1. **Purpose**

nag_ode_ivp_bdf_gen (d02ejc) integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions, using a variable-order, variable-step method implementing the Backward Differentiation Formulae (BDF), until a user-specified function, if supplied, of the solution is zero, and returns the solution at points specified by the user, if desired.

2. **Specification**

```c
#include <nag.h>
#include <nagd02.h>

void nag_ode_ivp_bdf_gen(Integer neq,
                        void (*fcn)(Integer neq, double x, double y[], double f[],
                                    Nag_User *comm),
                        void (*pederv)(Integer neq, double x, double y[],
                                        double pw[], Nag_User *comm),
                        double *x, double y[], double xend, double tol,
                        Nag_ErrorControl err_c,
                        void (*output)(Integer neq, double *xsol, double y[],
                                        Nag_User *comm),
                        double (*g)(Integer neq, double x, double y[], Nag_User *comm),
                        Nag_User *comm, NagError *fail)
```

3. **Description**

The function advances the solution of a system of ordinary differential equations

\[y'_i = f_i(x, y_1, y_2, \ldots, y_{neq}), \quad i = 1, 2, \ldots, neq. \]

from \(x = x \) to \(x = xend \) using a variable-order, variable-step method implementing the BDF. The system is defined by a function *fcn* supplied by the user, which evaluates \(f_i \) in terms of \(x \) and \(y_1, y_2, \ldots, y_{neq} \) (see Section 4). The initial values of \(y_1, y_2, \ldots, y_{neq} \) must be given at \(x = x \).

The solution is returned via the user-supplied function *output* at points specified by the user, if desired: this solution is obtained by \(C^1 \) interpolation on solution values produced by the method.

As the integration proceeds a check can be made on the user-supplied function *g* to determine an interval where it changes sign. The position of this sign change is then determined accurately. It is assumed that \(g(x, y) \) is a continuous function of the variables, so that a solution of \(g(x, y) = 0 \) can be determined by searching for a change in sign in \(g(x, y) \). The accuracy of the integration, the interpolation and, indirectly, of the determination of the position where \(g(x, y) = 0 \), is controlled by the parameters *tol* and *err.c*. The Jacobian of the system \(y'_i = f(x, y) \) may be supplied in function *pederv*, if it is available.

For a description of BDF and their practical implementation see Hall and Watt (1976).

4. **Parameters**

- **neq**
 - Input: the number of differential equations.
 - Constraint: \(neq \geq 1 \).

- **fcn**
 - The function *fcn*, supplied by the user, must evaluate the first derivatives \(y'_i \) (i.e., the functions \(f_i \)) for given values of their arguments \(x, y_1, y_2, \ldots, y_{neq} \).
 - The specification of *fcn* is:
void fcn(Integer neq, double x, double y[], double f[], Nag_User *comm)

neq
Input: the number of differential equations.

x
Input: the value of the independent variable x.

y[neq]
Input: y[i – 1] holds the value of the variable y_i, for i = 1, 2, ..., neq.

f[neq]
Output: f[i – 1] must contain the value of f_i, for i = 1, 2, ..., neq.

comm
Input/Output: pointer to a structure of type Nag_User with the following member:

p - Pointer
Input/Output: The pointer comm->p should be cast to the required type, e.g. struct user *s = (struct user *)comm->p, to obtain the original object’s address with appropriate type. (See the argument comm below.)

The function pederv must evaluate the Jacobian of the system (that is, the partial derivatives $\frac{\partial f_i}{\partial y_j}$) for given values of the variables $x, y_1, y_2, ..., y_{neq}$.

The specification of pederv is:

void pederv(Integer neq, double x, double y[], double pw[], Nag_User *comm)

neq
Input: the number of differential equations.

x
Input: the value of the independent variable x.

y[neq]
Input: y[i – 1] holds the value of the variable y_i, for i = 1, 2, ..., neq.

pw[neq*neq]
Output: pw[(i – 1) * neq + j – 1] must contain the value of $\frac{\partial f_i}{\partial y_j}$, for i, j = 1, 2, ..., neq.

comm
Input/Output: pointer to a structure of type Nag_User with the following member:

p - Pointer
Input/Output: The pointer comm->p should be cast to the required type, e.g. struct user *s = (struct user *)comm->p, to obtain the original object’s address with appropriate type. (See the argument comm below.)

If the user does not wish to supply the Jacobian, the actual argument pederv must be the NAG defined null function pointer NULLFN.

x
Input: the value of the independent variable x.

Constraint: $x \neq xend$.

Output: if g is supplied by the user, x contains the point where $g(x, y) = 0.0$, unless $g(x, y) \neq 0.0$ anywhere on the range x to $xend$, in which case, x will contain $xend$. If g is not supplied by the user x contains $xend$, unless an error has occurred, when it contains the value of x at the error.

y[neq]
Input: y[i – 1] holds the value of the variable y_i, for i = 1, 2, ..., neq.
Output: the computed values of the solution at the final point \(x = x \).

\textbf{xend}

Input: the final value of the independent variable. If \(xend < x \), integration proceeds in the negative direction.

Constraint: \(xend \neq x \).

\textbf{tol}

Input: a positive tolerance for controlling the error in the integration. Hence \(tol \) affects the determination of the position where \(g(x, y) = 0 \), if \(g \) is supplied. \n
\texttt{nag::ode::ivp::bdf_gen} has been designed so that, for most problems, a reduction in \(tol \) leads to an approximately proportional reduction in the error in the solution. However, the actual relation between \(tol \) and the accuracy achieved cannot be guaranteed. The user is strongly recommended to call \texttt{nag::ode::ivp::bdf_gen} with more than one value for \(tol \) and to compare the results obtained to estimate their accuracy. In the absence of any prior knowledge, the user might compare the results obtained by calling \texttt{nag::ode::ivp::bdf_gen} with \(tol = 10^{-p} \) and \(tol = 10^{-p-1} \) if \(p \) correct decimal digits are required in the solution.

Constraint: \(tol > 0.0 \).

\textbf{errc}

Input: the type of error control. At each step in the numerical solution an estimate of the local error, \(est \), is made. For the current step to be accepted the following condition must be satisfied:

\[
est = \sqrt{\frac{1}{\text{neq}} \sum_{i=1}^{\text{neq}} \left(\frac{e_i}{(\tau_r \times |y_i| + \tau_a)} \right)^2} \leq 1.0
\]

where \(\tau_r \) and \(\tau_a \) are defined by

\begin{align*}
\text{errc} & \quad \tau_r \quad \tau_a \\
\text{Nag_Relative} & \quad tol \quad \varepsilon \\
\text{Nag_Absolute} & \quad 0.0 \quad tol \\
\text{Nag_Mixed} & \quad tol \quad tol
\end{align*}

where \(\varepsilon \) is a small machine-dependent number and \(e_i \) is an estimate of the local error at \(y_i \), computed internally. If the appropriate condition is not satisfied, the step size is reduced and the solution is recomputed on the current step. If the user wishes to measure the error in the computed solution in terms of the number of correct decimal places, then \texttt{errc} should be set to \texttt{Nag_Absolute} on entry, whereas if the error requirement is in terms of the number of correct significant digits, then \texttt{errc} should be set to \texttt{Nag_Relative}. If the user prefers a mixed error test, then \texttt{errc} should be set to \texttt{Nag_Mixed}. The recommended value for \texttt{errc} is \texttt{Nag_Relative}.

Constraint: \texttt{errc = Nag_Absolute}, \texttt{Nag_Mixed} or \texttt{Nag_Relative}.

\textbf{output}

The function \texttt{output} permits access to intermediate values of the computed solution (for example to print or plot them), at successive user-specified points. It is initially called by \texttt{nag::ode::ivp::bdf_gen} with \texttt{xsol = x} (the initial value of \(x \)). The user must reset \texttt{xsol} to the next point (between the current \texttt{xsol} and \texttt{xend}) where \texttt{output} is to be called, and so on at each call to \texttt{output}. If, after a call to \texttt{output}, the reset point \texttt{xsol} is beyond \texttt{xend}, \texttt{nag::ode::ivp::bdf_gen} will integrate to \texttt{xend} with no further calls to \texttt{output}; if a call to \texttt{output} is required at the point \texttt{xsol = xend}, then \texttt{xsol} must be given precisely the value \texttt{xend}.
void output(Integer neq, double *xsol, double y[], Nag_User *comm)

neq
 Input: the number of differential equations.

xsol
 Input: the value of the independent variable x.
 Output: the user must set xsol to the next value of x at which output is to be called.

y[neq]
 Input: $y[i-1]$ holds the value of the variable y_i, for $i = 1, 2, \ldots, \text{neq}$.

comm
 Input/Output: pointer to a structure of type Nag_User with the following member:

 p - Pointer
 Input/Output: The pointer comm->p should be cast to the required type, e.g. \text{struct user *s = (struct user *)comm->p}, to obtain the original object’s address with appropriate type. (See the argument \text{comm} below.)

If the user does not wish to access intermediate output, the actual argument output must be the NAG defined null function pointer NULLFN.

g
The function g must evaluate $g(x,y)$ for specified values x, y. It specifies the function g for which the first position x where $g(x,y) = 0$ is to be found.

The specification of g is:

double g(Integer neq, double x, double y[], Nag_User *comm)

neq
 Input: the number of differential equations.

x
 Input: the value of the independent variable x.

y[neq]
 Input: $y[i-1]$ holds the value of the variable y_i, for $i = 1, 2, \ldots, \text{neq}$.

comm
 Input/Output: pointer to a structure of type Nag_User with the following member:

 p - Pointer
 Input/Output: The pointer comm->p should be cast to the required type, e.g. \text{struct user *s = (struct user *)comm->p}, to obtain the original object’s address with appropriate type. (See the argument \text{comm} below.)

If the user does not require the root finding option, the actual argument g must be the NAG defined null double function pointer NULLDFN.

comm
Input/Output: pointer to a structure of type Nag_User with the following member:

p - Pointer
 Input/Output: The pointer p, of type Pointer, allows the user to communicate information to and from the user-defined functions $\text{fcn}()$, $\text{pederv}()$, $\text{output}()$ and $g()$. An object of the required type should be declared by the user, e.g. a structure, and its address assigned to the pointer p by means of a cast to Pointer in the calling program, e.g. $\text{comm.p = (Pointer)&s}$. The type pointer will be void * with a C compiler that defines void * and char * otherwise.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
5. Error Indications and Warnings

NE_INT_ARG_LT
On entry, neq must not be less than 1: neq = ⟨value⟩.

NE_REAL_ARG_LE
On entry, tol must not be less than or equal to 0.0: tol = ⟨value⟩.

NE_2_REAL_ARG_EQ
On entry x = ⟨value⟩ while xend = ⟨value⟩. These parameters must satisfy x ≠ xend.

NE_BAD_PARAM
On entry parameter errc had an illegal value.

NE_TOL_TOO_SMALL
The value of tol, ⟨value⟩, is too small for the function to take an initial step.

NE_XSOL_NOT_RESET
On call ⟨value⟩ to the supplied print function xsol was not reset.

NE_XSOL_SET_WRONG
xsol was set to a value behind x in the direction of integration by the first call to the supplied
print function.
The integration range is [(⟨value⟩, ⟨value⟩)], xsol = ⟨value⟩.

NE_XSOL_INCONSIST
On call ⟨value⟩ to the supplied print function xsol was set to a value behind the previous
value of xsol in the direction of integration.
Previous xsol = ⟨value⟩, xend = ⟨value⟩, new xsol = ⟨value⟩.

NE_NO_SIGN_CHANGE
No change in sign of the function g(x, y) was detected in the integration range.

NE_TOL_PROGRESS
The value of tol, ⟨value⟩, is too small for the function to make any further progress across
the integration range. Current value of x = ⟨value⟩.

NE_ALLOC_FAIL
Memory allocation failed.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes.
If the call is correct then please consult NAG for assistance.

6. Further Comments

If more than one root is required, then to determine the second and later roots nag_ode_ivp_bdf_gen
may be called again starting a short distance past the previously determined roots.
If it is easy to code, the user should supply the function pederv. However, it is important to be
aware that if pederv is coded incorrectly, a very inefficient integration may result and possibly even
a failure to complete the integration (fail.code = NE_TOL_PROGRESS).

6.1. Accuracy

The accuracy of the computation of the solution vector y may be controlled by varying the local
error tolerance tol. In general, a decrease in local error tolerance should lead to an increase in
accuracy. Users are advised to choose errc = Nag_Relative unless they have a good reason for a
different choice. It is particularly appropriate if the solution decays.
If the problem is a root-finding one, then the accuracy of the root determined will depend strongly
on \(\frac{\partial g}{\partial x} \) and \(\frac{\partial g}{\partial y_i} \), for \(i = 1, 2, \ldots, \text{neq} \). Large values for these quantities may imply large errors in
the root.

6.2. References

7. See Also

nag_ode_ivp_adams_gen (d02ejc)
nag_ode_ivp_adams_roots (d02qf)
nag_ode_ivp_rk_range (d02pcc)

8. Example

We illustrate the solution of five different problems. In each case the differential system is the
well-known stiff Robertson problem.

\[
\begin{align*}
y'_1 &= -0.04y_1 + 10^4y_2y_3 \\
y'_2 &= 0.04y_1 - 10^4y_2y_3 - 3 \times 10^7y_2^2 \\
y'_3 &= 3 \times 10^7y_2^2
\end{align*}
\]

with initial conditions \(y_1 = 1.0, y_2 = y_3 = 0.0 \) at \(x = 0.0 \). We solve each of the following problems
with local error tolerances \(1.0 \times 10^{-3} \) and \(1.0 \times 10^{-4} \).

(i) To integrate to \(x = 10.0 \) producing output at intervals of 2.0 until a point is encountered
where \(y_1 = 0.9 \). The Jacobian is calculated numerically.

(ii) As (i) but with the Jacobian calculated analytically.

(iii) As (i) but with no intermediate output.

(iv) As (i) but with no root-finding termination condition.

(v) Integrating the equations as in (i) but with no intermediate output and no root-finding
termination condition.

8.1. Program Text

/* nag_ode_ivp_bdf_gen(d02ejc) Example Program */
*/
#include <nag.h>
#include <math.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>

#ifdef NAG_PROTO
static void fcn(Integer neq, double x, double y[], double f[], Nag_User *comm);
#else
static void fcn();
#endif

#ifdef NAG_PROTO
static void pederv(Integer neq, double x, double y[], double pw[],
 Nag_User *comm);
#else
static void pederv();
#endif

#ifdef NAG_PROTO
static double g(Integer neq, double x, double y[], Nag_User *comm);
#else
static double g();
#endif

#ifdef NAG_PROTO
static void out(Integer neq, double *tsol, double y[], Nag_User *comm);
#else
static void out();
#endif
```c
struct user
{
  double xend, h;
  Integer k;
};

#define NEQ 3
main()
{
  Integer neq;
  Integer i, j;
  double x, y[3];
  double tol;
  Nag_User comm;
  struct user s;

  Vprintf("d02ejc Example Program Results\n");

  /* For communication with function out()
   * assign address of user defined structure
   * to comm.p.
   */
  comm.p = (Pointer)&s;

  neq = NEQ;
  s.xend = 10.0;
  Vprintf("Case 1: calculating Jacobian internally\n");
  Vprintf(" intermediate output, root-finding\n");
  for (j=3; j<=4; ++j)
  {
    tol = pow(10.0, -(double)j);
    Vprintf("Calculation with tol = %3.1e\n", tol);
    x = 0.0;
    y[0] = 1.0;
    y[1] = 0.0;
    y[2] = 0.0;
    s.k = 4;
    s.h = (s.xend-x) /(double)(s.k+1);
    Vprintf(" X Y(1) Y(2) Y(3)\n");
    d02ejc(neq, fcn, NULLFN, &x, y, s.xend, tol, Nag_Relative,
          out, g, &comm, NAGERR_DEFAULT);
    Vprintf(" Root of Y(1)-0.9 at %5.3f\n", x);
    Vprintf(" Solution is ");
    for (i=0; i<3; ++i)
      Vprintf("%7.5f ", y[i]);
    Vprintf("\n");
  }

  Vprintf("Case 2: calculating Jacobian by pederv\n");
  Vprintf(" intermediate output, root-finding\n");
  for (j=3; j<=4; ++j)
  {
    tol = pow(10.0, -(double)j);
    Vprintf("Calculation with tol = %3.1e\n", tol);
    x = 0.0;
    y[0] = 1.0;
    y[1] = 0.0;
    y[2] = 0.0;
    s.k = 4;
    s.h = (s.xend-x) /(double)(s.k+1);
    Vprintf(" X Y(1) Y(2) Y(3)\n");
    d02ejc(neq, fcn, pederv, &x, y, s.xend, tol, Nag_Relative,
          out, g, &comm, NAGERR_DEFAULT);
    Vprintf(" Root of Y(1)-0.9 at %5.3f\n", x);
    Vprintf(" Solution is ");
    for (i=0; i<3; ++i)
      Vprintf("%7.5f ", y[i]);
    Vprintf("\n");
  }
}
```
Vprintf("Case 3: calculating Jacobian internally\n");
for (j=3; j<=4; ++j)
{
 tol = pow(10.0, -(double)j);
 Vprintf("Calculation with tol = %3.1e\n", tol);
 x = 0.0;
 y[0] = 1.0;
 y[1] = 0.0;
 y[2] = 0.0;

d02ejc(neq, fcn, NULLFN, &x, s.xend, tol, Nag_Relative,
 NULLFN, g, &comm, NAGERR_DEFAULT);
 Vprintf("Root of Y(1)-0.9 at %5.3f\n", x);
 Vprintf("Solution is ");
 for (i=0; i<3; ++i)
 Vprintf("%7.5f ", y[i]);
 Vprintf("\n");
}
Vprintf("Case 4: calculating Jacobian internally\n");
for (j=3; j<=4; ++j)
{
 tol = pow(10.0, -(double)j);
 Vprintf("Calculation with tol = %3.1e\n", tol);
 x = 0.0;
 y[0] = 1.0;
 y[1] = 0.0;
 y[2] = 0.0;
 s.k = 4;
 s.h = (s.xend-x) /(double)(s.k+1);
 Vprintf(" X Y(1) Y(2) Y(3)\n");

d02ejc(neq, fcn, NULLFN, &x, s.xend, tol, Nag_Relative,
 out, NULLDFN, &comm, NAGERR_DEFAULT);
 Vprintf("%8.2f", x);
 for (i=0; i<3; ++i)
 Vprintf("%13.5f", y[i]);
 Vprintf("\n");
}
Vprintf("Case 5: calculating Jacobian internally\n");
Vprintf("no intermediate output, no root-finding (integrate to xend)\n\n");
for (j=3; j<=4; ++j)
{
 tol = pow(10.0, -(double)j);
 Vprintf("Calculation with tol = %3.1e\n", tol);
 x = 0.0;
 y[0] = 1.0;
 y[1] = 0.0;
 y[2] = 0.0;
 Vprintf(" X Y(1) Y(2) Y(3)\n");

d02ejc(neq, fcn, NULLFN, &x, s.xend, tol, Nag_Relative,
 NULLFN, NULLDFN, &comm, NAGERR_DEFAULT);
 Vprintf("%8.2f", x);
 for (i=0; i<3; ++i)
 Vprintf("%13.5f", y[i]);
 Vprintf("\n");
}
#else
 static void fcn(neq, x, y, f, comm)
 Integer neq;
 double x, y[], f[];
 Nag_User *comm;
#endif
{
 f[0] = y[0] * -0.04 + y[1] * 1e4 * y[2];
 f[2] = y[1] * 3e7 * y[1];
}
#endif NAG_PROTO
static void pederv(Integer neq, double x, double y[], double pw[],
 Nag_User *comm)
#else
 static void pederv(neq, x, y, pw, comm)
 Integer neq;
 double x, y[], pw[];
 Nag_User *comm;
#endif
{
 #define PW(I,J) pw[((I)-1)*neq + (J)-1]
 PW(1,1) = -0.04;
 PW(1,2) = y[2] * 1e4;
 PW(1,3) = y[1] * 1e4;
 PW(2,1) = 0.04;
 PW(2,2) = y[2] * -1e4 - y[1] * 6e7;
 PW(2,3) = y[1] * -1e4;
 PW(3,1) = 0.0;
 PW(3,2) = y[1] * 6e7;
 PW(3,3) = 0.0;
}
#endif NAG_PROTO
static double g(Integer neq, double x, double y[], Nag_User *comm)
#else
 static double g(neq, x, y, comm)
 Integer neq;
 double x, y[];
 Nag_User *comm;
#endif
{
 return y[0]-0.9;
}
#endif NAG_PROTO
static void out(Integer neq, double *xsol, double y[], Nag_User *comm)
#else
 static void out(neq, xsol, y, comm)
 Integer neq;
 double *xsol, y[];
 Nag_User *comm;
#endif
{
 Integer j;
 struct user *s = (struct user *)comm->p;
 Vprintf("%8.2f", *xsol);
 for (j=0; j<3; ++j)
 Vprintf("%13.5f", y[j]);
 Vprintf ("\n");
 *xsol = s->xend - (double)s->k * s->h;
 s->k--;
}
8.2. Program Data

None.

8.3. Program Results

d02ejc Example Program Results

Case 1: calculating Jacobian internally
intermediate output, root-finding

Calculation with tol = 1.0e-03

<table>
<thead>
<tr>
<th>X</th>
<th>Y(1)</th>
<th>Y(2)</th>
<th>Y(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>2.00</td>
<td>0.94163</td>
<td>0.00003</td>
<td>0.05834</td>
</tr>
<tr>
<td>4.00</td>
<td>0.90551</td>
<td>0.00002</td>
<td>0.09446</td>
</tr>
</tbody>
</table>

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Calculation with tol = 1.0e-04

<table>
<thead>
<tr>
<th>X</th>
<th>Y(1)</th>
<th>Y(2)</th>
<th>Y(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>2.00</td>
<td>0.94161</td>
<td>0.00003</td>
<td>0.05837</td>
</tr>
<tr>
<td>4.00</td>
<td>0.90551</td>
<td>0.00002</td>
<td>0.09446</td>
</tr>
</tbody>
</table>

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Case 2: calculating Jacobian by pederv
intermediate output, root-finding

Calculation with tol = 1.0e-03

<table>
<thead>
<tr>
<th>X</th>
<th>Y(1)</th>
<th>Y(2)</th>
<th>Y(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>2.00</td>
<td>0.94163</td>
<td>0.00003</td>
<td>0.05834</td>
</tr>
<tr>
<td>4.00</td>
<td>0.90551</td>
<td>0.00002</td>
<td>0.09446</td>
</tr>
</tbody>
</table>

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Calculation with tol = 1.0e-04

<table>
<thead>
<tr>
<th>X</th>
<th>Y(1)</th>
<th>Y(2)</th>
<th>Y(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>2.00</td>
<td>0.94161</td>
<td>0.00003</td>
<td>0.05837</td>
</tr>
<tr>
<td>4.00</td>
<td>0.90551</td>
<td>0.00002</td>
<td>0.09446</td>
</tr>
</tbody>
</table>

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Case 3: calculating Jacobian internally
no intermediate output, root-finding

Calculation with tol = 1.0e-03

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Calculation with tol = 1.0e-04

Root of Y(1)-0.9 at 4.377
Solution is 0.90000 0.00002 0.09998

Case 4: calculating Jacobian internally
intermediate output, no root-finding

Calculation with tol = 1.0e-03

<table>
<thead>
<tr>
<th>X</th>
<th>Y(1)</th>
<th>Y(2)</th>
<th>Y(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>2.00</td>
<td>0.94163</td>
<td>0.00003</td>
<td>0.05834</td>
</tr>
<tr>
<td>4.00</td>
<td>0.90551</td>
<td>0.00002</td>
<td>0.09446</td>
</tr>
<tr>
<td>6.00</td>
<td>0.87928</td>
<td>0.00002</td>
<td>0.12070</td>
</tr>
<tr>
<td>8.00</td>
<td>0.85859</td>
<td>0.00002</td>
<td>0.14139</td>
</tr>
</tbody>
</table>
Calculation with tol = 1.0e-04

<table>
<thead>
<tr>
<th>X</th>
<th>Y(1)</th>
<th>Y(2)</th>
<th>Y(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>2.00</td>
<td>0.94161</td>
<td>0.0003</td>
<td>0.05837</td>
</tr>
<tr>
<td>4.00</td>
<td>0.90551</td>
<td>0.0002</td>
<td>0.09446</td>
</tr>
<tr>
<td>6.00</td>
<td>0.87926</td>
<td>0.0002</td>
<td>0.12072</td>
</tr>
<tr>
<td>8.00</td>
<td>0.85854</td>
<td>0.0002</td>
<td>0.14144</td>
</tr>
<tr>
<td>10.00</td>
<td>0.84136</td>
<td>0.0002</td>
<td>0.15862</td>
</tr>
</tbody>
</table>

Case 5: calculating Jacobian internally
no intermediate output, no root-finding (integrate to xend)

Calculation with tol = 1.0e-03

<table>
<thead>
<tr>
<th>X</th>
<th>Y(1)</th>
<th>Y(2)</th>
<th>Y(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>10.00</td>
<td>0.84143</td>
<td>0.0002</td>
<td>0.15855</td>
</tr>
</tbody>
</table>

Calculation with tol = 1.0e-04

<table>
<thead>
<tr>
<th>X</th>
<th>Y(1)</th>
<th>Y(2)</th>
<th>Y(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>10.00</td>
<td>0.84136</td>
<td>0.0002</td>
<td>0.15862</td>
</tr>
</tbody>
</table>