nag_ode_ivp_adams_gen (d02cjc)

1. Purpose

nag_ode_ivp_adams_gen (d02cjc) integrates a system of first order ordinary differential equations over a range with suitable initial conditions, using a variable-order, variable-step Adams method until a user-specified function, if supplied, of the solution is zero, and returns the solution at points specified by the user, if desired.

2. Specification

```c
#include <nag.h>
#include <nagd02.h>

void nag_ode_ivp_adams_gen(Integer neq,
   void (*fcn)(Integer neq, double x, double y[], double f[],
                Nag_User *comm),
   double *x, double y[], double xend, double tol,
   Nag_ErrorControl err_c,
   void (*output)(Integer neq, double *xsol, double y[],
                  Nag_User *comm),
   double (*g)(Integer neq, double x, double y[], Nag_User *comm),
   Nag_User *comm, NagError *fail)
```

3. Description

The function advances the solution of a system of ordinary differential equations

$$y'_i = f_i(x, y_1, y_2, \ldots, y_{neq}), \quad i = 1, 2, \ldots, neq.$$

from \(x = x_0\) to \(x = x_{end}\) using a variable-order, variable-step Adams method. The system is defined by a function `fcn` supplied by the user, which evaluates \(f_i\) in terms of \(x\) and \(y_1, y_2, \ldots, y_{neq}\). The initial values of \(y_1, y_2, \ldots, y_{neq}\) must be given at \(x = x_0\).

The solution is returned via the user-supplied function `output` at points specified by the user, if desired: this solution is obtained by \(C^1\) interpolation on solution values produced by the method.

As the integration proceeds a check can be made on the user-specified function \(g(x, y)\) to determine an interval where it changes sign. The position of this sign change is then determined accurately. It is assumed that \(g(x, y)\) is a continuous function of the variables, so that a solution of \(g(x, y) = 0\) can be determined by searching for a change in sign in \(g(x, y)\). The accuracy of the integration, the interpolation and, indirectly, of the determination of the position where \(g(x, y) = 0\), is controlled by the parameters `tol` and `err_c`.

For a description of Adams methods and their practical implementation see Hall and Watt (1976).

4. Parameters

`neq`

Input: the number of differential equations.
Constraint: \(neq \geq 1\).

`fcn`

The function `fcn`, supplied by the user, must evaluate the first derivatives \(y'_i\) (i.e., the functions \(f_i\)) for given values of their arguments \(x, y_1, y_2, \ldots, y_{neq}\).
The specification of \texttt{fcn} is:

```c
void fcn(Integer neq, double x, double y[], double f[], Nag_User *comm)
```

- **\texttt{neq}**
 - Input: the number of differential equations.

- **\texttt{x}**
 - Input: the value of the independent variable \(x \).

- **\texttt{y[neq]}**
 - Input: \(y[i-1] \) holds the value of the variable \(y_i \), for \(i = 1, 2, \ldots, \text{neq} \).

- **\texttt{f[neq]}**
 - Output: \(f[i-1] \) must contain the value of \(f_i \), for \(i = 1, 2, \ldots, \text{neq} \).

- **\texttt{comm}**
 - Input/Output: pointer to a structure of type Nag_User with the following member:
 - **\texttt{p}** - Pointer
 - Input/Output: The pointer \texttt{comm->p} should be cast to the required type, e.g. \texttt{struct user *s = (struct user *)comm->p}, to obtain the original object's address with appropriate type. (See the argument \texttt{comm} below.)

\(x \)
- Input: the initial value of the independent variable \(x \).

 - Constraint: \(x \neq \text{\texttt{xend}} \).

Output: if \(g \) is supplied by the user, \(x \) contains the point where \(g(x, y) = 0 \), unless \(g(x, y) \neq 0.0 \) anywhere on the range \(x \) to \(\text{\texttt{xend}} \), in which case, \(x \) will contain \(\text{\texttt{xend}} \). If \(g \) is not supplied by the user \(x \) contains \(\text{\texttt{xend}} \), unless an error has occurred, when it contains the value of \(x \) at the error.

\(y[\text{\texttt{neq}}] \)
- Input: the initial values of the solution \(y_1, y_2, \ldots, y_{\text{\texttt{neq}}} \) at \(x = x \).
- Output: the computed values of the solution at the final point \(x = x \).

\(\text{\texttt{xend}} \)
- Input: the final value of the independent variable. If \(\text{\texttt{xend}} < x \), integration proceeds in the negative direction.

 - Constraint: \(\text{\texttt{xend}} \neq x \).

\(\text{\texttt{tol}} \)
- Input: a positive tolerance for controlling the error in the integration. Hence \(\text{\texttt{tol}} \) affects the determination of the position where \(g(x, y) = 0.0 \), if \(g \) is supplied.

\nag_ode_ivp_adams_gen\n
has been designed so that, for most problems, a reduction in \(\text{\texttt{tol}} \) leads to an approximately proportional reduction in the error in the solution. However, the actual relation between \(\text{\texttt{tol}} \) and the accuracy achieved cannot be guaranteed. The user is strongly recommended to call \nag_ode_ivp_adams_gen\n
with more than one value for \(\text{\texttt{tol}} \) and to compare the results obtained to estimate their accuracy. In the absence of any prior knowledge, the user might compare the results obtained by calling \nag_ode_ivp_adams_gen\n
with \(\text{\texttt{tol}} = 10.0^{-p} \) and \(\text{\texttt{tol}} = 10.0^{-p-1} \) where \(p \) correct decimal digits are required in the solution.

 - Constraint: \(\text{\texttt{tol}} > 0.0 \).

\(\text{\texttt{err_c}} \)
- Input: the type of error control. At each step in the numerical solution an estimate of the local error, \(est \), is made. For the current step to be accepted the following condition must be satisfied:

\[
est = \left(\sum_{i=1}^{\text{\texttt{neq}}} (e_i/(r_r \times |y_i| + r_a)) \right)^2 \leq 1.0
\]
where \(\tau_r \) and \(\tau_a \) are defined by

\[
\begin{array}{ccc}
\text{err.c} & \tau_r & \tau_a \\
\text{Nag_Relative} & \text{tol} & \varepsilon \\
\text{Nag_Absolute} & 0.0 & \text{tol} \\
\text{Nag_Mixed} & \text{tol} & \text{tol}
\end{array}
\]

where \(\varepsilon \) is a small machine-dependent number and \(e_i \) is an estimate of the local error at \(y_i \), computed internally. If the appropriate condition is not satisfied, the step size is reduced and the solution is recomputed on the current step. If the user wishes to measure the error in the computed solution in terms of the number of correct decimal places, then \(\text{err.c} \) should be set to \(\text{Nag_Absolute} \) on entry, whereas if the error requirement is in terms of the number of correct significant digits, then \(\text{err.c} \) should be set to \(\text{Nag_Relative} \). If the user prefers a mixed error test, then \(\text{err.c} \) should be set to \(\text{Nag_Mixed} \). The recommended value for \(\text{err.c} \) is \(\text{Nag_Mixed} \) and this should be chosen unless there are good reasons for a different choice. Constraint: \(\text{err.c} = \text{Nag_Relative}, \text{Nag_Absolute} \) or \(\text{Nag_Mixed} \).

output

The function \(\text{output} \) permits access to intermediate values of the computed solution (for example to print or plot them), at successive user-specified points. It is initially called by \(\text{nag_ode_ivp_adams_gen} \) with \(\text{xsol} = x \) (the initial value of \(x \)). The user must reset \(\text{xsol} \) to the next point (between the current \(\text{xsol} \) and \(\text{xend} \)) where \(\text{output} \) is to be called, and so on at each call to \(\text{output} \). If, after a call to \(\text{output} \), the reset point \(\text{xsol} \) is beyond \(\text{xend} \), \(\text{nag_ode_ivp_adams_gen} \) will integrate to \(\text{xend} \) with no further calls to \(\text{output} \); if a call to \(\text{output} \) is required at the point \(\text{xsol} = \text{xend} \), then \(\text{xsol} \) must be given precisely the value \(\text{xend} \).

The specification of \(\text{output} \) is:

```c
void output(Integer neq, double *xsol, double y[], Nag_User *comm)
```

- **neq**
 Input: the number of differential equations.

- **xsol**
 Input: the value of the independent variable \(x \).
 Output: the user must set \(\text{xsol} \) to the next value of \(x \) at which \(\text{output} \) is to be called.

- **y[neq]**
 Input: the computed solution at the point \(\text{xsol} \).

- **comm**
 Input/Output: pointer to a structure of type \(\text{Nag_User} \) with the following member:

 - **p - Pointer**
 Input/Output: The pointer \(\text{comm->p} \) should be cast to the required type, e.g. `struct user *s = (struct user *)comm->p`, to obtain the original object’s address with appropriate type. (See the argument \(\text{comm} \) below.)

If the user does not wish to access intermediate output, the actual argument \(\text{output} \) must be the NAG defined null function pointer \(\text{NULLFN} \).

g

The function \(g \) must evaluate \(g(x, y) \) for specified values \(x, y \). It specifies the function \(g \) for which the first position \(x \) where \(g(x, y) = 0 \) is to be found.

The specification of \(g \) is:
double g(Integer neq, double x, double y[], Nag_User *comm)

 neq
 Input: the number of differential equations.

 x
 Input: the value of the independent variable x.

 y[neq]
 Input: y[i - 1] holds the value of the variable y_i for i = 1, 2, ..., neq.

 comm
 Input/Output: pointer to a structure of type Nag_User with the following member:

 p - Pointer
 Input/Output: The pointer comm->p should be cast to the required type, e.g. struct user *s = (struct user *)comm->p, to obtain the original object's address with appropriate type. (See the argument comm below.)

If the user does not require the root finding option, the actual argument g must be the NAG defined null double function pointer NULLDFN.

comm
Input/Output: pointer to a structure of type Nag_User with the following member:

 p - Pointer
 Input/Output: The pointer p, of type Pointer, allows the user to communicate information to and from the user-defined functions fcn(), output() and g(). An object of the required type should be declared by the user, e.g. a structure, and its address assigned to the pointer p by means of a cast to Pointer in the calling program. E.g. comm.p = (Pointer)&s. The type pointer will be void * with a C compiler that defines void * and char * otherwise.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_INT_ARG_LT
On entry, neq must not be less than 1: neq = ⟨value⟩.

NE_REAL_ARG_LE
On entry, tol must not be less than or equal to 0.0: tol = ⟨value⟩.

NE_2_REAL_ARG_EQ
On entry, x = ⟨value⟩ while xend = ⟨value⟩. These parameters must satisfy x ≠ xend.

NE_BAD_PARAM
On entry parameter errc had an illegal value.

NE_TOL_TOO_SMALL
The value of tol, ⟨value⟩, is too small for the function to take an initial step.

NE_XSOL_NOT_RESET
On call ⟨value⟩ to the supplied print function xsol was not reset.

NE_XSOL_SET_WRONG
xsol was set to a value behind x in the direction of integration by the first call to the supplied print function.
The integration range is [⟨value1⟩, ⟨value2⟩], xsol = ⟨value⟩.

NE_XSOL_INCONSIST
On call ⟨value⟩ to the supplied print function xsol was set to a value behind the previous value of xsol in the direction of integration.
Previous xsol = ⟨value⟩, xend = ⟨value⟩, new xsol = ⟨value⟩.
NE_NO_SIGN_CHANGE
No change in sign of the function \(g(x, y) \) was detected in the integration range.

NE_TOL_PROGRESS
The value of \(\text{tol}, \langle \text{value} \rangle \), is too small for the function to make any further progress across the integration range. Current value of \(x = \langle \text{value} \rangle \).

NE_ALLOC_FAIL
Memory allocation failed.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6. Further Comments

If more than one root is required then \text{nag_ode_ivp_adams_roots} (d02qfc) should be used. If the function fails with error exit of \text{fail.code} = \text{NE_TOL_TOO_SMALL}, then it can be called again with a larger value of \text{tol} if this has not already been tried. If the accuracy requested is really needed and cannot be obtained with this function, the system may be very stiff (see below) or so badly scaled that it cannot be solved to the required accuracy.

If the function fails with error exit of \text{fail.code} = \text{NE_TOL_PROGRESS}, it is probable that it has been called with a value of \text{tol} which is so small that a solution cannot be obtained on the range \(x \) to \(x_{\text{end}} \). This can happen for well-behaved systems and very small values of \text{tol}. The user should, however, consider whether there is a more fundamental difficulty. For example:

(a) in the region of a singularity (infinite value) of the solution, the function will usually stop with error exit of \text{fail.code} = \text{NE_TOL_PROGRESS}, unless overflow occurs first. Numerical integration cannot be continued through a singularity, and analytic treatment should be considered;

(b) for ‘stiff’ equations where the solution contains rapidly decaying components, the function will use very small steps in \(x \) (internally to \text{nag_ode_ivp_adams_gen}) to preserve stability. This will exhibit itself by making the computing time excessively long, or occasionally by an exit with \text{fail.code} = \text{NE_TOL_PROGRESS}. Adams methods are not efficient in such cases.

6.1. Accuracy

The accuracy of the computation of the solution vector \(y \) may be controlled by varying the local error tolerance \text{tol}. In general, a decrease in local error tolerance should lead to an increase in accuracy. Users are advised to choose \text{err.c} = \text{Nag_Mixed} unless they have a good reason for a different choice.

If the problem is a root-finding one, then the accuracy of the root determined will depend on the properties of \(g(x, y) \). The user should try to code \(g \) without introducing any unnecessary cancellation errors.

6.2. References

7. See Also

\text{nag_ode_ivp_bdf_gen} (d02ejc)
\text{nag_ode_ivp_rk_range} (d02pcc)
\text{nag_ode_ivp_adams_roots} (d02qfc)
8. Example

We illustrate the solution of four different problems. In each case the differential system (for a projectile) is

\[y' = \tan \phi \]
\[v' = -0.032 \tan \phi - 0.02v \]
\[\phi' = -0.032 \]

over an interval \(x = 0.0 \) to \(x_{\text{end}} = 10.0 \) starting with values \(y = 0.5, v = 0.5, \phi = \pi/5 \). We solve each of the following problems with local error tolerances \(1.0\times10^{-4} \) and \(1.0\times10^{-5} \).

(i) To integrate to \(x = 10.0 \) producing output at intervals of 2.0 until a point is encountered where \(y = 0.0 \).
(ii) As (i) but with no intermediate output.
(iii) As (i) but with no termination on a root-finding condition.
(iv) As (i) but with no intermediate output and no root-finding termination condition.

8.1. Program Text

```c
/* nag_ode_ivp_adams_gen(d02cjc) Example Program */
/* Copyright 1991 Numerical Algorithms Group. */
/* Mark 2, 1991. */
/* Mark 3 revised, 1994. */

#include <nag.h>
#include <math.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>
#include <nagx01.h>

#ifdef NAG_PROTO
static void out(Integer neq, double *xsol, double y[], Nag_User *comm);
#else
static void out();
#endif

#ifdef NAG_PROTO
static void fcn(Integer neq, double x, double y[], double f[], Nag_User *comm);
#else
static void fcn();
#endif

#ifdef NAG_PROTO
static double g(Integer neq, double x, double y[], Nag_User *comm);
#else
static double g();
#endif

struct user
{
    double xend, h;
    Integer k;
};

main()
{
Integer i, j, neq;
double x, pi, tol;
double y[3];
Nag_User comm;
struct user s;

Vprintf("d02cjc Example Program Results\n");

/* For communication with function out()
 * assign address of user defined structure
 * to Nag pointer.
 */
comm.p = (Pointer)&s;

neq = 3;
s.xend = 10.0;
pi = X01AAC;
Vprintf("\nCase 1: intermediate output, root-finding\n");
for (j = 4; j <= 5; ++j)
{
    tol = pow(10.0, (double)(-j));
    Vprintf("\n Calculation with tol = %8.1e\n", tol);
x = 0.0;
y[0] = 0.5;
y[1] = 0.5;
y[2] = pi / 5.0;
s.k = 4;
s.h = (s.xend - x) / (double)(s.k + 1);
Vprintf("\n X Y(1) Y(2) Y(3)\n");
d02cjc(neq, fcn, &x, y, s.xend, tol, Nag_Mixed, out, g, &comm, NAGERR_DEFAULT);
Vprintf("\n Root of Y(1) = 0.0 at %7.3f\n", x);
Vprintf("\n Solution is\n");
for (i = 0; i < 3; ++i)
    Vprintf("%10.5f", y[i]);
Vprintf("\n");
}
Vprintf("\nCase 2: no intermediate output, root-finding\n");
for (j = 4; j <= 5; ++j)
{
    tol = pow(10.0, (double)(-j));
    Vprintf("\n Calculation with tol = %8.1e\n", tol);
x = 0.0;
y[0] = 0.5;
y[1] = 0.5;
y[2] = pi / 5.0;
d02cjc(neq, fcn, &x, y, s.xend, tol, Nag_Mixed, NULLFN, g, &comm, NAGERR_DEFAULT);
Vprintf("\n Root of Y(1) = 0.0 at %7.3f\n", x);
Vprintf("\n Solution is\n");
for (i = 0; i < 3; ++i)
    Vprintf("%10.5f", y[i]);
Vprintf("\n");
}
Vprintf("\nCase 3: intermediate output, no root-finding\n");
for (j = 4; j <= 5; ++j)
{
    tol = pow(10.0, (double)(-j));
    Vprintf("\n Calculation with tol = %8.1e\n", tol);
x = 0.0;
y[0] = 0.5;
y[1] = 0.5;
y[2] = pi / 5.0;
s.k = 4;
s.h = (s.xend - x) / (double)(s.k + 1);
Vprintf("\n X Y(1) Y(2) Y(3)\n");
d02cjc(neq, fcn, &x, y, s.xend, tol, Nag_Mixed, out, NULLDFN, &comm, NAGERR_DEFAULT);
}
Vprintf("\n\nCase 4: no intermediate output, no root-finding\n";
for (j = 4; j <= 5; ++j)
{
    tol = pow(10.0, (double)(-j));
    Vprintf("\n Calculation with tol = %8.1e\n", tol);
    x = 0.0;
y[0] = 0.5;
y[1] = 0.5;
y[2] = pi / 5.0;
    Vprintf("\n X Y(1) Y(2) Y(3)\n");
    for (i = 0; i < 3; ++i)
        Vprintf("%13.5f", y[i]);
    Vprintf("\n");
    d02cjc(neq, fcn, &x, y, s.xend, tol, Nag_Mixed, NULLDFN, NULLDFN, &comm, NAGERR_DEFAULT);
    Vprintf("%8.2f", x);
    for (i = 0; i < 3; ++i)
        Vprintf("%13.5f", y[i]);
    Vprintf("\n");
}
exit(EXIT_SUCCESS); /* main */
#endif NAG_PROTO
static void out(Integer neq, double *xsol, double y[], Nag_User *comm)
#else
    static void out(neq, xsol, y, comm)
    Integer neq;
    double *xsol;
    double y[];
    Nag_User *comm;
#endif
{
    Integer i;
    struct user *s = (struct user *)comm->p;
    Vprintf("%8.2f", *xsol);
    for (i = 0; i < 3; ++i)
    {
        Vprintf("%13.5f", y[i]);
    }
    Vprintf("\n");
    *xsol = s->xend - (double)s->k * s->h;
    s->k--;
} /* out */
#endif NAG_PROTO
static void fcn(Integer neq, double x, double y[], double f[], Nag_User *comm)
#else
    static void fcn(neq, x, y, f, comm)
    Integer neq;
    double x;
    double y[], f[];
    Nag_User *comm;
#endif
{
    double pwr;

f[0] = tan(y[2]);
\[ f[1] = -0.032 * \tan(y[2])/y[1] - 0.02*y[1]/\cos(y[2]); \]
pwr = y[1];
\[ f[2] = -0.032/(pwr*pwr); \]
}  /* fcn */

#define NAG_PROTO
static double g(Integer neq, double x, double y[], Nag_User *comm)
#else
static double g(neq, x, y, comm)
  Integer neq;
  double x;
  double y[];
  Nag_User *comm;
#endif
{
  return y[0];
}  /* g */

8.2. Program Data
None.

8.3. Program Results

d02cjc Example Program Results

Case 1: intermediate output, root-finding

Calculation with tol = 1.0e-04

<table>
<thead>
<tr>
<th>X</th>
<th>Y(1)</th>
<th>Y(2)</th>
<th>Y(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.50000</td>
<td>0.50000</td>
<td>0.62832</td>
</tr>
<tr>
<td>2.00</td>
<td>1.54931</td>
<td>0.40548</td>
<td>0.30662</td>
</tr>
<tr>
<td>4.00</td>
<td>1.74229</td>
<td>0.37433</td>
<td>-0.12890</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00554</td>
<td>0.41731</td>
<td>-0.55068</td>
</tr>
</tbody>
</table>

Root of Y(1) = 0.0 at 7.288
Solution is 0.00000 0.47486 -0.76011

Calculation with tol = 1.0e-05

<table>
<thead>
<tr>
<th>X</th>
<th>Y(1)</th>
<th>Y(2)</th>
<th>Y(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.50000</td>
<td>0.50000</td>
<td>0.62832</td>
</tr>
<tr>
<td>2.00</td>
<td>1.54933</td>
<td>0.40548</td>
<td>0.30662</td>
</tr>
<tr>
<td>4.00</td>
<td>1.74232</td>
<td>0.37433</td>
<td>-0.12891</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00552</td>
<td>0.41731</td>
<td>-0.55069</td>
</tr>
</tbody>
</table>

Root of Y(1) = 0.0 at 7.288
Solution is 0.00000 0.47486 -0.76010

Case 2: no intermediate output, root-finding

Calculation with tol = 1.0e-04

Root of Y(1) = 0.0 at 7.288
Solution is 0.00000 0.47486 -0.76011

Calculation with tol = 1.0e-05

Root of Y(1) = 0.0 at 7.288
Solution is 0.00000 0.47486 -0.76010
Case 3: intermediate output, no root-finding

Calculation with tol = 1.0e-04

<table>
<thead>
<tr>
<th>X</th>
<th>Y(1)</th>
<th>Y(2)</th>
<th>Y(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.50000</td>
<td>0.50000</td>
<td>0.62832</td>
</tr>
<tr>
<td>2.00</td>
<td>1.54931</td>
<td>0.40548</td>
<td>0.30662</td>
</tr>
<tr>
<td>4.00</td>
<td>1.74229</td>
<td>0.37433</td>
<td>0.12890</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00554</td>
<td>0.41731</td>
<td>0.55068</td>
</tr>
<tr>
<td>8.00</td>
<td>-0.74589</td>
<td>0.51299</td>
<td>-0.85371</td>
</tr>
<tr>
<td>10.00</td>
<td>-3.62813</td>
<td>0.63325</td>
<td>-1.05152</td>
</tr>
</tbody>
</table>

Calculation with tol = 1.0e-05

<table>
<thead>
<tr>
<th>X</th>
<th>Y(1)</th>
<th>Y(2)</th>
<th>Y(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.50000</td>
<td>0.50000</td>
<td>0.62832</td>
</tr>
<tr>
<td>2.00</td>
<td>1.54933</td>
<td>0.40548</td>
<td>0.30662</td>
</tr>
<tr>
<td>4.00</td>
<td>1.74232</td>
<td>0.37433</td>
<td>0.12891</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00552</td>
<td>0.41731</td>
<td>0.55069</td>
</tr>
<tr>
<td>8.00</td>
<td>-0.74601</td>
<td>0.51299</td>
<td>-0.85372</td>
</tr>
<tr>
<td>10.00</td>
<td>-3.62829</td>
<td>0.63326</td>
<td>-1.05153</td>
</tr>
</tbody>
</table>

Case 4: no intermediate output, no root-finding (integrate to xend)

Calculation with tol = 1.0e-04

<table>
<thead>
<tr>
<th>X</th>
<th>Y(1)</th>
<th>Y(2)</th>
<th>Y(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.50000</td>
<td>0.50000</td>
<td>0.62832</td>
</tr>
<tr>
<td>10.00</td>
<td>-3.62813</td>
<td>0.63325</td>
<td>-1.05152</td>
</tr>
</tbody>
</table>

Calculation with tol = 1.0e-05

<table>
<thead>
<tr>
<th>X</th>
<th>Y(1)</th>
<th>Y(2)</th>
<th>Y(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.50000</td>
<td>0.50000</td>
<td>0.62832</td>
</tr>
<tr>
<td>10.00</td>
<td>-3.62829</td>
<td>0.63326</td>
<td>-1.05153</td>
</tr>
</tbody>
</table>