NAG C Library Function Document

nag_1d_quad_wt_alglog (d01apc)

1 Purpose

nag_1d_quad_wt_alglog (d01apc) is an adaptive integrator which calculates an approximation to the integral of a function \(g(x)w(x) \) over a finite interval \([a, b] \):

\[
I = \int_a^b g(x)w(x) \, dx
\]

where the weight function \(w \) has end-point singularities of algebraico-logarithmic type.

2 Specification

```c
#include <nag.h>
#include <nagd01.h>

void nag_1d_quad_wt_alglog (double (*g)(double x),
   double a, double b, double alfa, double beta,
   Nag_QuadWeight wt_func, double epsabs, double epsrel,
   Integer max_num_subint, double *result, double *abserr,
   Nag_QuadProgress *qp, NagError *fail)
```

3 Description

This function is based upon the QUADPACK routine QAWSE (Piessens et al. (1983)) and integrates a function of the form \(g(x)w(x) \), where the weight function \(w(x) \) may have algebraico-logarithmic singularities at the end-points \(a \) and/or \(b \). The strategy is a modification of that in nag_1d_quad_osc (d01akc). We start by bisecting the original interval and applying modified Clenshaw–Curtis integration of orders 12 and 24 to both halves. Clenshaw–Curtis integration is then used on all sub-intervals which have \(a \) or \(b \) as one of their end-points (Piessens et al. (1974)). On the other sub-intervals Gauss–Kronrod (7–15 point) integration is carried out.

A ‘global’ acceptance criterion (as defined by Malcolm and Simpson (1976)) is used. The local error estimation control is described by Piessens et al. (1983).

4 Parameters

1: \(g \) – function supplied by user

The function \(g \), supplied by the user, must return the value of the function \(g \) at a given point.

The specification of \(g \) is:

```c
double g(double x)
```

1: \(x \) – double

Input

On entry: the point at which the function \(g \) must be evaluated.

2: \(a \) – double

Input

On entry: the lower limit of integration, \(a \).
d01apc

3: b – double
 On entry: the upper limit of integration, b.
 Constraint: b > a.

4: alfa – double
 On entry: the parameter α in the weight function.
 Constraint: alfa > −1.0.

5: beta – double
 On entry: the parameter β in the weight function.
 Constraint: beta > −1.0.

6: wt_func – Nag_QuadWeight
 On entry: indicates which weight function is to be used:
 if wt_func = Nag_Alg, w(x) = (x - a)α(b - x)β;
 if wt_func = Nag_Alg_loga, w(x) = (x - a)α(b - x)βln(x - a);
 if wt_func = Nag_Alg_logb, w(x) = (x - a)α(b - x)βln(b - x);
 if wt_func = Nag_Alg_loga_logb, w(x) = (x - a)α(b - x)βln(x - a)ln(b - x).
 Constraint: wt_func = Nag_Alg, Nag_Alg_loga, Nag_Alg_logb, or Nag_Alg_loga_logb.

7: epsabs – double
 On entry: the absolute accuracy required. If epsabs is negative, the absolute value is used. See Section 6.1.

8: epsrel – double
 On entry: the relative accuracy required. If epsrel is negative, the absolute value is used. See Section 6.1.

9: max_num_subint – Integer
 On entry: the upper bound on the number of sub-intervals into which the interval of integration may be divided by the function. The more difficult the integrand, the larger max_num_subint should be.
 Suggested values: a value in the range 200 to 500 is adequate for most problems.
 Constraint: max_num_subint ≥ 2.

10: result – double *
 On exit: the approximation to the integral I.

11: abserr – double *
 On exit: an estimate of the modulus of the absolute error, which should be an upper bound for |I − result|.

12: qp – Nag_QuadProgress *
 Pointer to structure of type Nag_QuadProgress with the following members:
 num_subint – Integer
 On exit: the actual number of sub-intervals used.
fun_count – Integer

Output

On exit: the number of function evaluations performed by nag_1d_quad_wt_alglog.

sub_int_beg_pts – double *

Output

sub_int_end_pts – double *

Output

sub_int_result – double *

Output

sub_int_error – double *

Output

On exit: these pointers are allocated memory internally with max_num_subint elements. If an error exit other than NE_INT_ARG_LT, NE_BADgetParam, NE_REAL_ARG_LE, NE_2_REAL_ARG_LE or NE_ALLOC_FAIL occurs, these arrays will contain information which may be useful. For details, see Section 6.

Before a subsequent call to nag_1d_quad_wt_alglog is made, or when the information contained in these arrays is no longer useful, the user should free the storage allocated by these pointers using the NAG macro NAG_FREE.

13: fail – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

Users are recommended to declare and initialise fail and set fail.print = TRUE for this function.

5 Error Indicators and Warnings

NE_INT_ARG_LT

On entry, max_num_subint must not be less than 2: max_num_subint = <value>.

NE_BAD_PARAM

On entry, parameter wt_func had an illegal value.

NE_REAL_ARG_LE

On entry, alfa must not be less than or equal to -1.0: alfa = <value>.

On entry, beta must not be less than or equal to -1.0: beta = <value>.

NE_2_REAL_ARG_LE

On entry, b = <value> while a = <value>. These parameters must satisfy b > a.

NE_ALLOC_FAIL

Memory allocation failed.

NE_QUAD_MAX_SUBDIV

The maximum number of subdivisions has been reached: max_num_subint = <value>.

The maximum number of subdivisions has been reached without the accuracy requirements being achieved. Look at the integrand in order to determine the integration difficulties. If the position of a discontinuity or a singularity of algebraico-logarithmic type within the interval can be determined, the interval must be split up at this point and the integrator called on the sub-intervals. If necessary, another integrator, which is designed for handling the type of difficulty involved, must be used. Alternatively, consider relaxing the accuracy requirements specified by epsabs and epsrel, or increasing the value of max_num_subint.

NE_QUAD_ROUNDOFF_TOL

Round-off error prevents the requested tolerance from being achieved: epsabs = <value>,

epsrel = <value>.

The error may be underestimated. Consider relaxing the accuracy requirements specified by epsabs and epsrel.
NE_QUAD_BAD_SUBDIV

Extremely bad integrand behaviour occurs around the sub-interval \(<value_1>, <value_2>\).
The same advice applies as in the case of NE_QUAD_MAX_SUBDIV.

6 Further Comments

The time taken by nag_1d_quad_wt_alglog depends on the integrand and the accuracy required.

If the function fails with an error exit other than NE_INT_ARG_LT, NE_BAD_PARAM,
NE_REAL_ARG_LE, NE_2_REAL_ARG_LE or NE_ALLOC_FAIL then the user may wish to
examine the contents of the structure qp. These contain the end-points of the sub-intervals used by
nag_1d_quad_wt_alglog along with the integral contributions and error estimates over these sub-intervals.

Specifically, for \(i = 1, 2, \ldots, n\), let \(r_i\) denote the approximation to the value of the integral over the sub-
interval \([a_i, b_i]\) in the partition of \([a, b]\) and \(e_i\) be the corresponding absolute error estimate.

Then, \(\int_{a_i}^{b_i} g(x)w(x) \, dx \simeq r_i\) and \(\text{result} = \sum_{i=1}^{n} r_i\). The value of \(n\) is returned in num_subint, and the values \(a_i, b_i, r_i\) and \(e_i\) are stored in the structure qp as

\[
\begin{align*}
 a_i & = \text{sub_int_beg_pts}[i - 1], \\
 b_i & = \text{sub_int_end_pts}[i - 1], \\
 r_i & = \text{sub_int_result}[i - 1] \quad \text{and} \\
 e_i & = \text{sub_int_error}[i - 1].
\end{align*}
\]

6.1 Accuracy

The function cannot guarantee, but in practice usually achieves, the following accuracy:

\[|I - \text{result}| \leq \text{tol}\]

where

\[\text{tol} = \max\{|\text{epsabs}|, |\text{epsrel}| \times |I|\}\]

and epsabs and epsrel are user-specified absolute and relative error tolerances. Moreover it returns the quantity abserr which, in normal circumstances, satisfies

\[|I - \text{result}| \leq \text{abserr} \leq \text{tol}\.

6.2 References

Math. Software 1 129–146

Piessens R, Mertens I and Branders M (1974) Integration of functions having end-point singularities
Angew. Inf. 16 65–68

Package for Automatic Integration Springer-Verlag

7 See Also

nag_1d_quad_gen (d01ajc)
8 Example

To compute

$$\int_0^1 \ln x \cos(10\pi x) \, dx$$

and

$$\int_0^1 \frac{\sin(10x)}{\sqrt{x(1-x)}} \, dx.$$

8.1 Program Text

/* nag_1d_quad_wt_alglog(d01apc) Example Program */
/* Copyright 1991 Numerical Algorithms Group. */
/* Mark 2, 1991. */
/* Mark 3 revised, 1994. */
/* Mark 5 revised, 1998. */
/* Mark 6 revised, 2000. */
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdtlib.h>
#include <math.h>
#include <nagd01.h>
#include <nagx01.h>

static double f_sin(double x);
static double f_cos(double x);

main()
{
 static double alfa[2] = {0.0, -0.5};
 static double beta[2] = {0.0, -0.5};
 Nag_QuadWeight wt_func;

double a, b;
double epsabs, abserr, epsrel, result;
static NagError fail;
Nag_QuadProgress qp;
Integer max_num_subint;
int numfunc;
double (*g)(double x);
static char *Nag_QuadWeight_array[] =
{ "Nag_Alg", "Nag_Alg_loga", "Nag_Alg_logb","Nag_Alg_loga_logb"};
Boolean success = TRUE;
Integer wt_array_ind;

Vprintf("d01apc Example Program Results\n");
epsabs = 0.0;
epsrel = 0.0001;
a = 0.0;
b = 1.0;
max_num_subint = 200;
for (numfunc=0; numfunc < 2; ++numfunc)
{
 switch (numfunc)
 {
 case 0:
 g = f_cos;
 wt_func = Nag_Alg_loga;
 wt_array_ind = 1;
 break;
 case 1:
 g = f_sin;
 wt_func = Nag_Alg;
 wt_array_ind = 0;
 }
 d01apc(g, a, b, alfa[numfunc], beta[numfunc],
 wt_func, epsabs, epsrel, max_num_subint,
 &result, &abser, &qp, &fail);
 Vprintf("a - lower limit of integration = %10.4f\n", a);
 Vprintf("b - upper limit of integration = %10.4f\n", b);
 Vprintf("epsabs - absolute accuracy requested = %9.2e\n", epsabs);
 Vprintf("epsrel - relative accuracy requested = %9.2e\n", epsrel);
 Vprintf("alpha - parameter in the weight function = %10.4f\n",
 alfa[numfunc]);
 Vprintf("beta - parameter in the weight function = %10.4f\n",
 beta[numfunc]);
 Vprintf("wt_func - denotes weight function to be \n
used = %s\n", Nag_QuadWeight_array[wt_array_ind]);
 if (fail.code != NE_NOERROR)
 Vprintf("%s\n", fail.message);
 if (fail.code != NE_INT_ARG_LT && fail.code != NE_BAD_PARAM &&
 fail.code != NE_REAL_ARG_LE && fail.code != NE_2_REAL_ARG_LE &&
 fail.code != NE_ALLOC_FAIL)
 {
 Vprintf("result - approximation to the integral = %9.5f\n", result);
 Vprintf("abser - estimate of the absolute error = %9.2e\n", abser);
 Vprintf("qp.fun_count - number of function evaluations = %4ld\n",
 qp.fun_count);
 Vprintf("qp.num_subint - number of subintervals used = %4ld\n",
 qp.num_subint);
 /* Free memory used by qp */
 NAG_FREE(qp.sub_int_beg pts);
 NAG_FREE(qp.sub_int_end_pts);
 NAG_FREE(qp.sub_int_result);
 NAG_FREE(qp.sub_int_error);
 }
 else
 success = FALSE;
}

if (success)
 exit(EXIT_SUCCESS);
else
 exit(EXIT_FAILURE);
}

static double f_cos(double x)
{
 double a;
 double pi;
pi = X01AAC;
a = pi*10.0;
 return cos(a*x);
}

static double f_sin(double x)
{
 double omega;
 omega = 10.0;
 return sin(omega*x);
}

8.2 Program Data
None.

8.3 Program Results
d01apc Example Program Results
a - lower limit of integration = 0.0000
b - upper limit of integration = 1.0000
epsabs - absolute accuracy requested = 0.00e+00
epsrel - relative accuracy requested = 1.00e-04

alfa - parameter in the weight function = 0.0000
beta - parameter in the weight function = 0.0000
wt_func - denotes weight function to be used = Nag_Alg_loga
result - approximation to the integral = -0.04899
abser - estimate of the absolute error = 1.14e-07
qp.fun_count - number of function evaluations = 110
qp.num_subint - number of subintervals used = 4

a - lower limit of integration = 0.0000
b - upper limit of integration = 1.0000
epsabs - absolute accuracy requested = 0.00e+00
epsrel - relative accuracy requested = 1.00e-04

alfa - parameter in the weight function = -0.5000
beta - parameter in the weight function = -0.5000
wt_func - denotes weight function to be used = Nag_Alg
result - approximation to the integral = 0.53502
abser - estimate of the absolute error = 1.94e-12
qp.fun_count - number of function evaluations = 50
qp.num_subint - number of subintervals used = 2