NAG C Library Function Document

nag_1d_quad_inf (d01amc)

1 Purpose

nag_1d_quad_inf (d01amc) calculates an approximation to the integral of a function \(f(x) \) over an infinite or semi-infinite interval \([a, b]\):

\[
I = \int_{a}^{b} f(x) \, dx.
\]

2 Specification

#include <nag.h>
#include <nagd01.h>

void nag_1d_quad_inf (double (*f)(double x),
 Nag_BoundInterval boundinf, double bound, double epsabs,
 double epsrel, Integer max_num_subint, double *result,
 double *abserr, Nag_QuadProgress *qp, NagError *fail)

3 Description

This function is based on the QUADPACK routine QAGI (Piessens et al. (1983)). The entire infinite integration range is first transformed to \([0, 1]\) using one of the identities

\[
\int_{-\infty}^{a} f(x) \, dx = \int_{0}^{1} f\left(a \frac{1 - t}{t} \right) \frac{1}{t^2} \, dt
\]

\[
\int_{a}^{\infty} f(x) \, dx = \int_{0}^{1} f\left(a \frac{1 + t}{t} \right) \frac{1}{t^2} \, dt
\]

\[
\int_{-\infty}^{\infty} f(x) \, dx = \int_{0}^{\infty} (f(x) + f(-x)) \, dx = \int_{0}^{1} \left[f\left(\frac{1 - t}{t} \right) + f\left(\frac{-1 + t}{t} \right) \right] \frac{1}{t^2} \, dt
\]

where \(a \) represents a finite integration limit. An adaptive procedure, based on the Gauss 7-point and Kronrod 15-point rules, is then employed on the transformed integral. The algorithm, described by De Doncker (1978), incorporates a global acceptance criterion (as defined by Malcolm and Simpson (1976) together with the \(e \)-algorithm (Wynn (1956)) to perform extrapolation. The local error estimation is described by Piessens et al. (1983).

4 Parameters

1: \(f \) – function supplied by user

The function \(f \), supplied by the user, must return the value of the integrand \(f \) at a given point.

The specification of \(f \) is:

\[
\textbf{double f(double x)}
\]

1: \(x \) – double

\textit{On entry:} the point at which the integrand \(f \) must be evaluated.
2: **boundinf** – Nag_BoundInterval
 Input

 On entry: indicates the kind of integration interval:

 if **boundinf** = Nag_UpperSemiInfinite, the interval is \([\text{bound}, +\infty)\);

 if **boundinf** = Nag_LowerSemiInfinite, the interval is \((-\infty, \text{bound}]\);

 if **boundinf** = Nag_Infinite, the interval is \((-\infty, +\infty)\).

 Constraint: **boundinf** = Nag_UpperSemiInfinite, Nag_LowerSemiInfinite, or Nag_Infinite.

3: **bound** – double
 Input

 On entry: the finite limit of the integration interval (if present). **bound** is not used if **boundinf** = Nag_Infinite.

4: **epsabs** – double
 Input

 On entry: the absolute accuracy required. If **epsabs** is negative, the absolute value is used. See Section 6.1.

5: **epsrel** – double
 Input

 On entry: the relative accuracy required. If **epsrel** is negative, the absolute value is used. See Section 6.1.

6: **max_num_subint** – Integer
 Input

 On entry: the upper bound on the number of sub-intervals into which the interval of integration may be divided by the function. The more difficult the integrand, the larger **max_num_subint** should be.

 Suggested values: a value in the range 200 to 500 is adequate for most problems.

 Constraint: **max_num_subint** ≥ 1.

7: **result** – double
 Output

 On exit: the approximation to the integral \(I\).

8: **abserr** – double
 Output

 On exit: an estimate of the modulus of the absolute error, which should be an upper bound for \(|I-\text{result}|\).

9: **qp** – Nag_QuadProgress
 Pointer to structure of type Nag_QuadProgress with the following members:

 num_subint – Integer
 Output

 On exit: the actual number of sub-intervals used.

 fun_count – Integer
 Output

 On exit: the number of function evaluations performed by nag_1d_quad_inf.

 sub_int_beg_pts – double
 Output

 sub_int_end_pts – double
 Output

 sub_int_result – double
 Output

 sub_int_error – double
 Output

 On exit: these pointers are allocated memory internally with **max_num_subint** elements. If an error exit other than NE_INT_ARG_LT, NE_BAD_PARAM or NE_ALLOC_FAIL occurs, these arrays will contain information which may be useful. For details, see Section 6.
Before a subsequent call to nag_1d_quad_inf is made, or when the information contained in these arrays is no longer useful, the user should free the storage allocated by these pointers using the NAG macro `NAG_FREE`.

10: `fail` – NagError *
 The NAG error parameter (see the Essential Introduction).
 Users are recommended to declare and initialise `fail` and set `fail.print = TRUE` for this function.

5 Error Indicators and Warnings

NE_INT_ARG_LT
On entry, `max_num_subint` must not be less than 1: `max_num_subint = <value>`.

NE_BAD_PARAM
On entry, parameter `boundinf` had an illegal value.

NE_ALLOC_FAIL
Memory allocation failed.

NE_QUAD_MAX_SUBDIV
The maximum number of subdivisions has been reached: `max_num_subint = <value>`.
The maximum number of subdivisions has been reached without the accuracy requirements being achieved. Look at the integrand in order to determine the integration difficulties. If the position of a local difficulty within the interval can be determined (e.g., a singularity of the integrand or its derivative, a peak, a discontinuity, etc.) you will probably gain from splitting up the interval at this point and calling the integrator on the sub-intervals. If necessary, another integrator, which is designed for handling the type of difficulty involved, must be used. Alternatively, consider relaxing the accuracy requirements specified by `epsabs` and `epsrel`, or increasing the value of `max_num_subint`.

NE_QUAD_ROUNDOFF_TOL
Round-off error prevents the requested tolerance from being achieved: `epsabs = <value>`, `epsrel = <value>`.
The error may be underestimated. Consider relaxing the accuracy requirements specified by `epsabs` and `epsrel`.

NE_QUAD_BAD_SUBDIV
Extremely bad integrand behaviour occurs around the sub-interval (`<value>`, `<value>`).
The same advice applies as in the case of `NE_QUAD_MAX_SUBDIV`.

NE_QUAD_ROUNDOFF_EXTRAPL
Round-off error is detected during extrapolation.
The requested tolerance cannot be achieved, because the extrapolation does not increase the accuracy satisfactorily; the returned result is the best that can be obtained.
The same advice applies as in the case of `NE_QUAD_MAX_SUBDIV`.

NE_QUAD_NO_CONV
The integral is probably divergent or slowly convergent.
Please note that divergence can also occur with any error exit other than `NE_INT_ARG_LT`, `NE_BAD_PARAM` or `NE_ALLOC_FAIL`.
NE_QUAD_BAD_SUBDIV_INTS

Extremely bad integrand behaviour occurs around one of the sub-intervals \((a, b)\) or \((c, d)\).

The same advice applies as in the case of NE_QUAD_MAX_SUBDIV.

6 Further Comments

The time taken by nag_1d_quad_inf depends on the integrand and the accuracy required.

If the function fails with an error exit other than NE_INT_ARG_LT, NE_BAD_PARAM or
NE_ALLOC_FAIL then the user may wish to examine the contents of the structure qp. These contain
the end-points of the sub-intervals used by nag_1d_quad_inf along with the integral contributions and error
estimates over the sub-intervals.

Specifically, for \(i = 1, 2, \ldots, n\), let \(r_i\) denote the approximation to the value of the integral over the sub-
interval \([a_i, b_i]\) in the partition of \([a, b]\) and \(e_i\) be the corresponding absolute error estimate.

Then, \(\int_a^b f(x) \, dx \approx r_i\) and \(\text{result} = \sum_{i=1}^{n} r_i\) unless the function terminates while testing for divergence of
the integral (see Section 3.4.3 of Piessens et al. (1983)). In this case, \(\text{result}\) (and \(\text{abserr}\)) are taken to be
the values returned from the extrapolation process. The value of \(n\) is returned in num_subint, and the
values \(a_i, b_i, r_i\) and \(e_i\) are stored in the structure qp as

\[
\begin{align*}
 a_i &= \text{sub_int_beg_pts}[i - 1], \\
 b_i &= \text{sub_int_end_pts}[i - 1], \\
 r_i &= \text{sub_int_result}[i - 1] \quad \text{and} \\
 e_i &= \text{sub_int_error}[i - 1].
\end{align*}
\]

6.1 Accuracy

The function cannot guarantee, but in practice usually achieves, the following accuracy:

\[
|I - \text{result}| \leq \text{tol}
\]

where

\[
\text{tol} = \max\{|\text{epsabs}|, |\text{epsrel}| \times |I|\}
\]

and \(\text{epsabs}\) and \(\text{epsrel}\) are user-specified absolute and relative error tolerances. Moreover it returns the
quantity \(\text{abserr}\) which, in normal circumstances, satisfies

\[
|I - \text{result}| \leq \text{abserr} \leq \text{tol}.
\]

6.2 References

Package for Automatic Integration Springer-Verlag

Wynn P (1956) On a device for computing the \(e_m(S_n)\) transformation Math. Tables Aids Comput. 10 91–96

7 See Also

nag_1d_quad_gen (d01ajc)
8 Example

To compute

\[\int_0^{\infty} \frac{1}{(x + 1)\sqrt{x}} \, dx. \]

8.1 Program Text

/* nag_LD_quad_inf(d01amc) Example Program */

* Mark 6 revised, 2000.

*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdf.h>
#include <math.h>
#include <nagd01.h>

static double f(double x);

main()
{
 double a;
 double epsabs, abseps, epsrel, result;
 Nag_QuadProgress qp;
 Integer max_num_subint;
 static NagError fail;

 Vprintf("d0lamc Example Program Results\n");
 epsabs = 0.0;
 epsrel = 0.0001;
 a = 0.0;
 max_num_subint = 200;

 d0lamc(f, Nag_UpperSemiInfinite, a, epsabs, epsrel, max_num_subint,
 result, &abseps, &qp, &fail);

 Vprintf("a - lower limit of integration = %10.4f\n", a);
 Vprintf("b - upper limit of integration = infinity\n");
 Vprintf("epsabs - absolute accuracy requested = %9.2e\n", epsabs);
 Vprintf("epsrel - relative accuracy requested = %9.2e\n", epsrel);
 if (fail.code != NE_NOERROR)
 Vprintf("%s\n", fail.message);
 if (fail.code != NE_INT_ARG_LT && fail.code != NE_BAD_PARAM &&
 fail.code != NE_ALLOC_FAIL)
 {
 Vprintf("result - approximation to the integral = %9.5f\n", result);
 Vprintf("abseps - estimate of the absolute error = %9.2e\n", abseps);
 Vprintf("qp.fun_count - number of function evaluations = %4d\n", qp.fun_count);
 Vprintf("qp.num_subint - number of subintervals used = %4d\n", qp.num_subint);
/* Free memory used by qp */
NAG_FREE(qp.sub_int_beg_pts);
NAG_FREE(qp.sub_int_end_pts);
NAG_FREE(qp.sub_int_result);
NAG_FREE(qp.sub_int_error);
exit(EXIT_SUCCESS);
}
exit(EXIT_FAILURE);
}

static double f(double x)
{
 return 1.0/((x+1.0)*sqrt(x));
}

8.2 Program Data

None.

8.3 Program Results

d01amc Example Program Results
a - lower limit of integration = 0.0000
b - upper limit of integration = infinity
epsabs - absolute accuracy requested = 0.00e+00
epsrel - relative accuracy requested = 1.00e-04

result - approximation to the integral = 3.14159
abserr - estimate of the absolute error = 2.65e-05
qp.fun_count - number of function evaluations = 285
qp.num_subint - number of subintervals used = 10