NAG C Library Function Document

nag_1d_quad_gen_1 (d01sjc)

1 Purpose

nag_1d_quad_gen_1 (d01sjc) is a general purpose integrator which calculates an approximation to the integral of a function \(f(x) \) over a finite interval \([a, b]\):

\[
I = \int_{a}^{b} f(x) \, dx.
\]

2 Specification

\#include <nag.h>
\#include <nagd01.h>

void nag_1d_quad_gen_1 (double (*f)(double x, Nag_User *comm),
 double a, double b, double epsabs, double epsrel,
 Integer max_num_subint, double *result, double *abserr,
 Nag_QuadProgress *qp, Nag_User *comm, NagError *fail)

3 Description

This function is based upon the QUADPACK routine QAGS (Piessens et al. (1983)). It is an adaptive
function, using the Gauss 10-point and Kronrod 21-point rules. The algorithm, described by
De Doncker (1978), incorporates a global acceptance criterion (as defined by Malcolm and Simpson
(1976)) together with the \(e \)-algorithm (Wynn (1956)) to perform extrapolation. The local error estimation is
described by Piessens et al. (1983).

This function is suitable as a general purpose integrator, and can be used when the integrand has
singularities, especially when these are of algebraic or logarithmic type.

This function requires the user to supply a function to evaluate the integrand at a single point.

4 Parameters

1: f \hspace{1cm} Function

The function \(f \), supplied by the user, must return the value of the integrand \(f \) at a given point.

The specification of \(f \) is:

\[
\text{double } f(\text{double } x, \text{Nag_User } *\text{comm})
\]

1: x \hspace{1cm} Input

On entry: the point at which the integrand \(f \) must be evaluated.

2: comm \hspace{1cm} Input/Output

On entry/on exit: pointer to a structure of type \text{Nag_User} with the following member:

\[
p \hspace{1cm} \text{Pointer}
\]

On entry/on exit: the pointer \text{comm->p} should be cast to the required type, e.g.,

\[
\text{struct user } *s = (\text{struct user } *)\text{comm->p},
\]

to obtain the original object’s address with appropriate type. (See the argument \text{comm} below.)
2: a – double
 \textit{On entry:} the lower limit of integration, \texttt{a}.

3: b – double
 \textit{On entry:} the upper limit of integration, \texttt{b}. It is not necessary that \texttt{a} < \texttt{b}.

4: epsabs – double
 \textit{On entry:} the absolute accuracy required. If \texttt{epsabs} is negative, the absolute value is used. See Section 6.1.

5: epsrel – double
 \textit{On entry:} the relative accuracy required. If \texttt{epsrel} is negative, the absolute value is used. See Section 6.1.

6: \texttt{max_num_subint} – Integer
 \textit{On entry:} the upper bound on the number of sub-intervals into which the interval of integration may be divided by the function. The more difficult the integrand, the larger \texttt{max_num_subint} should be.

 \textit{Suggested values:} a value in the range 200 to 500 is adequate for most problems.

 \textit{Constraint:} \texttt{max_num_subint} \geq 1.

7: result – double *
 \textit{On exit:} the approximation to the integral \texttt{I}.

8: abserr – double *
 \textit{On exit:} an estimate of the modulus of the absolute error, which should be an upper bound for \(|I - \texttt{result}|\).

9: \texttt{qp} – \texttt{Nag QuadProgress} *
 Pointer to structure of type \texttt{Nag QuadProgress} with the following members:

 \begin{verbatim}
 num_subint – Integer
 \textit{On exit:} the actual number of sub-intervals used.

 fun_count – Integer
 \textit{On exit:} the number of function evaluations performed by \texttt{nag_1d_quad_gen_1}.

 sub_int_be_pts – double *
 sub_int_end_pts – double *
 sub_int_result – double *
 sub_int_error – double *
 \end{verbatim}

 \textit{On exit:} these pointers are allocated memory internally with \texttt{max_num_subint} elements. If an error exit other than \texttt{NE_INT_ARG_LT} or \texttt{NE_ALLOC_FAIL} occurs, these arrays will contain information which may be useful. For details, see Section 6.

 Before a subsequent call to \texttt{nag_1d_quad_gen_1} is made, or when the information contained in these arrays is no longer useful, the user should free the storage allocated by these pointers using the NAG macro \texttt{NAG_FREE}.

\[NP3491/6 \]
10: \texttt{comm} – Nag_User *

On entry/on exit: pointer to a structure of type Nag_User with the following member:

\texttt{p} – Pointer

\texttt{Input/Output}

On entry/on exit: the pointer \texttt{p}, of type Pointer, allows the user to communicate information to and from the user-defined function \texttt{f}. An object of the required type should be declared by the user, e.g., a structure, and its address assigned to the pointer \texttt{p} by means of a cast to Pointer in the calling program, e.g., \texttt{comm.p = (Pointer)&s}. The type Pointer is \texttt{void *}.

11: \texttt{fail} – NagError *

\texttt{Input/Output}

The NAG error parameter (see the Essential Introduction).

Users are recommended to declare and initialise \texttt{fail} and set \texttt{fail.print = TRUE} for this function.

5 Error Indicators and Warnings

\texttt{NE_INT_ARG_LT}

On entry, \texttt{max_num_subint} must not be less than 1: \texttt{max_num_subint = \textless value\textgreater}.

\texttt{NE_ALLOC_FAIL}

Memory allocation failed.

\texttt{NE_QUAD_MAX_SUBDIV}

The maximum number of subdivisions has been reached: \texttt{max_num_subint = \textless value\textgreater}.

The maximum number of subdivisions has been reached without the accuracy requirements being achieved. Look at the integrand in order to determine the integration difficulties. If the position of a local difficulty within the interval can be determined (e.g., a singularity of the integrand or its derivative, a peak, a discontinuity, etc.) you will probably gain from splitting up the interval at this point and calling the integrator on the sub-intervals. If necessary, another integrator, which is designed for handling the type of difficulty involved, must be used. Alternatively, consider relaxing the accuracy requirements specified by \texttt{epsabs} and \texttt{epsrel}, or increasing the value of \texttt{max_num_subint}.

\texttt{NE_QUAD_ROUNDLOC_TOL}

Round-off error prevents the requested tolerance from being achieved: \texttt{epsabs = \textless value\textgreater}, \texttt{epsrel = \textless value\textgreater}.

The error may be underestimated. Consider relaxing the accuracy requirements specified by \texttt{epsabs} and \texttt{epsrel}.

\texttt{NE_QUAD_BAD_SUBDIV}

Extremely bad integrand behaviour occurs around the sub-interval (\texttt{\textless value\textgreater}, \texttt{\textless value\textgreater}).

The same advice applies as in the case of \texttt{NE_QUAD_MAX_SUBDIV}.

\texttt{NE_QUAD_ROUNDLOC_EXTRAPL}

Round-off error is detected during extrapolation.

The requested tolerance cannot be achieved, because the extrapolation does not increase the accuracy satisfactorily; the returned result is the best that can be obtained.

The same advice applies as in the case of \texttt{NE_QUAD_MAX_SUBDIV}.

\texttt{NE_QUAD_NO_CONV}

The integral is probably divergent or slowly convergent.

Please note that divergence can occur with any error exit other than \texttt{NE_INT_ARG_LT} and \texttt{NE_ALLOC_FAIL}.
6 Further Comments

The time taken by nag_1d_quad_gen_1 depends on the integrand and the accuracy required.

If the function fails with an error exit other than NE_INT_ARG_LT or NE_ALLOC_FAIL, then the user may wish to examine the contents of the structure qp. These contain the end-points of the sub-intervals used by nag_1d_quad_gen_1 along with the integral contributions and error estimates over the sub-intervals.

Specifically, for \(i = 1, 2, \ldots, n \), let \(r_i \) denote the approximation to the value of the integral over the sub-interval \([a_i, b_i]\) in the partition of \([a, b]\) and \(e_i \) be the corresponding absolute error estimate.

Then, \(\int_{a_i}^{b_i} f(x) \, dx \simeq r_i \) and \(\text{result} = \sum_{i=1}^{n} r_i \) unless the function terminates while testing for divergence of the integral (see Section 3.4.3 of Piessens et al. (1983)). In this case, \(\text{result} \) (and \(\text{abserr} \)) are taken to be the values returned from the extrapolation process. The value of \(n \) is returned in \(\text{num_subint} \), and the values \(a_i, b_i, r_i \) and \(e_i \) are stored in the structure \(\text{qp} \) as

\[
\begin{align*}
 a_i &= \text{sub_int_beg_pts}[i-1], \\
 b_i &= \text{sub_int_end_pts}[i-1], \\
 r_i &= \text{sub_int_result}[i-1] \quad \text{and} \\
 e_i &= \text{sub_int_error}[i-1].
\end{align*}
\]

6.1 Accuracy

The function cannot guarantee, but in practice usually achieves, the following accuracy:

\[|I - \text{result}| \leq \text{tol} \]

where

\[\text{tol} = \max\{\text{epsabs}, |I| \times \text{epsrel}\} \]

and \(\text{epsabs} \) and \(\text{epsrel} \) are user-specified absolute and relative error tolerances. Moreover it returns the quantity \(\text{abserr} \) which, in normal circumstances, satisfies

\[|I - \text{result}| \leq \text{abserr} \leq \text{tol}. \]

6.2 References

Wynn P (1956) On a device for computing the \(e_n(S_n) \) transformation Math. Tables Aids Comput. 10 91–96

7 See Also

nag_1d_quad_osc_1 (d01skc)
nag_1d_quad_bkpts_1 (d01sle)

8 Example

To compute

\[
\int_{0}^{2\pi} \frac{x \sin(30x)}{\sqrt{1 - (\frac{x}{\pi})^2}} \, dx.
\]
8.1 Program Text

/* nag_lq_quad_gen_1(d01sjc) Example Program */
/* Copyright 1998 Numerical Algorithms Group. */
/* Mark 5, 1998. */
/* Mark 6 revised, 2000. */

#include <nag.h>
#include <stdio.h>
#include <nag_stdf1ib.h>
#include <math.h>
#include <nagd01.h>
#include <nagx01.h>

static double f(double x, Nag_User *comm);

main()
{
 double a, b;
 double epsabs, abserr, epsrel, result;
 Nag_QuadProgress qp;
 Integer max_num_subint;
 static NagError fail;
 double pi = X01AAC;
 Nag_User comm;

 Vprintf("d01sjc Example Program Results\n");
 epsabs = 0.0;
 epsrel = 0.0001;
 a = 0.0;
 b = pi*2.0;
 max_num_subint = 200;
 d01sjc(f, a, b, epsabs, epsrel, max_num_subint, &result, &abserr,
 &qp, &comm, &fail);
 Vprintf("a - lower limit of integration = %10.4f\n", a);
 Vprintf("b - upper limit of integration = %10.4f\n", b);
 Vprintf("epsabs - absolute accuracy requested = %9.2e\n", epsabs);
 Vprintf("epsrel - relative accuracy requested = %9.2e\n", epsrel);
 if (fail.code != NE_NOERROR)
 Vprintf("%s\n", fail.message);
 if (fail.code != NE_INT_ARG_LT & fail.code != NE_ALLOC_FAIL)
 {
 Vprintf("result - approximation to the integral = %9.5f\n", result);
 Vprintf("abserr - estimate of the absolute error = %9.2e\n", abserr);
 Vprintf("qp.fun_count - number of function evaluations = %4ld\n",
 qp.fun_count);
 Vprintf("qp.num_subint - number of subintervals used = %4ld\n",
 qp.num_subint);
 /* Free memory used by qp */
 NAG_FREE(qp.sub_int_beg_pts);
 NAG_FREE(qp.sub_int_end_pts);
 NAG_FREE(qp.sub_int_result);
 NAG_FREE(qp.sub_int_error);
 exit(EXIT_SUCCESS);
 }
}
else
 exit(EXIT_FAILURE);
}

static double f(double x, Nag_User *comm)
{
 double pi = X01AAC;
 return (x*sin(x*30.0)/sqrt(1.0-x*x/(pi*pi*4.0)));
}

8.2 Program Data

None.

8.3 Program Results

d01sjc Example Program Results
a - lower limit of integration = 0.0000
b - upper limit of integration = 6.2832
epsabs - absolute accuracy requested = 0.00e+00
epsrel - relative accuracy requested = 1.00e-04

result - approximation to the integral = -2.54326
abserr - estimate of the absolute error = 1.28e-05
qp.fun_count - number of function evaluations = 777
qp.num_subint - number of subintervals used = 19