0 and the function returns with fail.code = NE_INT_2.

36: itask – Integer

On entry: the task to be performed by the ODE integrator. The permitted values of itask and their meanings are detailed below:

\[\text{NP3645/7] }\]
itask = 1
Normal computation of output values \(u \) at \(t = tout \) (by overshooting and interpolating).

itask = 2
a Take one step in the time direction and return.

itask = 3
Stop at first internal integration point at or beyond \(t = tout \).

itask = 4
Normal computation of output values \(u \) at \(t = tout \) but without overshooting \(t = t_{\text{crit}} \), where \(t_{\text{crit}} \) is described under the parameter \(\text{algopt} \).

itask = 5
Take one step in the time direction and return, without passing \(t_{\text{crit}} \), where \(t_{\text{crit}} \) is described under the parameter \(\text{algopt} \).

Constraint: \(1 \leq \text{itask} \leq 5 \).

itrace – Integer

On entry: the level of trace information required from nag_pde_parab_1d_keller_ode_remesh (d03prc) and the underlying ODE solver as follows:
if \(\text{itrace} \leq -1 \), no output is generated;
if \(\text{itrace} = 0 \), only warning messages from the PDE solver are printed;
if \(\text{itrace} = 1 \), then output from the underlying ODE solver is printed. This output contains details of Jacobian entries, the nonlinear iteration and the time integration during the computation of the ODE system;
if \(\text{itrace} = 2 \), the output from the underlying ODE solver is similar to that produced when \(\text{itrace} = 1 \), except that the advisory messages are given in greater detail;
if \(\text{itrace} \geq 3 \), the output from the underlying ODE solver is similar to that produced when \(\text{itrace} = 2 \), except that the advisory messages are given in greater detail.

outfile – char *

On entry: the name of a file to which diagnostic output will be directed. If \(\text{outfile} \) is NULL the diagnostic output will be directed to standard output.

ind – Integer *

On entry: \(\text{ind} \) must be set to 0 or 1.
\(\text{ind} = 0 \)
Starts or restarts the integration in time.
\(\text{ind} = 1 \)
Continues the integration after an earlier exit from the function. In this case, only the parameters \(\text{tout} \) and \(\text{fail} \) and the remeshing parameters \(\text{itrmesh}, \text{dxmesh}, \text{trmesh}, \text{xratio} \) and \(\text{con} \) may be reset between calls to nag_pde_parab_1d_keller_ode_remesh (d03prc).

Constraint: \(0 \leq \text{ind} \leq 1 \).

On exit: \(\text{ind} = 1 \).

comm – NAG_Comm *

The NAG communication parameter (see the Essential Introduction).
41: saved – Nag_D03_Save *
Input/Output

Note: saved is a NAG defined structure. See Section 2.2.1.1 of the Essential Introduction.

On entry: if the current call to nag_pde_parab_1d_keller_ode_remesh (d03prc) follows a previous call to a Chapter d03 function then saved must contain the unchanged value output from that previous call.

On exit: data to be passed unchanged to any subsequent call to a Chapter d03 function.

42: fail – NagError *
Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, nleft = ⟨value⟩.
Constraint: nleft ≥ 0.

On entry, npde = ⟨value⟩.
Constraint: npde ≥ 1.

On entry, npts = ⟨value⟩.
Constraint: npts ≥ 3.

On entry, itol is not equal to 1, 2, 3, or 4: itol = ⟨value⟩.

On entry, ind is not equal to 0 or 1: ind = ⟨value⟩.

On entry, itask is not equal to 1, 2, 3, 4 or 5: itask = ⟨value⟩.

On entry, ncode = ⟨value⟩.
Constraint: ncode ≥ 0.

ires set to an invalid value in call to pdedef, bndary, or odedef.

On entry, ipminf is not equal to 0, 1, or 2: ipminf = ⟨value⟩.

On entry, nxfix = ⟨value⟩.
Constraint: nxfix ≥ 0.

On entry, ncode = 0, but nxi is not equal to 0: nxi = ⟨value⟩.

On entry, nxi = ⟨value⟩.
Constraint: nxi ≥ 0.

NE_INT_2

When using the sparse option lisave or lrsave is too small: lisave = ⟨value⟩, lrsave = ⟨value⟩.

On entry, corresponding elements atol[i − 1] and rtol[j − 1] are both zero. i = ⟨value⟩, j = ⟨value⟩.

On entry, nxfix > npts - 2: nxfix = ⟨value⟩, npts = ⟨value⟩.

On entry, lrsave is too small: lrsave = ⟨value⟩. Minimum possible dimension: ⟨value⟩.

On entry, lisave is too small: lisave = ⟨value⟩. Minimum possible dimension: ⟨value⟩.

On entry, nleft > npde: nleft = ⟨value⟩, npde = ⟨value⟩.

NE_INT_4

On entry, neqn is not equal to npde × npts + ncode: neqn = ⟨value⟩, npde = ⟨value⟩, npts = ⟨value⟩, ncode = ⟨value⟩.

NE_ACC_IN_DOUBT

Integration completed, but small changes in atol or rtol are unlikely to result in a changed solution.
NE_FAILED_DERIV
In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This could be due to user setting $\text{ires} = 3$ in \texttt{pdef} or \texttt{bndary}.

NE_FAILED_START
atol and rtol were too small to start integration.

NE_FAILED_STEP
Error during Jacobian formulation for ODE system. Increase itrace for further details.
Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far as $\text{ts} = \langle \text{value} \rangle$.
Underlying ODE solver cannot make further progress from the point ts with the supplied values of atol and rtol. $\text{ts} = \langle \text{value} \rangle$.

NE_INCOMPAT_PARAM
On entry, the point $\text{xfix}[i-1]$ does not coincide with any $\text{x}[j-1]$: $i = \langle \text{value} \rangle$, $\text{xfix}[i-1] = \langle \text{value} \rangle$.
On entry, $\text{con} > 10.0/(\text{npts} - 1)$: $\text{con} = \langle \text{value} \rangle$, $\text{npts} = \langle \text{value} \rangle$.
On entry, $\text{con} < 0.1/(\text{npts} - 1)$: $\text{con} = \langle \text{value} \rangle$, $\text{npts} = \langle \text{value} \rangle$.

NE_INTERNAL_ERROR
Serious error in internal call to an auxiliary. Increase itrace for further details.

NE_ITER_FAIL
In solving ODE system, the maximum number of steps $\text{algopt}[14]$ has been exceeded. $\text{algopt}[14] = \langle \text{value} \rangle$.

NE_NOT STRICTLY_INCREASING
On entry $\text{xfix}[i] \leq \text{xfix}[i-1]$: $i = \langle \text{value} \rangle$, $\text{xfix}[i] = \langle \text{value} \rangle$, $\text{xfix}[i-1] = \langle \text{value} \rangle$.
On entry $\text{x}[i] \leq \text{x}[i-1]$: $i = \langle \text{value} \rangle$, $\text{x}[i] = \langle \text{value} \rangle$, $\text{x}[i-1] = \langle \text{value} \rangle$.
On entry, mesh points x appear to be badly ordered: $i = \langle \text{value} \rangle$, $\text{x}[i-1] = \langle \text{value} \rangle$; $j = \langle \text{value} \rangle$, $\text{x}[j-1] = \langle \text{value} \rangle$.

NE_REAL
On entry, $\text{xratio} = \langle \text{value} \rangle$.
Constraint: $\text{xratio} > 1.0$.
On entry, $\text{dxmesh} = \langle \text{value} \rangle$.
Constraint: $\text{dxmesh} \geq 0.0$.

NE_REAL_2
On entry, at least one point in x lies outside $[\text{x}[0], \text{x}[\text{npts} - 1]]$: $\text{x}[0] = \langle \text{value} \rangle$, $\text{x}[\text{npts} - 1] = \langle \text{value} \rangle$.
On entry, $\text{tout} - \text{ts}$ is too small: $\text{tout} = \langle \text{value} \rangle$, $\text{ts} = \langle \text{value} \rangle$.
On entry, $\text{tout} \leq \text{ts}$: $\text{tout} = \langle \text{value} \rangle$, $\text{ts} = \langle \text{value} \rangle$.

NE_REAL_ARRAY
On entry, $\text{rtol}[i-1] < 0.0$: $i = \langle \text{value} \rangle$, $\text{rtol}[i-1] = \langle \text{value} \rangle$.
On entry, $\text{atol}[i-1] < 0.0$: $i = \langle \text{value} \rangle$, $\text{atol}[i-1] = \langle \text{value} \rangle$.

[NP2645/7]
NE_REMESH_CHANGED
remesh has been changed between calls to nag_pde_parab_1d_fd_ode_remesh (d03ppc).

NE_SING_JAC
Singular Jacobian of ODE system. Check problem formulation.

NE_USER_STOP
In evaluating residual of ODE system, ires = 2 has been set in pdedef, bndary, or odedef. Integration is successful as far as ts: ts = ⟨value⟩.

NE_ZERO_WTS
Zero error weights encountered during time integration.

NE_ALLOC_FAIL
Memory allocation failed.

NE_BAD_PARAM
On entry, parameter ⟨value⟩ had an illegal value.

NE_NOT_WRITE_FILE
Cannot open file ⟨value⟩ for writing.

NE_NOT_CLOSE_FILE
Cannot close file ⟨value⟩.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy
The function controls the accuracy of the integration in the time direction but not the accuracy of the approximation in space. The spatial accuracy depends on both the number of mesh points and on their distribution in space. In the time integration only the local error over a single step is controlled and so the accuracy over a number of steps cannot be guaranteed. The user should therefore test the effect of varying the accuracy parameters, atol and rtol.

8 Further Comments
The Keller box scheme can be used to solve higher-order problems which have been reduced to first-order by the introduction of new variables (see the example in Section 9). In general, a second-order problem can be solved with slightly greater accuracy using the Keller box scheme instead of a finite-difference scheme (nag_pde_parab_1d_fd_ode_remesh (d03ppc) for example), but at the expense of increased CPU time due to the larger number of function evaluations required.

It should be noted that the Keller box scheme, in common with other central-difference schemes, may be unsuitable for some hyperbolic first-order problems such as the apparently simple linear advection equation $U_t + aU_x = 0$, where a is a constant, resulting in spurious oscillations due to the lack of dissipation. This type of problem requires a discretisation scheme with upwind weighting (nag_pde_parab_1d_cd_ode_remesh (d03psc) for example), or the addition of a second-order artificial dissipation term.

The time taken depends on the complexity of the system, the accuracy requested, and the frequency of the mesh updates. For a given system with fixed accuracy and mesh-update frequency it is approximately proportional to neqn.
9 Example

This example is the first-order system

\[
\begin{align*}
\frac{\partial U_1}{\partial t} + \frac{\partial U_1}{\partial x} + \frac{\partial U_2}{\partial x} & = 0, \\
\frac{\partial U_2}{\partial t} + 4 \frac{\partial U_1}{\partial x} + \frac{\partial U_2}{\partial x} & = 0,
\end{align*}
\]

for \(x \in [0, 1] \) and \(t \geq 0 \).

The initial conditions are

\[
U_1(x, 0) = e^x, \\
U_2(x, 0) = x^2 + \sin(2\pi x^2),
\]

and the Dirichlet boundary conditions for \(U_1 \) at \(x = 0 \) and \(U_2 \) at \(x = 1 \) are given by the exact solution:

\[
\begin{align*}
U_1(x, t) & = \frac{1}{2} \{ e^{x+t} + e^{x-3t} \} + \frac{1}{4} \{ \sin(2\pi(x - 3t)^2) - \sin(2\pi(x + t)^2) \} + 2t^2 - 2xt, \\
U_2(x, t) & = e^{x-3t} - e^{-x+t} + \frac{1}{2} \{ \sin(2\pi(x - 3t)^2) + \sin(2\pi(x + t)^2) \} + x^2 + 5t^2 - 2xt.
\end{align*}
\]

9.1 Program Text

/* nag_pde_parab_1d_keller_ode_remesh (d03prc) Example Program.
** Copyright 2001 Numerical Algorithms Group.
** Mark 7, 2001.
*/
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
#include <nagx01.h>

static void pdedef(Integer, double, double, const double[], const double[],
const double[], Integer, const double[], const double[],
double[], Integer *, Nag_Comm *);
static void bndary(Integer, double, integer, integer, const double[],
const double[], integer, const double[], const double[],
double[], integer *, Nag_Comm *);
static void uvinit(Integer, integer, integer, double *, double *);
static void monitf(double, Integer, integer, const double[],
const double[], double[], Nag_Comm *,
double *, integer *, double *, double *);
static void exact(double, Integer, integer, double [],
const double [], double [], double [], Integer, double [],
Nag_Comm *);

int main(void)
{
 const Integer npde=2, npts=61, ncode=0, nxi=0, nxfix=0, nleft=1,
 itype=1, intpts=5, negn=npde*npts+ncode, lisave=25+nxfix,
 lwkres=npde*(npts+3*npde+21)+7*npts+nxfix+3, lenode=11*negn+50,
 lrsave=negn*negn+negn+lwkres+lenode;
 double con, dxmesh, tout, trmesh, ts, xratio;
 Integer exit_status, i, ind, ipminf, it, itask, itol, itrace;
 Boolean remesh, theta;

 [NP3645/7]
double *algopt=0, *atol=0, *rsave=0, *rtol=0, *u=0, *ue=0,
 *uout=0, *x=0, *xfix=0, *xi=0, *xout=0;
Integer *isave=0;
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;

/* Allocate memory */
if (!(algopt = NAG_ALLOC(30, double)) ||
 !(atol = NAG_ALLOC(1, double)) ||
 !(rsave = NAG_ALLOC(lrsave, double)) ||
 !(rtol = NAG_ALLOC(1, double)) ||
 !(u = NAG_ALLOC(npde*npts, double)) ||
 !(ue = NAG_ALLOC(npde*npts, double)) ||
 !(uout = NAG_ALLOC(npde*intpts*itype, double)) ||
 !(x = NAG_ALLOC(npts, double)) ||
 !(xfix = NAG_ALLOC(1, double)) ||
 !(xi = NAG_ALLOC(1, double)) ||
 !(xout = NAG_ALLOC(intpts, double)) ||
 !(isave = NAG_ALLOC(lisave, Integer)))
{
 Vprintf("Allocation failure\n");
 exit_status = 1;
 goto END;
}
INIT_FAIL(fail);
exit_status = 0;
Vprintf("d03prc Example Program Results\n\n");
itrace = 0;
itol = 1;
itol[0] = 5.0e-5;
rtol[0] = atol[0];
Vprintf(" Accuracy requirement =%10.3e", atol[0]);
Vprintf(" Number of points = %3ld\n\n", npts);
/* Set remesh parameters */
remesh = TRUE;
nrmesh = 3;
dxmesh = 0.0;
trmesh = 0.0;
con = 5.0/(npts-1.0);
xratio = 1.2;
ipminf = 0;
Vprintf(" Remeshing every %3ld time steps\n\n", nrmesh);
/* Initialise mesh */
for (i = 0; i < npts; ++i) x[i] = i/(npts-1.0);
xout[0] = 0.0;
xout[1] = 0.25;
xout[2] = 0.5;
xout[3] = 0.75;
xout[4] = 1.0;
Vprintf(" x");
for (i = 0; i < intpts; ++i)
{
 Vprintf("%10.4f", xout[i]);
 Vprintf((i+1)%5 == 0 || i == 4 ?"\n": "");
}Vprintf("\n\n");
xi[0] = 0.0;
ind = 0;
itask = 1;
/* Set theta to TRUE if the Theta integrator is required */

theta = FALSE;
for (i = 0; i < 30; ++i) algopt[i] = 0.0;
if (theta)
{
 algopt[0] = 2.0;
 algopt[5] = 2.0;
 algopt[6] = 1.0;
}

/* Loop over output value of t */

ts = 0.0;
tout = 0.0;
for (it = 0; it < 5; ++it)
{
 tout = 0.05*(it+1);

 d03prc(npde, &ts, tout, pdedef, bndary, uvinit, u, npts,
 x, nleft, ncode, d03pek, nxi, xi, neqn, rtol, atol, itol,
 Nag_TwoNorm, Nag_LinAlgFull, algopt, remesh, nxfix, xfix,
 nrmesh, dxmesh, trmesh, ipminf, xratio, con, monitf, rsave,
 lrsave, isave, lisave, itask, itrace, 0, &ind, &comm, &saved,
 &fail);

 if (fail.code != NE_NOERROR)
 {
 Vprintf("Error from d03prc.\n", fail.message);
 exit_status = 1;
 goto END;
 }

 /* Interpolate at output points */

 d03pzc(npde, 0, u, npts, x, xout, intpts, itype, uout, &fail);

 if (fail.code != NE_NOERROR)
 {
 Vprintf("Error from d03pzc.\n", fail.message);
 exit_status = 1;
 goto END;
 }

 /* Check against exact solution */

 exact(ts, npde, intpts, xout, ue);
 Vprintf(" t = %6.3f\n", ts);
 Vprintf(" Approx ul");

 for (i = 1; i <= intpts; ++i)
 {
 Vprintf("%10.4f", UOUT(1,i,1));
 Vprintf(" Approx u2");

 Vprintf(" Exact ul");
 for (i = 1; i <= 5; ++i)
 {
 Vprintf("%10.4f", UE(1,i));
 Vprintf(" Approx u2");

 Vprintf(" Exact ul");
 for (i = 1; i <= 5; ++i)

Vprintf("%10.4f", UOUT(2,i,1));
Vprintf(i%5 == 0 || i == 5 ?"\n":"");
}

Vprintf(" Exact u2 ");
for (i = 1; i <= 5; ++i)
{
 Vprintf("%10.4f", UE(2,i));
 Vprintf(i%5 == 0 || i == 5 ?"\n":"");
}
Vprintf("\n");
}

Vprintf(" Number of integration steps in time = %6ld ", isave[0]);
Vprintf(" Number of function evaluations = %6ld ", isave[1]);
Vprintf(" Number of Jacobian evaluations = %6ld ", isave[2]);
Vprintf(" Number of iterations = %6ld
 ");

END:
if (algopt) NAG_FREE(algopt);
if (atol) NAG_FREE(atol);
if (rsave) NAG_FREE(rsave);
if (rtol) NAG_FREE(rtol);
if (u) NAG_FREE(u);
if (ue) NAG_FREE(ue);
if (uout) NAG_FREE(uout);
if (x) NAG_FREE(x);
if (xfix) NAG_FREE(xfix);
if (xi) NAG_FREE(xi);
if (xout) NAG_FREE(xout);
if (isave) NAG_FREE(isave);

return exit_status;
}

static void uvinit(Integer npde, Integer npts, Integer nxi, const double x[],
 const double xi[], double u[], Integer ncode, double v[],
 Nag_Comm *comm)
{
 Integer i;
 for (i = 1; i <= npts; ++i)
 {
 U(1, i) = exp(x[i-1]);
 U(2, i) = x[i-1]*x[i-1] + sin(2.0*nag_pi*(x[i-1]*x[i-1]));
 }
 return;
}

static void pdedef(Integer npde, double t, double x, const double u[],
 const double udot[], const double ux[], Integer ncode,
 const double v[], const double vdot[], double res[],
 Integer *ires, Nag_Comm *comm)
{
 if (*ires == -1)
 {
 res[0] = udot[0];
 res[1] = udot[1];
 } else {
 res[0] = udot[0] + ux[0] + ux[1];
 res[1] = udot[1] + 4.0*ux[0] + ux[1];
 }
 return;
}

static void bndary(Integer npde, double t, Integer ibnd, Integer nobc,
 const double u[], const double udot[], Integer ncode,
 const double v[], const double vdot[], double res[],
 Integer *ires, Nag_Comm *comm)
double pp;
pp = 2.0*nag_pi;

if (ibnd == 0) {
 if (*ires == -1) {
 res[0] = 0.0;
 } else {
 res[0] = u[0] - 0.5*(exp(t) + exp(-3.0*t))
 -0.25*(sin(9.0*pp*t*t) - sin(pp*t*t)) - 2.0*t*t;
 }
} else {
 if (*ires == -1) {
 res[0] = 0.0;
 } else {
 res[0] = u[1] - (exp(1.0-3.0*t) - exp(t + 1.0)
 + 0.5*(sin(pp*(1.0-3.0*t)*(1.0-3.0*t))
 + sin(pp*(t+1.0)*(t+1.0)))
 + 1.0 + 5.0*t*t - 2.0*t);
 }
}
return;

static void monitf(double t, Integer npts, Integer npde, const double x[],
 const double u[], double fmon[], Nag_Comm *comm) {
 double d2x1, d2x2, h1, h2, h3;
 Integer i;
 for (i = 2; i <= npts-1; ++i) {
 h1 = x[i - 1] - x[i - 2];
 h2 = x[i] - x[i - 1];
 h3 = 0.5*(x[i] - x[i - 2]);
 /* Second derivatives */
 d2x1 = fabs(((U(1,i+1)-U(1,i))/h2-(U(1,i)-U(1,i-1))/h1)/h3);
 d2x2 = fabs(((U(2,i+1)-U(2,i))/h2-(U(2,i)-U(2,i-1))/h1)/h3);
 fmon[i-1] = d2x1; if (d2x2 > d2x1) fmon[i-1] = d2x2;
 }
 fmon[0] = fmon[1];
 fmon[npts-1] = fmon[npts-2];
 return;
}

static void exact(double t, Integer npde, Integer npts, double *x,
 double *u) {
 /* Exact solution (for comparison purposes) */
 double pp;
 Integer i;
 pp = 2.0*nag_pi;
 for (i = 1; i <= npts; ++i) {
 U(1, i) = 0.5*(exp(x[i-1]+t) + exp(x[i-1]-3.0*t))
 + 0.25*(sin(pp*(x[i-1]-3.0*t)*(x[i-1]-3.0*t))
 - sin(pp*(x[i-1]+t)*(x[i-1]+t)))
 + 2.0*t*t - 2.0*x[i-1]*t;
 U(2, i) = exp(x[i-1]-3.0*t) - exp(x[i-1]+t)
 + 0.5*(sin(pp*((x[i-1]-3.0*t)*(x[i-1]-3.0*t))
 + sin(pp*((x[i-1]+t)*(x[i-1]+t))))
 + x[i-1]*x[i-1] + 5.0*t*t - 2.0*x[i-1]*t;
9.2 Program Data

None.

9.3 Program Results

d03prc Example Program Results

Accuracy requirement = 5.000e-05 Number of points = 61

Remeshing every 3 time steps

<table>
<thead>
<tr>
<th>x</th>
<th>0.0000</th>
<th>0.2500</th>
<th>0.5000</th>
<th>0.7500</th>
<th>1.0000</th>
</tr>
</thead>
</table>

\textbf{t = 0.050}

Approx u_1 0.9923 1.0894 1.4686 2.3388 2.1071
Exact u_1 0.9923 1.0893 1.4686 2.3391 2.1073
Approx u_2 -0.0997 0.1057 0.7180 0.0967 0.2021
Exact u_2 -0.0998 0.1046 0.7193 0.0966 0.2022

\textbf{t = 0.100}

Approx u_1 1.0613 0.9856 1.3120 2.3084 2.1039
Exact u_1 1.0613 0.9851 1.3113 2.3092 2.1025
Approx u_2 -0.0150 -0.0481 0.1075 -0.3240 0.3753
Exact u_2 -0.0150 -0.0495 0.1089 -0.3235 0.3753

\textbf{t = 0.150}

Approx u_1 1.1485 0.9763 1.2658 2.0906 2.2027
Exact u_1 1.1485 0.9764 1.2654 2.0911 2.2027
Approx u_2 0.1370 -0.0250 -0.4107 -0.8577 0.3096
Exact u_2 0.1366 -0.0266 -0.4100 -0.8567 0.3096

\textbf{t = 0.200}

Approx u_1 1.0956 1.0529 1.3407 1.8322 2.2035
Exact u_1 1.0956 1.0515 1.3393 1.8327 2.2050
Approx u_2 0.0381 0.1282 -0.7979 -1.1776 -0.4221
Exact u_2 0.0370 0.1247 -0.7961 -1.1784 -0.4221

\textbf{t = 0.250}

Approx u_1 0.8119 1.1288 1.5163 1.6076 2.2027
Exact u_1 0.8119 1.1276 1.5142 1.6091 2.2035
Approx u_2 -0.4968 0.2123 -1.0259 -1.2149 -1.3938
Exact u_2 -0.4992 0.2078 -1.0257 -1.2183 -1.3938

Number of integration steps in time = 50
Number of function evaluations = 2579
Number of Jacobian evaluations = 20
Number of iterations = 126