NAG C Library Function Document

nag_pde_parab_1d_fd_ode_remesh (d03ppc)

1 Purpose

nag_pde_parab_1d_fd_ode_remesh (d03ppc) integrates a system of linear or nonlinear parabolic partial differential equations (PDEs) in one space variable, with scope for coupled ordinary differential equations (ODEs), and automatic adaptive spatial remeshing. The spatial discretisation is performed using finite differences, and the method of lines is employed to reduce the PDEs to a system of ODEs. The resulting system is solved using a Backward Differentiation Formula (BDF) method or a Theta method (switching between Newton’s method and functional iteration).

2 Specification

void nag_pde_parab_1d_fd_ode_remesh (Integer npde, Integer m, double *ts,
 double *tout,
 void (*pdedef)(Integer npde, double t, double x, const double u[],
 const double ux[], Integer ncode, const double v[], const double vdot[],
 double p[], double q[], double r[], Integer *ires, Nag_Comm *comm),
 void (*bndary)(Integer npde, double t, const double u[], const double ux[],
 Integer ncode, const double v[], const double vdot[], Integer ibnd,
 double beta[], double gamma[], Integer *ires, Nag_Comm *comm),
 void (*uvinit)(Integer npde, Integer npts, Integer nxi, const double x[],
 const double xi[], double u[], Integer ncode, double v[],
 Nag_Comm *comm),
 double u[], Integer npts, double x[], Integer ncode,
 void (*odedef)(Integer npde, double t, Integer ncode, const double v[],
 const double vdot[], Integer nxi, const double xi[], const double ucpx[],
 const double ucpt[], const double ucpxt[], double f[], Integer *ires, Nag_Comm *comm),
 Integer nxi, const double xi[], Integer neqn, const double rtol[],
 const double atol[], Integer itol, Nag_NormType norm, Nag_LinAlgOption laopt,
 const double algopt[], Boolean remesh, Integer nxfix, const double xfix[],
 Integer nrmesh, double dxmesh, double trmesh, Integer ipminf, double xratio,
 double con,
 void (*monitf)(double t, Integer npts, Integer npde, const double x[],
 const double u[], const double r[], double fmon[], Nag_Comm *comm),
 double rsave[], Integer lrsave, Integer isave[], Integer lisave, Integer lsave,
 Integer itrace, const char *outfile, Integer *ind, Nag_Comm *comm,
 Nag_D03_Save *saved, NagError *fail)

3 Description

nag_pde_parab_1d_fd_ode_remesh (d03ppc) integrates the system of parabolic-elliptic equations and coupled ODEs

\[\sum_{j=1}^{npde} P_{ij} \frac{\partial U^j}{\partial t} + Q_i = x^{-m} \frac{\partial}{\partial x} (x^m R_i), \quad i = 1, 2, \ldots, npde, \quad a \leq x \leq b, \quad t \geq t_0, \quad (1) \]

\[F_i(t, V, \dot{V}, \xi, U^*, U^*_p, R^*, U^*_p, U^*_p) = 0, \quad i = 1, 2, \ldots, ncode, \quad (2) \]

where (1) defines the PDE part and (2) generalizes the coupled ODE part of the problem.
In (1), \(P_{i,j} \) and \(R_{i} \) depend on \(x, t, U, U_{x} \), and \(V; Q_{i} \) depends on \(x, t, U, U_{x}, V \) and linearly on \(\dot{V} \). The vector \(U \) is the set of PDE solution values
\[
U(x, t) = [U_{1}(x, t), \ldots, U_{\text{npde}}(x, t)]^{T},
\]
and the vector \(U_{x} \) is the partial derivative with respect to \(x \). The vector \(V \) is the set of ODE solution values
\[
V(t) = [V_{1}(t), \ldots, V_{\text{ncode}}(t)]^{T},
\]
and \(\dot{V} \) denotes its derivative with respect to time.

In (2), \(\xi \) represents a vector of \(n_{\xi} \) spatial coupling points at which the ODEs are coupled to the PDEs. These points may or may not be at some of the PDE spatial mesh points. \(U^{\ast}, U_{x}^{\ast}, R^{\ast}, U_{t}^{\ast} \) and \(U_{xt}^{\ast} \) are the functions \(U, U_{x}, R, U_{t} \) and \(U_{xt} \) evaluated at these coupling points. Each \(F_{i} \) may only depend linearly on time derivatives. Hence the equation (2) may be written more precisely as
\[
F = G - A\dot{V} - B \begin{pmatrix} U_{t}^{\ast} \\ U_{xt}^{\ast} \end{pmatrix},
\]
where \(F = [F_{1}, \ldots, F_{\text{ncode}}]^{T}, G \) is a vector of length \(\text{ncode}, A \) is an \(\text{ncode} \) by \(\text{ncode} \) matrix, \(B \) is an \(\text{ncode} \) by \((n_{\xi} \times \text{npde}) \) matrix and the entries in \(G, A \) and \(B \) may depend on \(t, \xi, U^{\ast}, U_{t}^{\ast} \) and \(V \). In practice the user only needs to supply a vector of information to define the ODEs and not the matrices \(A \) and \(B \). (See Section 5 for the specification of the user-supplied function \texttt{pdedef}.)

The integration in time is from \(t_{0} \) to \(t_{\text{out}} \), over the space interval \(a \leq x \leq b \), where \(a = x_{1} \) and \(b = x_{\text{npnts}} \) are the leftmost and rightmost points of a mesh \(x_{1}, x_{2}, \ldots, x_{\text{npnts}} \) defined initially by the user and (possibly) adapted automatically during the integration according to user-specified criteria. The co-ordinate system in space is defined by the following values of \(m; m = 0 \) for Cartesian co-ordinates, \(m = 1 \) for cylindrical polar co-ordinates and \(m = 2 \) for spherical polar co-ordinates.

The PDE system which is defined by the functions \(P_{i,j}, Q_{i} \) and \(R_{i} \) must be specified in the user-supplied function \texttt{pdedef}.

The initial \((t = t_{0})\) values of the functions \(U(x, t) \) and \(V(t) \) must be specified in a function \texttt{uvinit} supplied by the user. Note that \texttt{uvinit} will be called again following any initial remeshing, and so \(U(x, t_{0}) \) should be specified for all values of \(x \) in the interval \(a \leq x \leq b \), and not just the initial mesh points.

The functions \(R_{i} \), which may be thought of as fluxes, are also used in the definition of the boundary conditions. The boundary conditions must have the form
\[
\beta_{i}(x, t)R_{i}(x, t, U, U_{x}, V) = \gamma_{i}(x, t, U, U_{x}, V, \dot{V}), \quad i = 1, 2, \ldots, \text{npde},
\]
where \(x = a \) or \(x = b \).

The boundary conditions must be specified in a function \texttt{bndary} provided by the user. The function \(\gamma_{i} \) may depend linearly on \(V \).

The problem is subject to the following restrictions:

(i) In (1), \(\dot{V}_{j}(t) \), for \(j = 1, 2, \ldots, \text{ncode} \), may only appear linearly in the functions \(Q_{i}, \) for \(i = 1, 2, \ldots, \text{npde} \), with a similar restriction for \(\gamma \);

(ii) \(P_{i,j} \) and the flux \(R_{i} \) must not depend on any time derivatives;

(iii) \(t_{0} < t_{\text{out}} \), so that integration is in the forward direction;

(iv) The evaluation of the terms \(P_{i,j}, Q_{i} \) and \(R_{i} \) is done approximately at the mid-points of the mesh \(x[i - 1], \) for \(i = 1, 2, \ldots, \text{npts} \), by calling the function \texttt{pdedef} for each mid-point in turn. Any discontinuities in these functions must therefore be at one or more of the fixed mesh points specified by \texttt{fix};

(v) At least one of the functions \(P_{i,j} \) must be non-zero so that there is a time derivative present in the PDE problem;
(vi) If \(m > 0 \) and \(x_1 = 0 \), which is the left boundary point, then it must be ensured that the PDE solution is bounded at this point. This can be done by either specifying the solution at \(x = 0 \) or by specifying a zero flux there, that is \(\beta_i = 1.0 \) and \(\gamma_i = 0.0 \). See also Section 8 below.

The algebraic-differential equation system which is defined by the functions \(F_i \) must be specified in the user-supplied function \texttt{odedef}. The user must also specify the coupling points \(\xi \) in the array \(\texttt{xi} \).

The parabolic equations are approximated by a system of ODEs in time for the values of \(U_i \) at mesh points. For simple problems in Cartesian co-ordinates, this system is obtained by replacing the space derivatives by the usual central, three-point finite-difference formula. However, for polar and spherical problems, or problems with nonlinear coefficients, the space derivatives are replaced by a modified three-point formula which maintains second order accuracy. In total there are \(\texttt{npde} \times \texttt{npts} + \texttt{ncode} \) ODEs in time direction. This system is then integrated forwards in time using a Backward Differentiation Formula (BDF) or a Theta method.

The adaptive space remeshing can be used to generate meshes that automatically follow the changing time-dependent nature of the solution, generally resulting in a more efficient and accurate solution using fewer mesh points than may be necessary with a fixed uniform or non-uniform mesh. Problems with travelling wavefronts or variable-width boundary layers for example will benefit from using a moving adaptive mesh. The discrete time-step method used here (developed by Furzeland (1984)) automatically creates a new mesh based on the current solution profile at certain time-steps, and the solution is then interpolated onto the new mesh and the integration continues.

The method requires the user to supply a function \texttt{monitf} which specifies in an analytical or numerical form the particular aspect of the solution behaviour the user wishes to track. This so-called monitor function is used to choose a mesh which equally distributes the integral of the monitor function over the domain. A typical choice of monitor function is the second space derivative of the solution value at each point (or some combination of the second space derivatives if there is more than one solution component), which results in refinement in regions where the solution gradient is changing most rapidly.

The user specifies the frequency of mesh updates together with certain other criteria such as adjacent mesh ratios. Remeshing can be expensive and the user is encouraged to experiment with the different options in order to achieve an efficient solution which adequately tracks the desired features of the solution.

Note that unless the monitor function for the initial solution values is zero at all user-specified initial mesh points, a new initial mesh is calculated and adopted according to the user-specified remeshing criteria. The function \texttt{uvinit} will then be called again to determine the initial solution values at the new mesh points (there is no interpolation at this stage) and the integration proceeds.

4 References

Furzeland R M (1984) The construction of adaptive space meshes \textit{TNER.85.022} Thornton Research Centre, Chester

5 Parameters

1: \texttt{npde} – Integer

\textit{Input}

\textit{On entry}: the number of PDEs to be solved.

\textit{Constraint}: \texttt{npde} \(\geq 1 \).
2: \(m \) – Integer
 \textit{Input}

 \textit{On entry:} the co-ordinate system used:

 \(m = 0 \)

 Indicates Cartesian co-ordinates.

 \(m = 1 \)

 Indicates cylindrical polar co-ordinates.

 \(m = 2 \)

 Indicates spherical polar co-ordinates.

 \textit{Constraint:} \(0 \leq m \leq 2. \)

3: \(ts \) – double *
 \textit{Input/Output}

 \textit{On entry:} the initial value of the independent variable \(t \).

 \textit{On exit:} the value of \(t \) corresponding to the solution values in \(u \). Normally \(ts = tout \).

 \textit{Constraint:} \(ts < tout \).

4: \(tout \) – double
 \textit{Input}

 \textit{On entry:} the final value of \(t \) to which the integration is to be carried out.

5: \textit{pdef}
 \textit{Function}

 \textit{pdef} must evaluate the functions \(P_{i,j} \), \(Q_i \) and \(R_i \) which define the system of PDEs. The functions may depend on \(x \), \(t \), \(U \), \(U_x \) and \(V \). \(Q_i \) may depend linearly on \(V \). \textit{pdef} is called approximately midway between each pair of mesh points in turn by \textit{nag_pde_parab_1d_fd_ode_remesh} (d03ppc).

```c
void pdef (Integer npde, double t, double x, const double u[],
           const double ux[], Integer ncode, const double v[], const double vdot[],
           double p[], double q[], double r[], Integer *ires, Nag_Comm *comm)
```

1: \(npde \) – Integer
 \textit{Input}

 \textit{On entry:} the number of PDEs in the system.

2: \(t \) – double
 \textit{Input}

 \textit{On entry:} the current value of the independent variable \(t \).

3: \(x \) – double
 \textit{Input}

 \textit{On entry:} the current value of the space variable \(x \).

4: \(u[i] \) \((i = 1, \ldots, npde)\)
 \textit{Input}

 \textit{On entry:} \(u[i] \) contains the value of the component \(U_{i}(x,t) \), for \(i = 1, \ldots, npde \).

5: \(ux[i] \) \((i = 1, \ldots, npde)\)
 \textit{Input}

 \textit{On entry:} \(ux[i] \) contains the value of the component \((\partial U_{i}(x,t))/\partial x \), for \(i = 1, \ldots, npde \).

6: \(ncode \) – Integer
 \textit{Input}

 \textit{On entry:} the number of coupled ODEs in the system.
<table>
<thead>
<tr>
<th>7:</th>
<th>v[ncode] – const double</th>
<th>\textit{Input}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{On entry:}</td>
<td>\textit{v[i - 1]} contains the value of component (V_i(t)), for (i = 1, 2, \ldots, \text{ncode}).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8:</th>
<th>vdot[ncode] – const double</th>
<th>\textit{Input}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{On entry:}</td>
<td>\textit{vdot[i - 1]} contains the value of component (\dot{V}_i(t)), for (i = 1, 2, \ldots, \text{ncode}).</td>
<td></td>
</tr>
<tr>
<td>\textbf{Note:}</td>
<td>(V_i(t)), for (i = 1, 2, \ldots, \text{ncode}), may only appear linearly in (Q_j), for (j = 1, 2, \ldots, \text{npde}).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9:</th>
<th>p[npde × npde] – double</th>
<th>\textit{Output}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textbf{Note:}</td>
<td>where (P(i, j)) appears in this document it refers to the array element (p(j - 1) + i - 1). We recommend using a #define to make the same definition in your calling program.</td>
<td></td>
</tr>
<tr>
<td>\textit{On exit:}</td>
<td>(P(i, j)) must be set to the value of (P_{ij}(x, t, U, U_x, V)), for (i, j = 1, 2, \ldots, \text{npde}).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10:</th>
<th>q[npde] – double</th>
<th>\textit{Output}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{On exit:}</td>
<td>(q[i - 1]) must be set to the value of (Q_i(x, t, U, U_x, V)), for (i = 1, 2, \ldots, \text{npde}).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11:</th>
<th>r[npde] – double</th>
<th>\textit{Output}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{On exit:}</td>
<td>(r[i - 1]) must be set to the value of (R_i(x, t, U, U_x, V)), for (i = 1, 2, \ldots, \text{npde}).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12:</th>
<th>ires – Integer *</th>
<th>\textit{Input/Output}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{On entry:}</td>
<td>set to (-1) or (1).</td>
<td></td>
</tr>
<tr>
<td>\textit{On exit:}</td>
<td>should usually remain unchanged. However, the user may set \texttt{ires} to force the integration function to take certain actions as described below:</td>
<td></td>
</tr>
<tr>
<td>(\texttt{ires} = 2)</td>
<td>Indicates to the integrator that control should be passed back immediately to the calling function with the error indicator set to \texttt{fail.code = NE_USER_STOP}.</td>
<td></td>
</tr>
<tr>
<td>(\texttt{ires} = 3)</td>
<td>Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. The user may wish to set (\texttt{ires} = 3) when a physically meaningless input or output value has been generated. If the user consecutively sets (\texttt{ires} = 3), then \texttt{nag_pde_parab_1d_fd_ode_remesh(d03ppc)} returns to the calling function with the error indicator set to \texttt{fail.code = NE_FAILED_DERIV}.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13:</th>
<th>comm – NAG_Comm *</th>
<th>\textit{Input/Output}</th>
</tr>
</thead>
<tbody>
<tr>
<td>The NAG communication parameter (see the Essential Introduction).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6: bndary \textit{Function}

bndary must evaluate the functions \(\beta_i \) and \(\gamma_i \) which describe the boundary conditions, as given in (4).

\[
\text{void bndary (Integer npde, double t, const double u[], const double ux[], Integer ncode, const double v[], const double vdot[], Integer ibnd, double beta[], double gamma[], Integer *ires, NAG_Comm *comm)}
\]

1: \texttt{npde} – Integer \textit{Input}

\textit{On entry:} the number of PDEs in the system.
2: \(t \) – double
\(\quad \) Input
\(\quad \) On entry: the current value of the independent variable \(t \).

3: \(u \)\[\text{npde}\] – const double
\(\quad \) Input
\(\quad \) On entry: \(u[i - 1] \) contains the value of the component \(U_i(x,t) \) at the boundary specified by \(\text{ibnd} \), for \(i = 1,2,\ldots,\text{npde} \).

4: \(ux \)\[\text{npde}\] – const double
\(\quad \) Input
\(\quad \) On entry: \(ux[i - 1] \) contains the value of the component \(\partial U_i(x,t) / \partial x \) at the boundary specified by \(\text{ibnd} \), for \(i = 1,2,\ldots,\text{npde} \).

5: \(\text{ncode} \) – Integer
\(\quad \) Input
\(\quad \) On entry: the number of coupled ODEs in the system.

6: \(v \)\[\text{ncode}\] – const double
\(\quad \) Input
\(\quad \) On entry: \(v[i - 1] \) contains the value of component \(V_i(t) \), for \(i = 1,2,\ldots,\text{ncode} \).

7: \(vdot \)\[\text{ncode}\] – const double
\(\quad \) Input
\(\quad \) On entry: \(vdot[i - 1] \) contains the value of component \(\dot{V}_i(t) \), for \(i = 1,2,\ldots,\text{ncode} \).

Note: \(\dot{V}_i(t) \), for \(i = 1,2,\ldots,\text{ncode} \), may only appear linearly in \(\gamma_j \), for \(j = 1,2,\ldots,\text{npde} \).

8: \(\text{ibnd} \) – Integer
\(\quad \) Input
\(\quad \) On entry: specifies which boundary conditions are to be evaluated. If \(\text{ibnd} = 0 \), then \(\text{bndary} \) must set up the coefficients of the left-hand boundary, \(x = a \). If \(\text{ibnd} \neq 0 \), then \(\text{bndary} \) must set up the coefficients of the right-hand boundary, \(x = b \).

9: \(\beta \)\[\text{npde}\] – double
\(\quad \) Output
\(\quad \) On exit: \(\beta[i - 1] \) must be set to the value of \(\beta_i(x,t) \) at the boundary specified by \(\text{ibnd} \), for \(i = 1,2,\ldots,\text{npde} \).

10: \(\gamma \)\[\text{npde}\] – double
\(\quad \) Output
\(\quad \) On exit: \(\gamma[i - 1] \) must be set to the value of \(\gamma_i(x,t,U,U_x,V,\dot{V}) \) at the boundary specified by \(\text{ibnd} \), for \(i = 1,2,\ldots,\text{npde} \).

11: \(\text{ires} \) – Integer *
\(\quad \) Input/Output
\(\quad \) On entry: set to \(-1\) or \(1\).
\(\quad \) On exit: should usually remain unchanged. However, the user may set \(\text{ires} \) to force the integration function to take certain actions as described below:

\(\text{ires} = 2 \)
\(\quad \) Indicates to the integrator that control should be passed back immediately to the calling function with the error indicator set to \(\text{fail.code} = \text{NE.USER_STOP} \).

\(\text{ires} = 3 \)
\(\quad \) Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. The user may wish to set \(\text{ires} = 3 \) when a physically meaningless input or output value has been generated. If the user consecutively sets \(\text{ires} = 3 \), then \(\text{nag_pde_parab_1d_fd_ode_remesh} \) (d03ppc) returns to the calling function with the error indicator set to \(\text{fail.code} = \text{NE.FAILED_DERIV} \).
7: \textbf{uvinit} \quad \textit{Function}

\textbf{uvinit} must supply the initial \((t = t_0)\) values of \(U(x, t)\) and \(V(t)\) for all values of \(x\) in the interval \(a \leq x \leq b\).

```c
void uvinit (Integer npde, Integer npts, Integer nxi, const double x[],
            const double xi[], double u[], Integer ncode, double v[], Nag_Comm *comm)
```

1: \textbf{npde} – Integer \quad \textit{Input}

\textit{On entry:} the number of PDEs in the system.

2: \textbf{npts} – Integer \quad \textit{Input}

\textit{On entry:} the number of mesh points in the interval \([a, b]\).

3: \textbf{nxi} – Integer \quad \textit{Input}

\textit{On entry:} the number of ODE/PDE coupling points.

4: \textbf{x[npts]} – const double \quad \textit{Input}

\textit{On entry:} the current mesh. \(x[i - 1]\) contains the value of \(x_i\) for \(i = 1, 2, \ldots, \text{npts}\).

5: \textbf{xi[nxi]} – const double \quad \textit{Input}

\textit{On entry:} \(xi[i - 1]\) contains the value of the ODE/PDE coupling point, \(\xi_i\), for \(i = 1, 2, \ldots, \text{nxi}\).

6: \textbf{u[npde \times npts]} – double \quad \textit{Output}

\textit{Note:} where \(U(i, j)\) appears in this document it refers to the array element \(u[npde \times (j - 1) + i - 1]\). We recommend using a \#define to make the same definition in your calling program.

\textit{On exit:} \(U(i, j)\) contains the value of the component \(U_i(x_j, t_0)\), for \(i = 1, 2, \ldots, \text{npde}; j = 1, 2, \ldots, \text{npts}\).

7: \textbf{ncode} – Integer \quad \textit{Input}

\textit{On entry:} the number of coupled ODEs in the system.

8: \textbf{v[ncode]} – double \quad \textit{Output}

\textit{On exit:} \(v[i - 1]\) contains the value of component \(V_i(t_0)\), for \(i = 1, 2, \ldots, \text{ncode}\).

9: \textbf{comm} – NAG_Comm * \quad \textit{Input/Output}

\textit{The NAG communication parameter (see the Essential Introduction).}

8: \textbf{u[neqn]} – double \quad \textit{Input/Output}

\textit{On entry:} if \textbf{ind} = 1 the value of \(u\) must be unchanged from the previous call.

\textit{On exit:} \(u[npde \times (j - 1) + i - 1]\) contains the computed solution \(U_i(x_j, t)\), for \(i = 1, 2, \ldots, \text{npde}; j = 1, 2, \ldots, \text{npts}\), and \(u[npts \times \text{npde} + k - 1]\) contains \(V_k(t)\), for \(k = 1, 2, \ldots, \text{ncode}\), evaluated at \(t = ts\).
9: \text{npts} – Integer \quad \text{Input}

\text{On entry:} the number of mesh points in the interval \([a, b]\).

\text{Constraint:} \text{npts} \geq 3.

10: \text{x[npts]} – double \quad \text{Input/Output}

\text{On entry:} the initial mesh points in the space direction. \text{x[0]} must specify the left-hand boundary, \(a\) and \text{x[npts] - 1} must specify the right-hand boundary, \(b\).

\text{Constraint:} \text{x[0]} < \text{x[1]} < \ldots < \text{x[npts] - 1}.

\text{On exit:} the final values of the mesh points.

11: \text{ncode} – Integer \quad \text{Input}

\text{On entry:} the number of coupled ODE in the system.

\text{Constraint:} \text{ncode} \geq 0.

12: \text{odedef} \quad \text{Function}

\text{odedef} must evaluate the functions \(F\), which define the system of ODEs, as given in (3). If the user wishes to compute the solution of a system of PDEs only (\text{ncode} = 0), \text{odedef} must be the dummy function \text{d03pck}. (\text{d03pck} is included in the NAG C Library; however, its name may be implementation-dependent: see the Users’ Note for your implementation for details.)

```c
void odedef (Integer npde, double t, Integer ncode, const double v[],
            const double vdot[], Integer nxi, const double xi[], const double ucp[],
            const double ucpx[], const double rcp[], const double ucp1[],
            const double ucp1x[], double f[], Integer *ires, Nag_Comm *comm)
```

1: \text{npde} – Integer \quad \text{Input}

\text{On entry:} the number of PDEs in the system.

2: \text{t} – double \quad \text{Input}

\text{On entry:} the current value of the independent variable \(t\).

3: \text{ncode} – Integer \quad \text{Input}

\text{On entry:} the number of coupled ODEs in the system.

4: \text{v[ncode]} – const double \quad \text{Input}

\text{On entry:} \text{v[i - 1]} contains the value of component \(V_i(t)\), for \(i = 1, 2, \ldots, \text{ncode}\).

5: \text{vdot[ncode]} – const double \quad \text{Input}

\text{On entry:} \text{vdot[i - 1]} contains the value of component \(\dot{V}_i(t)\), for \(i = 1, 2, \ldots, \text{ncode}\).

6: \text{nxi} – Integer \quad \text{Input}

\text{On entry:} the number of ODE/PDE coupling points.

7: \text{xi[nxi]} – const double \quad \text{Input}

\text{On entry:} \text{xi[i - 1]} contains the ODE/PDE coupling points, \(\xi_i\), \(i = 1, 2, \ldots, \text{nxi}\).

8: \text{ucp[npde x nxi]} – const double \quad \text{Input}

\text{Note:} where \text{UCP}(i, j) appears in this document it refers to the array element \text{ucp[npde x (j - 1) + i - 1]}. We recommend using a \#define to make the same definition in your calling program.
On entry: UCP(i, j) contains the value of $U_i(x, t)$ at the coupling point $x = \xi_j$, for $i = 1, 2, \ldots, \text{npde}$; $j = 1, 2, \ldots, \text{uxi}$.

9: ucpx[\text{npde} \times \text{uxi}] – const double
Input
Note: where UCPX(i, j) appears in this document it refers to the array element ucpx[\text{npde} \times (j - 1) + i - 1]. We recommend using a #define to make the same definition in your calling program.

On entry: UCPX(i, j) contains the value of $(\partial U_i(x, t))/(\partial x)$ at the coupling point $x = \xi_j$, for $i = 1, 2, \ldots, \text{npde}$; $j = 1, 2, \ldots, \text{uxi}$.

10: rcp[\text{npde} \times \text{uxi}] – const double
Input
Note: where RCP(i, j) appears in this document it refers to the array element rcp[\text{npde} \times (j - 1) + i - 1]. We recommend using a #define to make the same definition in your calling program.

On entry: RCP(i, j) contains the value of the flux R_i at the coupling point $x = \xi_j$, for $i = 1, 2, \ldots, \text{npde}$; $j = 1, 2, \ldots, \text{uxi}$.

11: ucpt[\text{npde} \times \text{uxi}] – const double
Input
Note: where UCPT(i, j) appears in this document it refers to the array element ucpt[\text{npde} \times (j - 1) + i - 1]. We recommend using a #define to make the same definition in your calling program.

On entry: UCPT(i, j) contains the value of $(\partial U_i)/(\partial t)$ at the coupling point $x = \xi_j$, for $i = 1, 2, \ldots, \text{npde}$; $j = 1, 2, \ldots, \text{uxi}$.

12: ucpx[\text{npde} \times \text{uxi}] – const double
Input
Note: where UCPTX(i, j) appears in this document it refers to the array element ucpx[\text{npde} \times (j - 1) + i - 1]. We recommend using a #define to make the same definition in your calling program.

On entry: UCPTX(i, j) contains the value of $(\partial^2 U_i)/(\partial x \partial t)$ at the coupling point $x = \xi_j$, for $i = 1, 2, \ldots, \text{npde}$; $j = 1, 2, \ldots, \text{uxi}$.

13: f[\text{ncode}] – double
Output
On exit: f[i - 1] must contain the ith component of F, for $i = 1, 2, \ldots, \text{ncode}$, where F is defined as

$$F = G - AV - B \left\{ \frac{U_i}{U_{xt}} \right\}, \quad (5)$$

or

$$F = -AV - B \left\{ \frac{U_i}{U_{xt}} \right\}. \quad (6)$$

The definition of F is determined by the input value of ires.

14: ires – Integer *
Input/Output
On entry: the form of F that must be returned in the array f. If $\text{ires} = 1$, then the equation (5) above must be used. If $\text{ires} = -1$, then the equation (6) above must be used.

On exit: should usually remain unchanged. However, the user may reset ires to force the integration function to take certain actions as described below:

\begin{itemize}
 \item $\text{ires} = 2$

 Indicates to the integrator that control should be passed back immediately to the calling function with the error indicator set to $\text{fail.code} = \text{NE_USER_STOP}$.
\end{itemize}
\textbf{ires} = 3

Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. The user may wish to set \textbf{ires} = 3 when a physically meaningless input or output value has been generated. If the user consecutively sets \textbf{ires} = 3, then \texttt{nag_pde_parab_1d_fd_ode_remesh (d03ppc)} returns to the calling function with the error indicator set to \texttt{fail.code = NE_FAILED_DERIV}.

\begin{enumerate}
\item \textbf{comm} – \texttt{NAG_Comm *} \hspace{1cm} \textit{Input/Output}
\item The NAG communication parameter (see the Essential Introduction).
\end{enumerate}

13: \textbf{nxi} – Integer \hspace{1cm} \textit{Input}

\textit{On entry:} the number of ODE/PDE coupling points.

\textit{Constraints:}
\begin{align*}
&\text{if } \textbf{ncode} = 0, \textbf{nxi} = 0; \\
&\text{if } \textbf{ncode} > 0, \textbf{nxi} \geq 0.
\end{align*}

14: \textbf{xi[dim]} – const double \hspace{1cm} \textit{Input}

\textit{Note:} the dimension, \texttt{dim}, of the array \textbf{xi} must be at least \texttt{max(1, nxi)}.

\textit{On entry:} \textbf{xi}[i - 1], \texttt{i = 1, 2, \ldots, nxi}, must be set to the ODE/PDE coupling points.

\textit{Constraint:} \texttt{x[0] \leq xi[0] < xi[1] < \cdots < xi[nxi - 1] \leq x[npts - 1]}.

15: \textbf{neqn} – Integer \hspace{1cm} \textit{Input}

\textit{On entry:} the number of ODEs in the time direction.

\textit{Constraint:} \textbf{neqn} = \textbf{npde} \times \textbf{npts} + \textbf{ncode}.

16: \textbf{rtol[dim]} – const double \hspace{1cm} \textit{Input}

\textit{Note:} the dimension, \texttt{dim}, of the array \textbf{rtol} must be at least 1 when \textbf{itol} = 1 or 2 and at least \textbf{neqn} when \textbf{itol} = 3 or 4.

\textit{On entry:} the relative local error tolerance.

\textit{Constraint:} \textbf{rtol}[i - 1] \geq 0 for all relevant \texttt{i}.

17: \textbf{atol[dim]} – const double \hspace{1cm} \textit{Input}

\textit{Note:} the dimension, \texttt{dim}, of the array \textbf{atol} must be at least 1 when \textbf{itol} = 1 or 3 and at least \textbf{neqn} when \textbf{itol} = 2 or 4.

\textit{On entry:} the absolute local error tolerance.

\textit{Constraints:}
\begin{align*}
&\textbf{atol}[i] \geq 0 \text{ for all relevant } i; \\
&\text{Corresponding elements of } \textbf{atol} \text{ and } \textbf{rtol} \text{ cannot both be 0.0}.
\end{align*}

18: \textbf{itol} – Integer \hspace{1cm} \textit{Input}

\textit{On entry:} a value to indicate the form of the local error test. \textbf{itol} indicates to \texttt{nag_pde_parab_1d_fd_ode_remesh (d03ppc)} whether to interpret either or both of \textbf{rtol} or \textbf{atol} as a vector or scalar. The error test to be satisfied is \(\| e_i / w_i \| < 1.0 \), where \(w_i \) is defined as follows:

<table>
<thead>
<tr>
<th>itol</th>
<th>rtol</th>
<th>atol</th>
<th>(w_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>scalar</td>
<td>scalar</td>
<td>\texttt{rtol[0] \times</td>
</tr>
<tr>
<td>2</td>
<td>scalar</td>
<td>vector</td>
<td>\texttt{rtol[0] \times</td>
</tr>
<tr>
<td>3</td>
<td>vector</td>
<td>scalar</td>
<td>\texttt{rtol[i - 1] \times</td>
</tr>
<tr>
<td>4</td>
<td>vector</td>
<td>vector</td>
<td>\texttt{rtol[i - 1] \times</td>
</tr>
</tbody>
</table>

\texttt{d03ppc.10} \hspace{1cm} [NP3645/7]
In the above, e_i denotes the estimated local error for the ith component of the coupled PDE/ODE system in time, $u[i-1]$, for $i = 1, 2, \ldots, \text{neqn}$.

The choice of norm used is defined by the parameter norm, see below.

Constraint: $1 \leq \text{itol} \leq 4$.

19: $\text{norm} = \text{Nag_NormType}$

Input

On entry: the type of norm to be used. Two options are available:

- $\text{norm} = \text{Nag_MaxNorm}$

 Maximum norm.

- $\text{norm} = \text{Nag_TwoNorm}$

 Averaged L_2 norm.

If u_{norm} denotes the norm of the vector u of length neqn, then for the averaged L_2 norm

$$u_{\text{norm}} = \sqrt{\frac{1}{\text{neqn}} \sum_{i=1}^{\text{neqn}} (u[i-1]/w_i)^2},$$

while for the maximum norm

$$u_{\text{norm}} = \max_i |u[i-1]/w_i|.$$

See the description of the itol parameter for the formulation of the weight vector w.

Constraint: $\text{norm} = \text{Nag_MaxNorm}$ or Nag_TwoNorm.

20: $\text{laopt} = \text{Nag_LinAlgOption}$

Input

On entry: the type of matrix algebra required. The possible choices are:

- $\text{laopt} = \text{Nag_LinAlgFull}$

 Full matrix methods to be used.

- $\text{laopt} = \text{Nag_LinAlgBand}$

 Banded matrix methods to be used.

- $\text{laopt} = \text{Nag_LinAlgSparse}$

 Sparse matrix methods to be used.

Constraint: $\text{laopt} = \text{Nag_LinAlgFull}$, Nag_LinAlgBand or Nag_LinAlgSparse.

Note: the user is recommended to use the banded option when no coupled ODEs are present (i.e., $\text{ncode} = 0$).

21: $\text{algopt}[30] = \text{const double}$

Input

On entry: algopt may be set to control various options available in the integrator. If the user wishes to employ all the default options, then $\text{algopt}[0]$ should be set to 0.0. Default values will also be used for any other elements of algopt set to zero. The permissible values, default values, and meanings are as follows:

- $\text{algopt}[0]$ selects the ODE integration method to be used. If $\text{algopt}[0] = 1.0$, a BDF method is used and if $\text{algopt}[0] = 2.0$, a Theta method is used. The default value is $\text{algopt}[0] = 1.0$.

If $\text{algopt}[0] = 2.0$, then $\text{algopt}[i]$, for $i = 1, 2, 3$ are not used.
algopt[1] specifies the maximum order of the BDF integration formula to be used. algopt[1] may be 1.0, 2.0, 3.0, 4.0 or 5.0. The default value is algopt[1] = 5.0.

algopt[2] specifies what method is to be used to solve the system of nonlinear equations arising on each step of the BDF method. If algopt[2] = 1.0 a modified Newton iteration is used and if algopt[2] = 2.0 a functional iteration method is used. If functional iteration is selected and the integrator encounters difficulty, then there is an automatic switch to the modified Newton iteration. The default value is algopt[2] = 1.0.

algopt[3] specifies whether or not the Petzold error test is to be employed. The Petzold error test results in extra overhead but is more suitable when algebraic equations are present, such as $P_{i,j} = 0.0$, for $j = 1, 2, \ldots, \text{npde}$ for some i or when there is no $V_i(t)$ dependence in the coupled ODE system. If algopt[3] = 1.0, then the Petzold test is used. If algopt[3] = 2.0, then the Petzold test is not used. The default value is algopt[3] = 1.0.

If algopt[0] = 1.0, then algopt[i], for $i = 4, 5, 6$ are not used.

algopt[4] specifies the value of Theta to be used in the Theta integration method. $0.51 \leq \text{algopt}[4] \leq 0.99$. The default value is algopt[4] = 0.55.

algopt[5] specifies what method is to be used to solve the system of nonlinear equations arising on each step of the Theta method. If algopt[5] = 1.0, a modified Newton iteration is used and if algopt[5] = 2.0, a functional iteration method is used. The default value is algopt[5] = 1.0.

algopt[6] specifies whether or not the integrator is allowed to switch automatically between modified Newton and functional iteration methods in order to be more efficient. If algopt[6] = 1.0, then switching is allowed and if algopt[6] = 2.0, then switching is not allowed. The default value is algopt[6] = 1.0.

algopt[10] specifies a point in the time direction, t_{crit}, beyond which integration must not be attempted. The use of t_{crit} is described under the parameter itask. If algopt[0] \neq 0.0, a value of 0.0 for algopt[10], say, should be specified even if itask subsequently specifies that t_{crit} will not be used.

algopt[11] specifies the minimum absolute step size to be allowed in the time integration. If this option is not required, algopt[11] should be set to 0.0.

algopt[12] specifies the maximum absolute step size to be allowed in the time integration. If this option is not required, algopt[12] should be set to 0.0.

algopt[13] specifies the initial step size to be attempted by the integrator. If algopt[13] = 0.0, then the initial step size is calculated internally.

algopt[14] specifies the maximum number of steps to be attempted by the integrator in any one call. If algopt[14] = 0.0, then no limit is imposed.

algopt[22] specifies what method is to be used to solve the nonlinear equations at the initial point to initialise the values of U, U_t, V and \dot{V}. If algopt[22] = 1.0, a modified Newton iteration is used and if algopt[22] = 2.0, functional iteration is used. The default value is algopt[22] = 1.0.

algopt[28] and algopt[29] are used only for the sparse matrix algebra option, laopt = Nag_LinAlgSparse.

algopt[28] governs the choice of pivots during the decomposition of the first Jacobian matrix. It should lie in the range $0.0 < \text{algopt}[28] < 1.0$, with smaller values biasing the algorithm towards maintaining sparsity at the expense of numerical stability. If algopt[28] lies outside this range then the default value is used. If the functions regard the Jacobian matrix as numerically singular then increasing algopt[28]
towards 1.0 may help, but at the cost of increased fill-in. The default value is \texttt{algopt}[28] = 0.1.

\texttt{algopt}[29] is used as a relative pivot threshold during subsequent Jacobian decompositions (see \texttt{algopt}[28]) below which an internal error is invoked. If \texttt{algopt}[29] is greater than 1.0 no check is made on the pivot size, and this may be a necessary option if the Jacobian is found to be numerically singular (see \texttt{algopt}[28]). The default value is \texttt{algopt}[29] = 0.0001.

22: \texttt{remesh} – Boolean
\texttt{Input}
\textit{On entry:} indicates whether or not spatial remeshing should be performed.

\texttt{remesh} = \texttt{TRUE}
Indicates that spatial remeshing should be performed as specified.

\texttt{remesh} = \texttt{FALSE}
Indicates that spatial remeshing should be suppressed.

\textbf{Note:} \texttt{remesh} should not be changed between consecutive calls to \texttt{nag_pde_parab_1d_fd_ode_remesh(d03ppc)}. Remeshing can be switched off or on at specified times by using appropriate values for the parameters \texttt{nrmesh} and \texttt{trmesh} at each call.

23: \texttt{nxfix} – Integer
\texttt{Input}
\textit{On entry:} the number of fixed mesh points.

\textit{Constraint:} \texttt{0} \leq \texttt{nxfix} \leq \texttt{npts} – 2
\textit{Note:} the end-points \texttt{x[0]} and \texttt{x[npts] – 1} are fixed automatically and hence should not be specified as fixed points.

24: \texttt{xfix}[\textit{dim}] – const double
\texttt{Input}
\textit{Note:} the dimension, \textit{dim}, of the array \texttt{xfix} must be at least \text{max}(1,\texttt{nxfix}).

\textit{On entry:} \texttt{xfix}[i – 1], \textit{i = 1, 2, \ldots, nxfix}, must contain the value of the \textit{x} coordinate at the \textit{i}th fixed mesh point.

\textit{Constraint:} \texttt{xfix}[i – 1] < \texttt{xfix}[i], \textit{i = 1, 2, \ldots, nxfix} – 1, and each fixed mesh point must coincide with a user-supplied initial mesh point, that is \texttt{xfix}[i – 1] = \texttt{x[j – 1]} for some \textit{j}, \text{2} \leq \textit{j} \leq \texttt{npts} – 1.

\textit{Note:} the positions of the fixed mesh points in the array \texttt{x} remain fixed during remeshing, and so the number of mesh points between adjacent fixed points (or between fixed points and end-points) does not change. The user should take this into account when choosing the initial mesh distribution.

25: \texttt{nrmesh} – Integer
\texttt{Input}
\textit{On entry:} specifies the spatial remeshing frequency and criteria for the calculation and adoption of a new mesh.

\texttt{nrmesh} < 0
Indicates that a new mesh is adopted according to the parameter \texttt{dxmesh} below. The mesh is tested every \texttt{|nrmesh|} timesteps.

\texttt{nrmesh} = 0
Indicates that remeshing should take place just once at the end of the first time step reached when \texttt{t} > \texttt{trmesh} (see below).

\texttt{nrmesh} > 0
Indicates that remeshing will take place every \texttt{nrmesh} time steps, with no testing using \texttt{dxmesh}.
Note: \textbf{nrmesh} may be changed between consecutive calls to nag_pde_parab_1d_fd_ode_remesh (d03ppc) to give greater flexibility over the times of remeshing.

26: \textbf{dxmesh} – double \hspace{1cm} \textit{Input}

On entry: determines whether a new mesh is adopted when \textbf{nrmesh} is set less than zero. A possible new mesh is calculated at the end of every \textbf{nrmesh} time steps, but is adopted only if

\[
x_i^{\text{(new)}} > x_i^{\text{(old)}} + \text{dxmesh} \times (x_{i+1}^{\text{(old)}} - x_i^{\text{(old)}})
\]

or

\[
x_i^{\text{(new)}} < x_i^{\text{(old)}} - \text{dxmesh} \times (x_{i+1}^{\text{(old)}} - x_i^{\text{(old)}})
\]

\text{dxmesh} thus imposes a lower limit on the difference between one mesh and the next.

\textit{Constraint: } \text{dxmesh} \geq 0.0.

27: \textbf{trmesh} – double \hspace{1cm} \textit{Input}

On entry: specifies when remeshing will take place when \textbf{nrmesh} is set to zero. Remeshing will occur just once at the end of the first time step reached when \textit{t} is greater than \textbf{trmesh}.

Note: \textbf{trmesh} may be changed between consecutive calls to nag_pde_parab_1d_fd_ode_remesh (d03ppc) to force remeshing at several specified times.

28: \textbf{ipminf} – Integer \hspace{1cm} \textit{Input}

On entry: the level of trace information regarding the adaptive remeshing.

\textbf{ipminf} = 0

No trace information.

\textbf{ipminf} = 1

Brief summary of mesh characteristics.

\textbf{ipminf} = 2

More detailed information, including old and new mesh points, mesh sizes and monitor function values.

\textit{Constraint: } 0 \leq \textbf{ipminf} \leq 2.

29: \textbf{xratio} – double \hspace{1cm} \textit{Input}

On entry: an input bound on the adjacent mesh ratio (greater than 1.0 and typically in the range 1.5 to 3.0). The remeshing functions will attempt to ensure that

\[
\frac{(x_i - x_{i-1})}{\text{xratio}} < x_{i+1} - x_i < \text{xratio} \times (x_i - x_{i-1})
\]

\textit{Suggested value: } \textbf{xratio} = 1.5.

\textit{Constraint: } \textbf{xratio} > 1.0.

30: \textbf{con} – double \hspace{1cm} \textit{Input}

On entry: an input bound on the sub-integral of the monitor function \(F_{\text{mon}}(x)\) over each space step. The remeshing functions will attempt to ensure that

\[
\int_{x_i}^{x_{i+1}} F_{\text{mon}}(x) \, dx \leq \text{con} \int_{x_1}^{x_{\text{npts}}} F_{\text{mon}}(x) \, dx,
\]

(see Furzeland (1984)). \textbf{con} gives the user more control over the mesh distribution e.g., decreasing \textbf{con} allows more clustering. A typical value is \(2/(\text{npts} - 1)\), but the user is encouraged to experiment with different values. Its value is not critical and the mesh should be qualitatively correct for all values in the range given below.
Suggested value: $\text{con} = 2.0/(\text{npts} - 1)$.

Constraint: $0.1/(\text{npts} - 1) \leq \text{con} \leq 10.0/(\text{npts} - 1)$.

monitf must supply and evaluate a remesh monitor function to indicate the solution behaviour of interest.

If the user specifies $\text{remesh} = \text{FALSE}$, i.e., no remeshing, then monitf will not be called and the dummy function d03pcl may be used for monitf. (d03pcl is included in the NAG C Library; however, its name may be implementation-dependent: see the Users’ Note for your implementation for details.)

```c
void monitf (double t, Integer npts, Integer npde, const double x[], const double u[], const double r[], double fmon[], Nag_Comm *comm)
```

1: t – double

 On entry: the current value of the independent variable t.

2: npts – Integer

 On entry: the number of mesh points in the interval $[a, b]$.

3: npde – Integer

 On entry: the number of PDEs in the system.

4: $x[\text{npts}]$ – const double

 On entry: the current mesh. $x[i-1]$ contains the value of x_i for $i = 1, 2, \ldots, \text{npts}$.

5: $u[\text{npde} \times \text{npts}]$ – const double

 Note: where $U(i, j)$ appears in this document it refers to the array element $u[\text{npde} \times (j-1) + i-1]$. We recommend using a #define to make the same definition in your calling program.

 On entry: $U(i, j)$ contains the value of $U_i(x, t)$ at $x = x[j-1]$ and time t, for $i = 1, 2, \ldots, \text{npde}$, $j = 1, 2, \ldots, \text{npts}$.

6: $r[\text{npde} \times \text{npts}]$ – const double

 Note: where $R(i, j)$ appears in this document it refers to the array element $r[\text{npde} \times (j-1) + i-1]$. We recommend using a #define to make the same definition in your calling program.

 On entry: $R(i, j)$ contains the value of $R_i(x, t, U, U_x, V)$ at $x = x[j-1]$ and time t, for $i = 1, 2, \ldots, \text{npde}$, $j = 1, 2, \ldots, \text{npts}$.

7: $fmon[\text{npts}]$ – double

 On exit: $fmon[i-1]$ must contain the value of the monitor function $F^\text{mon}(x)$ at mesh point $x = x[i-1]$.

 Constraint: $fmon[i-1] \geq 0$.

8: comm – NAG_Comm *

 The NAG communication parameter (see the Essential Introduction).
On entry: if ind = 0, rsave need not be set. If ind = 1 then it must be unchanged from the previous call to the function.

On exit: contains information about the iteration required for subsequent calls.

On entry: the dimension of the array rsave as declared in the function from which nag_pde_parab_1d_fd_ode_remesh (d03ppc) is called. Its size depends on the type of matrix algebra selected:

if laopt = Nag_LinAlgFull, lrsave \geq neqn \times neqn + neqn + nwkres + lenode;
if laopt = Nag_LinAlgBand, lrsave \geq (3 \times mlu + 1) \times neqn + nwkres + lenode;
if laopt = Nag_LinAlgSparse, lrsave \geq 4 \times neqn + 11 \times neqn/2 + 1 + nwkres + lenode,

where
mlu = the lower or upper half bandwidths, and
mlu = neqn \times 1, for coupled PDE/ODE problems.
nwkres = npde \times (3 \times npde + 6 \times nxi + npts + 15) + nxi + ncode + 7 \times npts + nfix + 1, when ncode > 0 and nxi > 0,
nwkres = npde \times (3 \times npde + npts + 21) + ncode + 7 \times npts + nfix + 2, when ncode > 0 and nxi = 0.
nwkres = npde \times (3 \times npde + npts + 21) + 7 \times npts + nfix + 3, when ncode = 0.
lenode = (6 + int(algopt[1])) \times neqn + 50, when the BDF method is used, and
lenode = 9 \times neqn + 50, when the Theta method is used.

Note: when using the sparse option, the value of lrsave may be too small when supplied to the integrator. An estimate of the minimum size of lrsave is printed on the current error message unit if itrace > 0 and the function returns with fail.code = NE_INT_2.

On entry: if ind = 0, isave need not be set. If ind = 1 then it must be unchanged from the previous call to the function.

On exit: contains information about the iteration required for subsequent calls. In particular:

isave[0] contains the number of steps taken in time.
isave[1] contains the number of residual evaluations of the resulting ODE system used. One such evaluation involves computing the PDE functions at all the mesh points, as well as one evaluation of the functions in the boundary conditions.
isave[2] contains the number of Jacobian evaluations performed by the time integrator.
isave[3] contains the order of the ODE method last used in the time integration.
isave[4] contains the number of Newton iterations performed by the time integrator. Each iteration involves residual evaluation of the resulting ODE system followed by a back-substitution using the LU decomposition of the Jacobian matrix.
The rest of the array is used as workspace.

On entry: the dimension of the array isave. Its size depends on the type of matrix algebra selected:

if laopt = Nag_LinAlgBand, lisave \geq neqn + 25 + nfix;
if laopt = Nag_LinAlgFull, lisave \geq 25 + nfix;
if laopt = Nag_LinAlgSparse, lisave \geq 25 \times neqn + 25 + nfix.
Note: when using the sparse option, the value of lisave may be too small when supplied to the integrator. An estimate of the minimum size of lisave is printed if itrace > 0 and the function returns with fail.code = NE_INT_2.

36: `itask` – Integer

Input

On entry: specifies the task to be performed by the ODE integrator. The permitted values of `itask` and their meanings are detailed below:

- `itask = 1`
 - Normal computation of output values u at $t = tout$.
- `itask = 2`
 - One step and return.
- `itask = 3`
 - Stop at first internal integration point at or beyond $t = tout$.
- `itask = 4`
 - Normal computation of output values u at $t = tout$ but without overshooting $t = t_{crit}$ where t_{crit} is described under the parameter `algopt`.
- `itask = 5`
 - Take one step in the time direction and return, without passing t_{crit}, where t_{crit} is described under the parameter `algopt`.

Constraint: $1 \leq itask \leq 5$.

37: `itrace` – Integer

Input

On entry: the level of trace information required from nag_pde_parab_1d_fd_ode_remesh (d03ppc) and the underlying ODE solver as follows:

- If `itrace` ≤ -1, no output is generated;
- If `itrace` $= 0$, only warning messages from the PDE solver are printed;
- If `itrace` $= 1$, then output from the underlying ODE solver is printed. This output contains details of Jacobian entries, the nonlinear iteration and the time integration during the computation of the ODE system;
- If `itrace` $= 2$, then the output from the underlying ODE solver is similar to that produced when `itrace` $= 1$, except that the advisory messages are given in greater detail;
- If `itrace` ≥ 3, then the output from the underlying ODE solver is similar to that produced when `itrace` $= 2$, except that the advisory messages are given in greater detail.

38: `outfile` – char *

Input

On entry: the name of a file to which diagnostic output will be directed. If `outfile` is NULL the diagnostic output will be directed to standard output.

39: `ind` – Integer *

Input/Output

On entry: `ind` must be set to 0 or 1.

- `ind = 0`
 - Starts or restarts the integration in time.
- `ind = 1`
 - Continues the integration after an earlier exit from the function. In this case, only the parameters `tout` and `fail` and the remeshing parameters `nrmesh`, `dxmesh`, `trmesh`, `xratio` and `con` may be reset between calls to nag_pde_parab_1d_fd_ode_remesh (d03ppc).
Constraint: $0 \leq \text{ind} \leq 1$.

On exit: $\text{ind} = 1$.

40: \texttt{comm} – NAG Comm * \hspace{1cm} \textit{Input/Output}

The NAG communication parameter (see the Essential Introduction).

41: \texttt{saved} – Nag_D03_Save * \hspace{1cm} \textit{Input/Output}

Note: \texttt{saved} is a NAG defined structure. See Section 2.2.1.1 of the Essential Introduction.

On entry: if the current call to nag_pde_parab_1d_fd_ode_remesh (d03ppc) follows a previous call to a Chapter d03 function then \texttt{saved} must contain the unchanged value output from that previous call.

On exit: data to be passed unchanged to any subsequent call to a Chapter d03 function.

42: \texttt{fail} – NagError * \hspace{1cm} \textit{Input/Output}

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, \texttt{npts} = \langle value\rangle.

Constraint: \texttt{npts} ≥ 3.

On entry, \texttt{m} is not equal to 0, 1, or 2: \texttt{m} = \langle value\rangle.

On entry, \texttt{itol} is not equal to 1, 2, 3, or 4: \texttt{itol} = \langle value\rangle.

On entry, \texttt{ind} is not equal to 0 or 1: \texttt{ind} = \langle value\rangle.

On entry, \texttt{itask} is not equal to 1, 2, 3, 4 or 5: \texttt{itask} = \langle value\rangle.

On entry, \texttt{ncode} = \langle value\rangle.

Constraint: \texttt{ncode} ≥ 0.

\texttt{ires} set to an invalid value in call to \texttt{pde_def}, \texttt{bndary}, or \texttt{ode_def}.

On entry, \texttt{ip_minf} is not equal to 0, 1, or 2: \texttt{ip_minf} = \langle value\rangle.

On entry, \texttt{nx_fix} = \langle value\rangle.

Constraint: \texttt{nx_fix} ≥ 0.

On entry, \texttt{ncode} = 0, but \texttt{nx} is not equal to 0: \texttt{nx} = \langle value\rangle.

On entry, \texttt{nx} = \langle value\rangle.

Constraint: \texttt{nx} ≥ 0.

On entry, \texttt{np_de} = \langle value\rangle.

Constraint: \texttt{np_de} ≥ 1.

NE_INT_2

When using the sparse option \texttt{lisave} or \texttt{lrsave} is too small: \texttt{lisave} = \langle value\rangle, \texttt{lrsave} = \langle value\rangle.

On entry, corresponding elements \texttt{atol}[$i-1$] and \texttt{rtol}[$j-1$] are both zero. \texttt{i} = \langle value\rangle, \texttt{j} = \langle value\rangle.

On entry, \texttt{nx_fix} > \texttt{npts} -- 2: \texttt{nx_fix} = \langle value\rangle, \texttt{npts} = \langle value\rangle.

On entry, \texttt{lrsave} is too small: \texttt{lrsave} = \langle value\rangle. Minimum possible dimension: \langle value\rangle.

On entry, \texttt{lisave} is too small: \texttt{lisave} = \langle value\rangle. Minimum possible dimension: \langle value\rangle.
NE_INT_4
On entry, neqn is not equal to npde × npts + ncode: neqn = \langle value\rangle, npde = \langle value\rangle, npts = \langle value\rangle, ncode = \langle value\rangle.

NE_ACC_IN_DOUBT
Integration completed, but small changes in atol or rtol are unlikely to result in a changed solution.

NE_FAILED_DERIV
In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This could be due to user setting ires = 3 in pdefdef or bndary.

NE_FAILED_START
atol and rtol were too small to start integration.
Underlying ODE solver cannot make further progress from the point ts with the supplied values of atol and rtol. ts = \langle value\rangle.

NE_FAILED_STEP
Error during Jacobian formulation for ODE system. Increase itrace for further details.
Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far as ts: ts = \langle value\rangle.

NE_INCOMPAT_PARAM
On entry, the point xfix[i - 1] does not coincide with any x[j - 1]: i = \langle value\rangle, xfix[i - 1] = \langle value\rangle.
On entry, m > 0 and x[0] < 0.0: m = \langle value\rangle, x[0] = \langle value\rangle.
On entry, con > 10.0/(npts - 1): con = \langle value\rangle, npts = \langle value\rangle.
On entry, con < 0.1/(npts - 1): con = \langle value\rangle, npts = \langle value\rangle.

NE_INTERNAL_ERROR
Serious error in internal call to an auxiliary. Increase itrace for further details.

NE_ITER_FAIL
In solving ODE system, the maximum number of steps algopt[14] has been exceeded. algopt[14] = \langle value\rangle.

NE_NOT STRICTLY_INCREASING
On entry xfix[i] \leq xfix[i - 1]: i = \langle value\rangle, xfix[i] = \langle value\rangle, xfix[i - 1] = \langle value\rangle.
On entry xi[i] \leq xi[i - 1]: i = \langle value\rangle, xi[i] = \langle value\rangle, xi[i - 1] = \langle value\rangle.
On entry, mesh points x appear to be badly ordered: i = \langle value\rangle, x[i - 1] = \langle value\rangle j = \langle value\rangle, x[j - 1] = \langle value\rangle.

NE_REAL
On entry, xratio = \langle value\rangle.
Constraint: xratio > 1.0.
On entry, dxmesh = \langle value\rangle.
Constraint: dxmesh \geq 0.0.
On entry, at least one point in \(x \) lies outside \([x[0], x[npts-1]]\): \(x[0] = \langle value \rangle \), \(x[npts-1] = \langle value \rangle \).

On entry, \(\text{tout} - \text{ts} \) is too small: \(\text{tout} = \langle value \rangle \), \(\text{ts} = \langle value \rangle \).

On entry, \(\text{tout} \leq \text{ts} \): \(\text{tout} = \langle value \rangle \), \(\text{ts} = \langle value \rangle \).

On entry, \(\text{rtol}[i-1] < 0.0 \): \(i = \langle value \rangle \), \(\text{rtol}[i-1] = \langle value \rangle \).

On entry, \(\text{atol}[i-1] < 0.0 \): \(i = \langle value \rangle \), \(\text{atol}[i-1] = \langle value \rangle \).

\text{remesh} \ has been changed between calls to nag_pde_parab_1d_fd_ode_remesh (d03ppc).

Singular Jacobian of ODE system. Check problem formulation.

Flux function appears to depend on time derivatives.

In evaluating residual of ODE system, \(\text{ires} = 2 \) has been set in \text{pdef}, \text{bndary}, or \text{odedef}. Integration is successful as far as \(\text{ts} \): \(\text{ts} = \langle value \rangle \).

Zero error weights encountered during time integration.

Memory allocation failed.

On entry, parameter \(\langle value \rangle \) had an illegal value.

Cannot open file \(\langle value \rangle \) for writing.

Cannot close file \(\langle value \rangle \).

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

The function controls the accuracy of the integration in the time direction but not the accuracy of the approximation in space. The spatial accuracy depends on both the number of mesh points and on their distribution in space. In the time integration only the local error over a single step is controlled and so the accuracy over a number of steps cannot be guaranteed. The user should therefore test the effect of varying the accuracy parameters, \(\text{atol} \) and \(\text{rtol} \).
8 Further Comments

The parameter specification allows the user to include equations with only first-order derivatives in the space direction but there is no guarantee that the method of integration will be satisfactory for such systems. The position and nature of the boundary conditions in particular are critical in defining a stable problem. It may be advisable in such cases to reduce the whole system to first-order and to use the Keller box scheme function nag_pde_parab_1d_keller_ode_remesh (d03prc).

The time taken depends on the complexity of the parabolic system, the accuracy requested, and the frequency of the mesh updates. For a given system with fixed accuracy and mesh-update frequency it is approximately proportional to neqn.

9 Example

This example uses Burgers Equation, a common test problem for remeshing algorithms, given by

\[
\frac{\partial U}{\partial t} = -U \frac{\partial U}{\partial x} + E \frac{\partial^2 U}{\partial x^2},
\]

for \(x \in [0, 1] \) and \(t \in [0, 1] \), where \(E \) is a small constant.

The initial and boundary conditions are given by the exact solution

\[
U(x, t) = \frac{0.1 \exp(-A) + 0.5 \exp(-B) + \exp(-C)}{\exp(-A) + \exp(-B) + \exp(-C)},
\]

where

\[
A = \frac{50}{E}(x - 0.5 + 4.95t),
\]

\[
B = \frac{250}{E}(x - 0.5 + 0.75t),
\]

\[
C = \frac{500}{E}(x - 0.375).
\]

9.1 Program Text

/* nag_pde_parab_1d_fd_ode_remesh (d03ppc) Example Program. */
/* Copyright 2001 Numerical Algorithms Group. */
/* Mark 7, 2001. */

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>

static void pdedef(Integer, double, double, const double[], const double[],
 Integer, const double[], const double[], double[], double[], Integer*, Nag_Comm *);

static void bndary(Integer, double, const double[], const double[],
 Integer, const double[], const double[], Integer, double[], double[], Integer*, Nag_Comm *);

static void uvinit(Integer, Integer, Integer, const double[], const double[],
 double[], double[], Integer, double[], Nag_Comm *);

static void monitf(double, Integer, Integer, const double[], const double[],
 const double[], double[], Nag_Comm *);

static void exact(double, double *, Integer, double *, Nag_Comm *);

#define P(I,J) p[npde*((J)-1)+(I)-1]
#define R(I,J) r[npde*((J)-1)+(I)-1]
#define U(I,J) u[npde*((J)-1)+(I)-1]
#define UOUT(I,J,K) uout[npde*(intpts*((K)-1)+(J)-1)+(I)-1]

int main(void)
{
 const Integer npde=1, npts=61, ncode=0, m=0, nxi=0, nxfix=0, itype=1,
 neqn=npde*npts+ncode, intpts=5, lisave=25+nxfix,
 nwkres=npde*(npts+3*npde+21)+7*npts+nxfix+3, lenode=11*neqn+50,
 lrsave=neqn*neqn+neqn+nwkres+lenode;
 double con, dxmesh, e, tout, trmesh, ts, xratio;
 Integer exit_status, i, ind, ipminf, it, itask, itol, itrace, nrmesh;
 Boolean remesh, theta;
 double *algopt=0, *atol=0, *rsave=0, *rtol=0, *u=0, *ue=0,
 *uout=0, *x=0, *xfix=0, *xi=0, *xout=0;
 Integer *isave=0;
 NagError fail;
 Nag_Comm comm;
 Nag_D03_Save saved;

 INIT_FAIL(fail);
 exit_status = 0;

 /* Allocate memory */
 if (!(algopt = NAG_ALLOC(30, double)) ||
 !(atol = NAG_ALLOC(1, double)) ||
 !(rsave = NAG_ALLOC(lrsave, double)) ||
 !(rtol = NAG_ALLOC(1, double)) ||
 !(u = NAG_ALLOC(neqn, double)) ||
 !(ue = NAG_ALLOC(intpts, double)) ||
 !(uout = NAG_ALLOC(npde*intpts*itype, double)) ||
 !(x = NAG_ALLOC(npts, double)) ||
 !(xfix = NAG_ALLOC(1, double)) ||
 !(xi = NAG_ALLOC(1, double)) ||
 !(xout = NAG_ALLOC(intpts, double)) ||
 !(isave = NAG_ALLOC(lisave, Integer)))
 {
 Vprintf("Allocation failure\n");
 exit_status = 1;
 goto END;
 }

 Vprintf("d03ppc Example Program Results\n\n");
 e = 0.005;
 comm.p = (Pointer)'missing text
 itrace = 0;
 itol = 1;
 atol[0] = 5e-5;
 rtol[0] = atol[0];

 Vprintf(" Accuracy requirement =%10.3e", atol[0]);
 Vprintf(" Number of points = %3ld\n\n", npts);

 /* Initialise mesh */
 for (i = 0; i < npts; ++i) x[i] = i/(npts-1.0);

 /* Set remesh parameters */
 remesh = TRUE;
 nrmesh = 3;
 dxmesh = 0.5;
 trmesh = 0.0;
 con = 2.0/(npts-1.0);
 xratio = 1.5;
 ipminf = 0;

 Vprintf(" Remeshing every %3ld time steps\n\n", nrmesh);
 Vprintf(" e =%8.3f\n\n", e);
xi[0] = 0.0;
ind = 0;
itask = 1;

/* Set theta to TRUE if the Theta integrator is required */
theta = FALSE;
for (i = 0; i < 30; ++i) algopt[i] = 0.0;
if (theta)
{
 algopt[0] = 2.0;
} else {
 algopt[0] = 0.0;
}

/* Loop over output value of t */
ts = 0.0;
tout = 0.0;
for (it = 0; it < 5; ++it)
{
 tout = 0.2*(it+1);
 d03ppc(npde, m, &ts, tout, pdedef, bndary, uvinit, u, npts,
x, ncode, d03pck, nxi, xi, neqn, rtol, atol, itol,
Nag_TwoNorm, Nag_LinAlgFull, algopt, remesh, nxfix,
xfix, nrmesh, dxmesh, trmesh, ipminf, con, monitf, rsave, lsave, isave, itask, itrace,
0, &ind, &comm, &saved, &fail);
 if (fail.code != NE_NOERROR)
 {
Vprintf("Error from d03ppc.
%s
", fail.message);
exit_status = 1;
go to END;
 }
}

/* Set output points */
switch (it)
{
 case 0:
 for (i = 0; i < 5; ++i) xout[i] = 0.3+0.1*i;
 break;
 case 1:
 for (i = 0; i < 5; ++i) xout[i] = 0.4+0.1*i;
 break;
 case 2:
 for (i = 0; i < 5; ++i) xout[i] = 0.6+0.05*i;
 break;
 case 3:
 for (i = 0; i < 5; ++i) xout[i] = 0.7+0.05*i;
 break;
 case 4:
 for (i = 0; i < 5; ++i) xout[i] = 0.8+0.05*i;
 break;
}
 Vprintf(" t = %6.3f\n", ts);
 Vprintf(" x ");
 for (i = 0; i < 5; ++i)
 {
 Vprintf("%9.4f", xout[i]);
 Vprintf((i+1)%5 == 0 || i == 4 ?"\n": "");
 }

 /* Interpolate at output points */
 d03pzc(npde, m, u, npts, x, xout, intpts, itype, uout, &fail);
if (fail.code != NE_NOERROR)
{
 Vprintf("Error from d03 pz.\n\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Check against exact solution */
exact(ts, xout, intpts, ue, &comm);
Vprintf(" Approx sol. ");
for (i = 1; i <= intpts; ++i)
{
 Vprintf("%9.4f", UOUT(1,i,1));
 Vprintf(i%5 == 0 || i == 5 ?"\n":" ");
}
Vprintf(" Exact sol. ");
for (i = 1; i <= intpts; ++i)
{
 Vprintf("%9.4f", ue[i-1]);
 Vprintf(i%5 == 0 || i == 5 ?"\n":" ");
}
Vprintf("\n");

Vprintf(" Number of integration steps in time = %6ld\n", isave[0]);
Vprintf(" Number of function evaluations = %6ld\n", isave[1]);
Vprintf(" Number of Jacobian evaluations = %6ld\n", isave[2]);
Vprintf(" Number of iterations = %6ld\n\n", isave[4]);

END:
if (algopt) NAG_FREE(algopt);
if (atol) NAG_FREE(atol);
if (rsave) NAG_FREE(rsave);
if (rtol) NAG_FREE(rtol);
if (u) NAG_FREE(u);
if (ue) NAG_FREE(ue);
if (uout) NAG_FREE(uout);
if (x) NAG_FREE(x);
if (xfix) NAG_FREE(xfix);
if (xi) NAG_FREE(xi);
if (xout) NAG_FREE(xout);
if (isave) NAG_FREE(isave);

return exit_status;

}
b = \exp(-b);
c = (-0.8*x[i-1] + 0.4 + 0.24*t)/(*e*4.0);
c = \exp(c);
U(1, i) = (0.5*c + 0.1 + b)/(c + 1.0 + b);
} else {
 a = \exp(a);
b = \exp(b);
U(1, i) = (0.5*a + 1.0 + 0.1*b)/(a + 1.0 + b);
}
}
return;
}

static void pdedef(Integer npde, double t, double x, const double u[],
 const double ux[], Integer ncode, const double v[],
 const double vdot[], double p[], double q[],
 double r[], Integer *ires, Nag_Comm *comm)
{
 double *e = (double *)comm->p;
 P(1, 1) = 1.0;
 r[0] = *e*ux[0];
 q[0] = u[0]*ux[0];
 return;
}

static void bndary(Integer npde, double t, const double u[],
 const double ux[], Integer ncode, const double v[],
 const double vdot[], Integer ibnd, double beta[],
 double gamma[], Integer *ires, Nag_Comm *comm)
{
 double a, b, c, ue, x;
 double*e = (double *)comm->p;
 beta[0] = 0.0;
 if (ibnd == 0)
 {
 x = 0.0;
 a = (x - 0.25 - 0.75*t)/(*e*4.0);
b = (0.9*x - 0.325 - 0.495*t)/(*e*2.0);
 if (a > 0. && a > b)
 {
 a = \exp(-a);
c = (0.8*x - 0.4 - 0.24*t)/(*e*4.0);
c = \exp(c);
ue = (0.1*c + 0.5 + a)/(c + 1.0 + a);
 } else if (b > 0.0 && b >= a) {
 b = \exp(-b);
c = (-0.8*x + 0.4 + 0.24*t)/(*e*4.0);
c = \exp(c);
ue = (0.5*c + 0.1 + b)/(c + 1.0 + b);
 } else {
 a = \exp(a);
b = \exp(b);
ue = (0.5*a + 1.0 + 0.1*b)/(a + 1.0 + b);
 }
 } else {
 x = 1.0;
 a = (x - 0.25 - 0.75*t)/(*e*4.0);
b = (0.9*x - 0.325 - 0.495*t)/(*e*2.0);
 if (a > 0.0 && a > b)
 {
 a = \exp(-a);
c = (0.8*x - 0.4 - 0.24*t)/(*e*4.0);
c = \exp(c);
ue = (0.1*c + 0.5 + a)/(c + 1.0 + a);
 } else if (b > 0.0 && b >= a) {
 b = \exp(-b);
c = (-0.8*x + 0.4 + 0.24*t)/(*e*4.0);
c = \exp(c);
ue = (0.5*c + 0.1 + b)/(c + 1.0 + b); } else {
a = exp(a);
b = exp(b);
ue = (0.5*a + 1.0 + 0.1*b)/(a + 1.0 + b); }
}
gamma[0] = u[0] - ue;
return;
}

static void exact(double t, double *x, Integer npts,
double *u, Nag_Comm *comm)
{
 /* Exact solution (for comparison purposes) */
 double a, b, c;
 double *e = (double *)comm->p;
 Integer i;
 for (i = 0; i < npts; ++i) {
 a = (x[i] - 0.25 - 0.75*t)/(*e*4.0);
 b = (0.9*x[i] - 0.325 - 0.495*t)/(*e*2.0);
 if (a > 0. && a > b) {
 a = exp(-a);
 c = (0.8*x[i] - 0.5 + a)/(c + 1.0 + a);
 } else if (b > 0. && b >= a) {
 b = exp(-b);
 c = (-0.8*x[i] + 0.4 + 0.24*t)/(*e*4.0);
 c = exp(c);
 u[i] = (0.5*c + 0.1 + b)/(c + 1.0 + b);
 } else {
 a = exp(a);
 b = exp(b);
 u[i] = (0.5*a + 1.0 + 0.1*b)/(a + 1.0 + b);
 }
 }
 return;
}

static void monitf(double t, Integer npts, Integer npde, const double x[],
const double u[], const double r[], double fmon[], Nag_Comm *comm)
{
 double drdx, h;
 Integer i, k, l;
 for (i = 1; i <= npts-1; ++i) {
 k = i-1; if (i == 1) k = 1;
 l = i+1;
 h = 0.5*(x[l-1] - x[k-1]);
 /* Second derivative */
 drdx = (R(1, i+1) - R(1, i))/h;
 fmon[i-1] = drdx; if (fmon[i-1] < 0) fmon[i-1] = -drdx;
 }
 fmon[npts-1] = fmon[npts-2];
 return;
}
9.2 Program Data
None.

9.3 Program Results

d03ppc Example Program Results

Accuracy requirement = 5.000e-05 Number of points = 61

Remeshing every 3 time steps

\(e = 0.005 \)

\(t = 0.200 \)
\[
\begin{array}{cccccc}
\text{x} & 0.3000 & 0.4000 & 0.5000 & 0.6000 & 0.7000 \\
\text{Approx sol.} & 0.9968 & 0.7448 & 0.4700 & 0.1667 & 0.1018 \\
\text{Exact sol.} & 0.9967 & 0.7495 & 0.4700 & 0.1672 & 0.1015 \\
\end{array}
\]

\(t = 0.400 \)
\[
\begin{array}{cccccc}
\text{x} & 0.4000 & 0.5000 & 0.6000 & 0.7000 & 0.8000 \\
\text{Approx sol.} & 1.0003 & 0.9601 & 0.4088 & 0.1154 & 0.1005 \\
\text{Exact sol.} & 0.9997 & 0.9615 & 0.4094 & 0.1157 & 0.1003 \\
\end{array}
\]

\(t = 0.600 \)
\[
\begin{array}{cccccc}
\text{x} & 0.6000 & 0.6500 & 0.7000 & 0.7500 & 0.8000 \\
\text{Approx sol.} & 0.9966 & 0.9390 & 0.3978 & 0.1264 & 0.1037 \\
\text{Exact sol.} & 0.9964 & 0.9428 & 0.4077 & 0.1270 & 0.1033 \\
\end{array}
\]

\(t = 0.800 \)
\[
\begin{array}{cccccc}
\text{x} & 0.7000 & 0.7500 & 0.8000 & 0.8500 & 0.9000 \\
\text{Approx sol.} & 1.0003 & 0.9872 & 0.5450 & 0.1151 & 0.1010 \\
\text{Exact sol.} & 0.9996 & 0.9878 & 0.5695 & 0.1156 & 0.1008 \\
\end{array}
\]

\(t = 1.000 \)
\[
\begin{array}{cccccc}
\text{x} & 0.8000 & 0.8500 & 0.9000 & 0.9500 & 1.0000 \\
\text{Approx sol.} & 1.0001 & 0.9961 & 0.7324 & 0.1245 & 0.1004 \\
\text{Exact sol.} & 0.9999 & 0.9961 & 0.7567 & 0.1273 & 0.1004 \\
\end{array}
\]

Number of integration steps in time = 205
Number of function evaluations = 4872
Number of Jacobian evaluations = 71
Number of iterations = 518