NAG C Library Function Document

nag_pde_parab_1d_keller (d03pec)

1 Purpose
nag_pde_parab_1d_keller (d03pec) integrates a system of linear or nonlinear, first-order, time-dependent partial differential equations (PDEs) in one space variable. The spatial discretisation is performed using the Keller box scheme and the method of lines is employed to reduce the PDEs to a system of ordinary differential equations (ODEs). The resulting system is solved using a Backward Differentiation Formula (BDF) method.

2 Specification

```c
void nag_pde_parab_1d_keller (Integer npde, double *ts, double tout,
   void (*pdedef)(Integer npde, double t, double x, const double u[],
                 const double ut[], const double ux[], double res[], Integer *ires,
                 Nag_Comm *comm),
   void (*bndary)(Integer npde, double t, Integer ibnd, Integer nobc,
                 const double u[], const double ut[], double res[], Integer *ires,
                 Nag_Comm *comm),
   double u[], Integer npts, const double x[], Integer nleft, double acc,
   double rsave[], Integer lrsave, Integer isave[], Integer lisave, Integer itask,
   Integer itrace, const char *outfile, Integer *ind, Nag_Comm *comm,
   Nag_D03_Save *saved, NagError *fail)
```

3 Description
nag_pde_parab_1d_keller (d03pec) integrates the system of first-order PDEs

\[G_i(x, t, U, U_x, U_{t}) = 0, \quad i = 1, 2, \ldots, \text{npde}. \]

In particular the functions \(G_i \) must have the general form

\[G_i = \sum_{j=1}^{\text{npde}} P_{i,j} \frac{\partial U_j}{\partial t} + Q_i, \quad i = 1, 2, \ldots, \text{npde}, \quad a \leq x \leq b, \quad t \geq t_0, \]

where \(P_{i,j} \) and \(Q_i \) depend on \(x, t, U, U_x \) and the vector \(U \) is the set of solution values

\[U(x, t) = [U_1(x, t), \ldots, U_{\text{npde}}(x, t)]^T, \]

and the vector \(U_x \) is its partial derivative with respect to \(x \). Note that \(P_{i,j} \) and \(Q_i \) must not depend on \(\frac{\partial U}{\partial x} \).

The integration in time is from \(t_0 \) to \(t_{\text{out}} \), over the space interval \(a \leq x \leq b \), where \(a = x_1 \) and \(b = x_{\text{npts}} \). The mesh should be chosen in accordance with the expected behaviour of the solution.

The PDE system which is defined by the functions \(G_i \) must be specified in a function \texttt{pdedef} supplied by the user.

The initial values of the functions \(U(x, t) \) must be given at \(t = t_0 \). For a first-order system of PDEs, only one boundary condition is required for each PDE component \(U_i \). The \texttt{npde} boundary conditions are separated into \(n_a \) at the left-hand boundary \(x = a \) and \(n_b \) at the right-hand boundary \(x = b \) such that \(n_a + n_b = \text{npde} \). The position of the boundary condition for each component should be chosen with care; the general rule is that if the characteristic direction of \(U_i \) at the left-hand boundary (say) points into the interior of the solution domain, then the boundary condition for \(U_i \) should be specified at the left-hand boundary. Incorrect positioning of boundary conditions generally results in initialisation or integration difficulties in the underlying time integration functions.
The boundary conditions have the form:

\[G^L_i(x, t, U, U_t) = 0 \quad \text{at } x = a, \quad i = 1, 2, \ldots, n_a \]

(4)

at the left-hand boundary, and

\[G^R_i(x, t, U, U_t) = 0 \quad \text{at } x = b, \quad i = 1, 2, \ldots, n_b \]

(5)

at the right-hand boundary.

Note that the functions G^L_i and G^R_i must not depend on U_x, since spatial derivatives are not determined explicitly in the Keller box scheme (Keller (1970)). If the problem involves derivative (Neumann) boundary conditions then it is generally possible to restate such boundary conditions in terms of permissible variables. Also note that G^L_i and G^R_i must be linear with respect to time derivatives, so that the boundary conditions have the general form

\[\sum_{j=1}^{\text{npde}} E^L_{i,j} \frac{\partial U_j}{\partial t} + S^L_i = 0, \quad i = 1, 2, \ldots, n_a \]

(6)

at the left-hand boundary, and

\[\sum_{j=1}^{\text{npde}} E^R_{i,j} \frac{\partial U_j}{\partial t} + S^R_i = 0, \quad i = 1, 2, \ldots, n_b \]

(7)

at the right-hand boundary, where $E^L_{i,j}$, $E^R_{i,j}$, S^L_i, and S^R_i depend on x, t and U only.

The boundary conditions must be specified in a function `bndary` provided by the user.

The problem is subject to the following restrictions:

(i) $t_0 < t_{\text{out}}$, so that integration is in the forward direction;

(ii) $P_{i,j}$ and Q_i must not depend on any time derivatives;

(iii) The evaluation of the function G_i is done at the mid-points of the mesh intervals by calling the function `pdedef` for each mid-point in turn. Any discontinuities in the function must therefore be at one or more of the mesh points $x_1, x_2, \ldots, x_{\text{npts}}$;

(iv) At least one of the functions $P_{i,j}$ must be non-zero so that there is a time derivative present in the problem.

In this method of lines approach the Keller box scheme (Keller (1970)) is applied to each PDE in the space variable only, resulting in a system of ODEs in time for the values of U_i at each mesh point. In total there are \text{npde} x \text{npts} ODEs in the time direction. This system is then integrated forwards in time using a BDF method.

4 References

5 Parameters

1: npde – Integer

Input

On entry: the number of PDEs in the system to be solved.

Constraint: npde ≥ 1.

2: ts – double *

Input/Output

On entry: the initial value of the independent variable t.

Constraint: ts < tout.

On exit: the value of t corresponding to the solution values in u. Normally ts = tout.

3: tout – double

Input

On entry: the final value of t to which the integration is to be carried out.

4: pdedef

Function

pdedef must compute the functions G_i which define the system of PDEs. pdedef is called approximately midway between each pair of mesh points in turn by nag_pde_parab_1d_keller (d03pec).

Its specification is:

```c
void pdedef (Integer npde, double t, double x, const double u[], const double ut[], const double ux[], double res[], Integer *ires, Nag_Comm *comm)
```

1: npde – Integer

Input

On entry: the number of PDEs in the system.

2: t – double

Input

On entry: the current value of the independent variable t.

3: x – double

Input

On entry: the current value of the space variable x.

4: u[npde] – const double

Input

On entry: u[i - 1] contains the value of the component $U_i(x, t)$, for $i = 1, 2, \ldots, \text{npde}$.

5: ut[npde] – const double

Input

On entry: ut[i - 1] contains the value of the component $\frac{\partial U_i(x, t)}{\partial t}$, for $i = 1, 2, \ldots, \text{npde}$.

6: ux[npde] – const double

Input

On entry: ux[i - 1] contains the value of the component $\frac{\partial U_i(x, t)}{\partial x}$, for $i = 1, 2, \ldots, \text{npde}$.

7: res[npde] – double

Output

On exit: res[i - 1] must contain the ith component of G, for $i = 1, 2, \ldots, \text{npde}$, where G is defined as

$$G_i = \sum_{j=1}^{\text{npde}} P_{i,j} \frac{\partial U_j}{\partial t},$$

(8)

i.e., only terms depending explicitly on time derivatives, or
\[
G_i = \sum_{j=1}^{\text{npde}} P_{i,j} \frac{\partial U_j}{\partial t} + Q_i,
\]
\hspace{1cm} (9)

i.e., all terms in equation (2).

The definition of \(G \) is determined by the input value of \(\text{ires} \).

8: \(\text{ires} \) – Integer * \hspace{1cm} \text{Input/Output}

\text{On entry:} the form of \(G_i \) that must be returned in the array \(\text{res} \). If \(\text{ires} = -1 \), then equation (8) above must be used. If \(\text{ires} = 1 \), then equation (9) above must be used.

\text{On exit:} should usually remain unchanged. However, the user may set \(\text{ires} \) to force the integration function to take certain actions, as described below:

\(\text{ires} = 2 \)

Indicates to the integrator that control should be passed back immediately to the calling function with the error indicator set to \(\text{fail.code} = \text{NE.USER.STOP} \).

\(\text{ires} = 3 \)

Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. The user may wish to set \(\text{ires} = 3 \) when a physically meaningless input or output value has been generated. If the user consecutively sets \(\text{ires} = 3 \), then \text{nag_pde_parab_1d_keller} (d03pec) returns to the calling function with the error indicator set to \(\text{fail.code} = \text{NE.FAILED_DERIV} \).

9: \(\text{comm} \) – NAG_Comm * \hspace{1cm} \text{Input/Output}

The NAG communication parameter (see the Essential Introduction).

5: \(\text{bndary} \)

Function

\text{bndary} must compute the functions \(G_i^L \) and \(G_i^R \) which define the boundary conditions as in equations (4) and (5).

Its specification is:

\begin{verbatim}
void bndary (Integer npde, double t, Integer ibnd, Integer nobc, const double u[],
 const double ut[], double res[], Integer *ires, Nag_Comm *comm)
\end{verbatim}
by \(\text{ibnd} \), for \(i = 1,2,\ldots,\text{npde} \).

6: \(\mathbf{u}[\text{npde}] \) – const double

 \(\text{Input} \)

 \(\text{On entry: } \mathbf{u}[i - 1] \) contains the value of the component \(\frac{\partial U_i(x,t)}{\partial t} \) at the boundary specified by \(\text{ibnd} \), for \(i = 1,2,\ldots,\text{npde} \).

7: \(\mathbf{res}[\text{nbc}] \) – double

 \(\text{Output} \)

 \(\text{On exit: } \mathbf{res}[i] \) must contain the \(i \)th component of \(G^L \) or \(G^R \), depending on the value of \(\text{ibnd} \), for \(i = 1,2,\ldots,\text{nbc} \), where \(G^L \) is defined as

 \[
 G^L_i = \sum_{j=1}^{\text{npde}} E_{i,j}^L \frac{\partial U_j}{\partial t},
 \]

 i.e., only terms depending explicitly on time derivatives, or

 \[
 G^L_i = \sum_{j=1}^{\text{npde}} E_{i,j}^L \frac{\partial U_j}{\partial t} + S_i^L,
 \]

 i.e., all terms in equation (6), and similarly for \(G^R_i \).

The definitions of \(G^L \) and \(G^R \) are determined by the input value of \(\text{ires} \).

8: \(\text{ires} \) – Integer *

 \(\text{Input/Output} \)

 \(\text{On entry: } \) the form \(G^L_i \) (or \(G^R_i \)) that must be returned in the array \(\mathbf{res} \). If \(\text{ires} = -1 \), then equation (10) above must be used. If \(\text{ires} = 1 \), then equation (11) above must be used.

 \(\text{On exit: } \) should usually remain unchanged. However, the user may set \(\text{ires} \) to force the integration function to take certain actions, as described below:

 \(\text{ires} = 2 \)

 Indicates to the integrator that control should be passed back immediately to the calling function with the error indicator set to \(\text{fail.code} = \text{NE_USER_STOP} \).

 \(\text{ires} = 3 \)

 Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. The user may wish to set \(\text{ires} = 3 \) when a physically meaningless input or output value has been generated. If the user consecutively sets \(\text{ires} = 3 \), then \text{d03pec} returns to the calling function with the error indicator set to \(\text{fail.code} = \text{NE_FAILED_DERIV} \).

9: \(\text{comm} \) – NAG_Comm *

 \(\text{Input/Output} \)

 The NAG communication parameter (see the Essential Introduction).

Note: where \(U(i,j) \) appears in this document it refers to the array element \(\mathbf{u}[\text{npde} \times (j - 1) + i - 1] \). We recommend using a \#define to make the same definition in your calling program.

On entry: the initial values of \(U(x,t) \) at \(t = \text{ts} \) and the mesh points \(x[j - 1], \) for \(j = 1,2,\ldots,\text{npts} \).

On exit: \(U(i,j) \) will contain the computed solution at \(t = \text{ts} \).

7: \(\text{npts} \) – Integer

 \(\text{Input} \)

 \(\text{On entry: } \) the number of mesh points in the interval \([a,b]\).

 \(\text{Constraint: } \text{npts} \geq 3 \).
8: \textbf{x[npts]} – const double \hspace{1cm} \textit{Input}

\textit{On entry}: the mesh points in the spatial direction. \textbf{x[0]} must specify the left-hand boundary, \textit{a}, and \textbf{x[npts]} \textit{– const double} must specify the right-hand boundary, \textit{b}.

\textit{Constraint}: \textbf{x[0]} < \textbf{x[1]} < \cdots < \textbf{x[npts]} \textit{– const double}.

9: \textbf{nleft} – Integer \hspace{1cm} \textit{Input}

\textit{On entry}: the number \textit{n_a} of boundary conditions at the left-hand mesh point \textbf{x[0]}.

\textit{Constraint}: 0 \leq \textbf{nleft} \leq \textbf{npde}.

10: \textbf{acc} – double \hspace{1cm} \textit{Input}

\textit{On entry}: a positive quantity for controlling the local error estimate in the time integration. If \textit{E}(i,j) is the estimated error for \textit{U}, at the \textit{j}th mesh point, the error test is:

\[|E(i,j)| = \textbf{acc} \times (1.0 + |\textbf{U}(i,j)|). \]

\textit{Constraint}: \textbf{acc} > 0.0.

11: \textbf{rsave[lrsave]} – double \hspace{1cm} \textit{Input/Output}

\textit{On entry}: if \textbf{ind} = 0, \textbf{rsave} need not be set. If \textbf{ind} = 1 then it must be unchanged from the previous call to the function.

\textit{On exit}: contains information about the iteration required for subsequent calls.

12: \textbf{lrsave} – Integer \hspace{1cm} \textit{Input}

\textit{On entry}: the dimension of the array \textbf{rsave} as declared in the function from which \textbf{nag_pde_parab_1d_keller} (d03pec) is called.

\textit{Constraint}: \textbf{lrsave} \geq (4 \times \textbf{npde} + \textbf{nleft} + 14) \times \textbf{npde} \times \textbf{npts} + (3 \times \textbf{npde} + 21) \times \textbf{npde} + 7 \times \textbf{npts} + 54.

13: \textbf{isave[lisave]} – Integer \hspace{1cm} \textit{Input/Output}

\textit{On entry}: if \textbf{ind} = 0, \textbf{isave} need not be set. If \textbf{ind} = 1 then it must be unchanged from the previous call to the function.

\textit{On exit}: contains information about the iteration required for subsequent calls. In particular:

\textbf{isave[0]} contains the number of steps taken in time.

\textbf{isave[1]} contains the number of residual evaluations of the resulting ODE system used. One such evaluation involves computing the PDE functions at all the mesh points, as well as one evaluation of the functions in the boundary conditions.

\textbf{isave[2]} contains the number of Jacobian evaluations performed by the time integrator.

\textbf{isave[3]} contains the order of the last backward differentiation formula method used.

\textbf{isave[4]} contains the number of Newton iterations performed by the time integrator. Each iteration involves an ODE residual evaluation followed by a back-substitution using the \textit{LU} decomposition of the Jacobian matrix.

14: \textbf{lisave} – Integer \hspace{1cm} \textit{Input}

\textit{On entry}: the dimension of the array \textbf{isave} as declared in the function from which \textbf{nag_pde_parab_1d_keller} (d03pec) is called.

\textit{Constraint}: \textbf{lisave} \geq \textbf{npde} \times \textbf{npts} + 24.

15: \textbf{itask} – Integer \hspace{1cm} \textit{Input}

\textit{On entry}: specifies the task to be performed by the ODE integrator. The permitted values of \textbf{itask} and their meanings are described below:
\textbf{itask} = 1
normal computation of output values \textit{u} at \(t = \texttt{tout} \).

\textbf{itask} = 2
take one step and return.

\textbf{itask} = 3
stop at the first internal integration point at or beyond \(t = \texttt{tout} \).
\textit{Constraint: }1 \leq \textbf{itask} \leq 3.

16: \textbf{itrace} – \textbf{Integer} \hspace{1cm} \textit{Input}
\textit{On entry:} the level of trace information required from nag_pde_parab_1d_keller (d03pec) and the underlying ODE solver as follows:
If \textbf{itrace} \leq -1, no output is generated.
If \textbf{itrace} = 0, only warning messages from the PDE solver are printed.
If \textbf{itrace} = 1, then output from the underlying ODE solver is printed. This output contains details of Jacobian entries, the nonlinear iteration and the time integration during the computation of the ODE system.
If \textbf{itrace} = 2, then the output from the underlying ODE solver is similar to that produced when \textbf{itrace} = 1, except that the advisory messages are given in greater detail.
If \textbf{itrace} \geq 3, then the output from the underlying ODE solver is similar to that produced when \textbf{itrace} = 2, except that the advisory messages are given in greater detail.
Users are advised to set \textbf{itrace} = 0.

17: \textbf{outfile} – \textbf{char *} \hspace{1cm} \textit{Input}
\textit{On entry:} the name of a file to which diagnostic output will be directed. If \textbf{outfile} is NULL the diagnostic output will be directed to standard output.

18: \textbf{ind} – \textbf{Integer *} \hspace{1cm} \textit{Input/Output}
\textit{On entry:} \textbf{ind} must be set to 0 or 1.
\textbf{ind} = 0
starts or restarts the integration in time.
\textbf{ind} = 1
continues the integration after an earlier exit from the function. In this case, only the parameters \textbf{tout} and \textbf{fail} should be reset between calls to nag_pde_parab_1d_keller (d03pec).
\textit{Constraint: }0 \leq \textbf{ind} \leq 1.
\textit{On exit: }\textbf{ind} = 1.

19: \textbf{comm} – NAG_Comm * \hspace{1cm} \textit{Input/Output}
The NAG communication parameter (see the Essential Introduction).

20: \textbf{saved} – Nag_D03_Save * \hspace{1cm} \textit{Input/Output}
Note: \textbf{saved} is a NAG defined structure. See Section 2.2.1.1 of the Essential Introduction.
\textit{On entry:} if the current call to nag_pde_parab_1d_keller (d03pec) follows a previous call to a Chapter d03 function then \textbf{saved} must contain the unchanged value output from that previous call.
\textit{On exit:} data to be passed unchanged to any subsequent call to a Chapter d03 function.
6 Error Indicators and Warnings

NE_INT

ires set to an invalid value in call to **pdedef** or **bndary**.

On entry, **nleft** = ⟨value⟩.
Constraint: **nleft** ≥ 0.

On entry, **npde** = ⟨value⟩.
Constraint: **npde** ≥ 1.

On entry, **npts** = ⟨value⟩.
Constraint: **npts** ≥ 3.

On entry, **itask** is not equal to 1, 2, or 3: **itask** = ⟨value⟩.

On entry, **ind** is not equal to 0 or 1: **ind** = ⟨value⟩.

NE_INT_2

On entry, **lrsave** is too small: **lrsave** = ⟨value⟩. Minimum possible dimension: ⟨value⟩.

On entry, **lisave** is too small: **lisave** = ⟨value⟩. Minimum possible dimension: ⟨value⟩.

On entry, **nleft** > **npde**: **nleft** = ⟨value⟩, **npde** = ⟨value⟩.

NE_ACC_IN_DOUBT

Integration completed, but a small change in **acc** is unlikely to result in a changed solution.
acc = ⟨value⟩.

NE_FAILED_DERIV

In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This could be due to user setting **ires** = 3 in **pdedef** or **bndary**.

NE_FAILED_START

acc was too small to start integration: **acc** = ⟨value⟩.

NE_FAILED_STEP

Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far as **ts**: **ts** = ⟨value⟩.

Error during Jacobian formulation for ODE system. Increase **itrace** for further details.

Underlying ODE solver cannot make further progress from the point **ts** with the supplied value of **acc**. **ts** = ⟨value⟩, **acc** = ⟨value⟩.

NE_INTERNAL_ERROR

Serious error in internal call to an auxiliary. Increase **itrace** for further details.

NE_NOT_STRICTLY_INCREASING

On entry, mesh points **x** appear to be badly ordered: **i** = ⟨value⟩, **x[i−1]** = ⟨value⟩, **j** = ⟨value⟩,
x[j−1] = ⟨value⟩.
NE_REAL
On entry, acc = ⟨value⟩.
Constraint: acc > 0.0.

NE_REAL_2
On entry, tout − ts is too small: tout = ⟨value⟩, ts = ⟨value⟩.
On entry, tout ≤ ts: tout = ⟨value⟩, ts = ⟨value⟩.

NE_SING_JAC
Singular Jacobian of ODE system. Check problem formulation.

NE_USER_STOP
In evaluating residual of ODE system, ires = 2 has been set in pdef or bndary. Integration is successful as far as ts: ts = ⟨value⟩.

NE_ALLOC_FAIL
Memory allocation failed.

NE_BAD_PARAM
On entry, parameter ⟨value⟩ had an illegal value.

NE_NOT_WRITE_FILE
Cannot open file ⟨value⟩ for writing.

NE_NOT_CLOSE_FILE
Cannot close file ⟨value⟩.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy
The function controls the accuracy of the integration in the time direction but not the accuracy of the approximation in space. The spatial accuracy depends on both the number of mesh points and on their distribution in space. In the time integration only the local error over a single step is controlled and so the accuracy over a number of steps cannot be guaranteed. The user should therefore test the effect of varying the accuracy parameter, acc.

8 Further Comments
The Keller box scheme can be used to solve higher-order problems which have been reduced to first-order by the introduction of new variables (see the example problem in nag_pde_parab_1d_keller_ode (d03pkc)). In general, a second-order problem can be solved with slightly greater accuracy using the Keller box scheme instead of a finite-difference scheme (nag_pde_parab_1d_fd (d03pcc) or nag_pde_parab_1d_fd_ode (d03phc) for example), but at the expense of increased CPU time due to the larger number of function evaluations required.

It should be noted that the Keller box scheme, in common with other central-difference schemes, may be unsuitable for some hyperbolic first-order problems such as the apparently simple linear advection equation \(U_t + aU_x = 0 \), where \(a \) is a constant, resulting in spurious oscillations due to the lack of dissipation. This type of problem requires a discretisation scheme with upwind weighting (nag_pde_parab_1d_cd (d03pfc) for example), or the addition of a second-order artificial dissipation term.
The time taken depends on the complexity of the system and on the accuracy requested.

9 Example

This example is the simple first-order system

\[
\begin{align*}
\frac{\partial U_1}{\partial t} + \frac{\partial U_1}{\partial x} + \frac{\partial U_1}{\partial x^2} &= 0, \\
\frac{\partial U_2}{\partial t} + 4 \frac{\partial U_1}{\partial x} + \frac{\partial U_1}{\partial x^2} &= 0,
\end{align*}
\]

for \(t \in [0, 1] \) and \(x \in [0, 1] \).

The initial conditions are

\[
U_1(x, 0) = \exp(x), \quad U_2(x, 0) = \sin(x),
\]

and the Dirichlet boundary conditions for \(U_1 \) at \(x = 0 \) and \(U_2 \) at \(x = 1 \) are given by the exact solution:

\[
U_1(x, t) = \frac{1}{2} \{ \exp(x + t) + \exp(x - 3t) \} + \frac{1}{4} \{ \sin(x - 3t) - \sin(x + t) \},
\]

\[
U_2(x, t) = \exp(x - 3t) - \exp(x + t) + \frac{1}{4} \{ \sin(x + t) + \sin(x - 3t) \}.
\]

9.1 Program Text

/* nag_pde_parab_1d_keller (d03pec) Example Program. */
/* Copyright 2001 Numerical Algorithms Group. */
/* Mark 7, 2001. */

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
#include <nagx01.h>

static void pdedef(Integer, double, double, const double[],
const double[], const double[], double[],
Integer *, Nag_Comm *);
static void bndary(Integer, double, Integer, Integer,
const double[], const double[], double[],
Integer *, Nag_Comm *);
static void exact(double, Integer, Integer, double *, double *);
static void uinit(Integer, Integer, double *, double *);

#define U(I,J) u[npde*((J)-1)+(I)-1]
#define EU(I,J) eu[npde*((J)-1)+(I)-1]

int main(void)
{
const Integer npde=2, npts=41, nleft=1, neqn=npde*npts,
 lisave=neqn+24, nwkres=npde*(npts+21)+3*npde)+7*npts+4,
 lrsave=11*neqn+(4*npde+nleft+2)*neqn+50+nwkres;
Integer exit_status, i, ind, it, itask, itrace;
double acc, tout, ts;
double *eu=0, *rsave=0, *u=0, *x=0;
Integer *isave=0;
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;

/* Allocate memory */
if (!(eu = NAG_ALLOC(npde*npts, double)) ||
 !(rsave = NAG_ALLOC(lrsave, double)) ||
 !(u = NAG_ALLOC(npde*npts, double)) ||
 !(x = NAG_ALLOC(npts, double)) ||
 !(isave = NAG_ALLOC(lisave, Integer)))
{
 Vprintf("Allocation failure\n");
 exit_status = 1;
 goto END;
}

itrace = 0;
acc = 1e-6;
INIT_FAIL(fail);
exit_status = 0;
Vprintf("d03pec Example Program Results\n\n");
Vprintf(" Accuracy requirement = %10.3e", acc);
Vprintf(" Number of points = %3ld\n\n", npts);

/* Set spatial-mesh points */
for (i = 0; i < npts; ++i) x[i] = i/(npts-1.0);
Vprintf(" x ");
Vprintf("%10.4f%10.4f%10.4f%10.4f%10.4f

", x[4], x[12], x[20], x[28], x[36]);

ind = 0;
itask = 1;
uinit(npde, npts, x, u);

/* Loop over output value of t */
ts = 0.0;
tout = 0.0;
for (it = 0; it < 5; ++it)
{
 tout = 0.2*(it+1);
d03pec(npde, &ts, tout, pdedef, bndary, u, npts, x, nleft,
 acc, rsave, isave, lrsave, itask, itrace,
 0, &ind, &comm, &saved, &fail);
 if (fail.code != NE_NOERROR)
 {
 Vprintf("Error from d03pec.\n\n", fail.message);
 exit_status = 1;
 goto END;
 }
 /* Check against the exact solution */
 exact(tout, npde, npts, x, eu);
 Vprintf(" t = \%5.2f\n", ts);
 Vprintf(" Approx u\n");
 Vprintf("%10.4f%10.4f%10.4f%10.4f%10.4f\n",
 U(1,5), U(1,13), U(1,21), U(1,29), U(1,37));
 Vprintf(" Exact u\n");
 Vprintf("%10.4f%10.4f%10.4f%10.4f%10.4f\n",
 EU(1,5), EU(1,13), EU(1,21), EU(1,29), EU(1,37));
 Vprintf(" Approx u\n");
 Vprintf("%10.4f%10.4f%10.4f%10.4f%10.4f\n",
 U(2,5), U(2,13), U(2,21), U(2,29), U(2,37));
 Vprintf(" Exact u\n");
Vprintf("%10.4f%10.4f%10.4f%10.4f%10.4f\n\n",
 EU(2,5), EU(2,13), EU(2,21), EU(2,29), EU(2,37));

}

Vprintf(" Number of integration steps in time = %6ld\n", isave[0]);
Vprintf(" Number of function evaluations = %6ld\n", isave[1]);
Vprintf(" Number of Jacobian evaluations =%6ld\n", isave[2]);
Vprintf(" Number of iterations = %6ld\n", isave[4]);

END:
if (eu) NAG_FREE(eu);
if (rsave) NAG_FREE(rsave);
if (u) NAG_FREE(u);
if (x) NAG_FREE(x);
if (isave) NAG_FREE(isave);
return exit_status;
}

static void pdedef(Integer npde, double t, double x, const double u[],
 const double udot[], const double dudx[], double res[],
 Integer *ires, Nag_Comm *comm)
{
 if (*ires == -1)

 res[0] = udot[0];
 res[1] = udot[1];
 else {
 res[0] = udot[0] + dudx[0] + dudx[1];
 res[1] = udot[1] + 4.0*dudx[0] + dudx[1];
 }
 return;
}

static void bndary(Integer npde, double t, Integer ibnd, Integer nobc,
 const double u[], const double udot[], double res[],
 Integer *ires, Nag_Comm *comm)
{
 if (ibnd == 0)

 if (*ires == -1)

 res[0] = 0.0;
 else {
 res[0] = u[0] - 0.5*(exp(t) + exp(-3.0*t))
 - 0.25*(sin(-3.0*t) - sin(t));
 }
 else {
 if (*ires == -1) {
 res[0] = 0.0;
 }
 else {
 res[0] = u[1] - exp(1.0 - 3.0*t) + exp(t + 1.0)
 - 0.5*(sin(1.0 - 3.0*t) + sin(t + 1.0));
 }
 }
 return;
}

static void uinit(Integer npde, Integer npts, double *x, double *u)
{
 /* Routine for PDE initial values */
 Integer i;
 for (i = 1; i <= npts; ++i) {
 U(1, i) = exp(x[i-1]);
 U(2, i) = sin(x[i-1]);
 }
 return;
}


```c
static void exact(double t, Integer npde, Integer npts, double *x, double *u)
{
    /* Exact solution (for comparison purposes) */
    Integer i;
    for (i = 1; i <= npts; ++i)
    {
        U(1, i) = 0.5*(exp(x[i-1] + t) + exp(x[i-1] - 3.0*t)) +
                   0.25*(sin(x[i-1] - 3.0*t) - sin(x[i-1] + t));
        U(2, i) = exp(x[i-1] - 3.0*t) - exp(x[i-1] + t) +
                   0.5*(sin(x[i-1] - 3.0*t) + sin(x[i-1] + t));
    }
    return;
}
```

9.2 Program Data

None.

9.3 Program Results

d03pec Example Program Results

Accuracy requirement = 1.000e-06 Number of points = 41

<table>
<thead>
<tr>
<th>x</th>
<th>0.1000</th>
<th>0.3000</th>
<th>0.5000</th>
<th>0.7000</th>
<th>0.9000</th>
</tr>
</thead>
</table>
| t = 0.20
| Approx u1 | 0.7845 | 1.0010 | 1.2733 | 1.6115 | 2.0281 |
| Exact u1 | 0.7845 | 1.0010 | 1.2733 | 1.6115 | 2.0281 |
| Approx u2 | -0.8352 | -0.8159 | -0.8367 | -0.9128 | -1.0609 |
| Exact u2 | -0.8353 | -0.8160 | -0.8367 | -0.9129 | -1.0609 |

| t = 0.40
Approx u1	0.6481	0.8533	1.1212	1.4627	1.8903
Exact u1	0.6481	0.8533	1.1212	1.4627	1.8903
Approx u2	-1.5216	-1.6767	-1.8934	-2.1917	-2.5944
Exact u2	-1.5217	-1.6767	-1.8935	-2.1917	-2.5945

| t = 0.60
Approx u1	0.6892	0.8961	1.1747	1.5374	1.9989
Exact u1	0.6892	0.8962	1.1747	1.5374	1.9989
Approx u2	-2.0047	-2.3434	-2.7677	-3.3002	-3.9680
Exact u2	-2.0048	-2.3436	-2.7678	-3.3003	-3.9680

| t = 0.80
Approx u1	0.8977	1.1247	1.4320	1.8349	2.3514
Exact u1	0.8977	1.1247	1.4320	1.8349	2.3512
Approx u2	-2.3403	-2.8675	-3.5110	-4.2960	-5.2536
Exact u2	-2.3405	-2.8677	-3.5111	-4.2961	-5.2537

| t = 1.00
Approx u1	1.2470	1.5206	1.8828	2.3528	2.9519
Exact u1	1.2470	1.5205	1.8829	2.3528	2.9518
Approx u2	-2.6229	-3.3338	-4.1998	-5.2505	-6.5218
Exact u2	-2.6232	-3.3340	-4.2001	-5.2507	-6.5219

Number of integration steps in time = 149
Number of function evaluations = 399
Number of Jacobian evaluations = 13
Number of iterations = 323