NAG C Library Function Document

nag_1d_quad_gen (d01ajc)

1 Purpose

nag_1d_quad_gen (d01ajc) is a general purpose integrator which calculates an approximation to the integral of a function \(f(x) \) over a finite interval \([a, b]\):

\[
I = \int_a^b f(x) \, dx.
\]

2 Specification

#include <nag.h>
#include <nagd01.h>

void nag_1d_quad_gen (double (*f)(double),
 double a, double b, double epsabs, double epsrel,
 Integer max_num_subint, double *result, double *abserr,
 Nag_QuadProgress *qp, NagError *fail)

3 Description

This function is based upon the QUADPACK routine QAGS (Piessens et al. (1983)). It is an adaptive function, using the Gauss 10-point and Kronrod 21-point rules. The algorithm, described by De Doncker (1978), incorporates a global acceptance criterion (as defined by Malcolm and Simpson (1976)) together with the \(c \)-algorithm (Wynn (1956)) to perform extrapolation. The local error estimation is described by Piessens et al. (1983).

The function is suitable as a general purpose integrator, and can be used when the integrand has singularities, especially when these are of algebraic or logarithmic type.

This function requires the user to supply a function to evaluate the integrand at a single point.

4 Parameters

1: \(f \) – function supplied by user

The function \(f \), supplied by the user, must return the value of the integrand \(f \) at a given point.

The specification of \(f \) is:

\[
\text{double } f\text{(double } x)\]

1: \(x \) – double

\text{Input}

\text{On entry: the point at which the integrand } f \text{ must be evaluated.}

2: \(a \) – double

\text{Input}

\text{On entry: the lower limit of integration, } a.

3: \(b \) – double

\text{Input}

\text{On entry: the upper limit of integration, } b. \text{ It is not necessary that } a < b.

4: \(\text{epsabs} \) – double

\text{Input}

\text{On entry: the absolute accuracy required. If } \text{epsabs} \text{ is negative, the absolute value is used. See Section 6.1.}
5: epsrel – double
 On entry: the relative accuracy required. If epsrel is negative, the absolute value is used. See Section 6.1.

6: max_num_subint – Integer
 On entry: the upper bound on the number of sub-intervals into which the interval of integration may be divided by the function. The more difficult the integrand, the larger max_num_subint should be.
 Suggested values: a value in the range 200 to 500 is adequate for most problems.
 Constraint: max_num_subint ≥ 1.

7: result – double *
 On exit: the approximation to the integral I.

8: abserr – double *
 On exit: an estimate of the modulus of the absolute error, which should be an upper bound for |I−result|.

9: qp – Nag_QuadProgress *
 Pointer to structure of type Nag_QuadProgress with the following members:

 num_subint – Integer
 On exit: the actual number of sub-intervals used.

 fun_count – Integer
 On exit: the number of function evaluations performed by nag_1d_quad_gen.

 sub_int_beg_pts – double *
 sub_int_end_pts – double *
 sub_int_result – double *
 sub_int_error – double *
 On exit: these pointers are allocated memory internally with max_num_subint elements. If an error exit other than NE_INT_ARG_LT or NE_ALLOC_FAIL occurs, these arrays will contain information which may be useful. For details, see Section 6.

 Before a subsequent call to nag_1d_quad_gen is made, or when the information contained in these arrays is no longer useful, the user should free the storage allocated by these pointers using the NAG macro NAG_FREE.

10: fail – NagError *
 The NAG error parameter (see the Essential Introduction).
 Users are recommended to declare and initialise fail and set fail.print = TRUE for this function.

5 Error Indicators and Warnings

NE_INT_ARG_LT
 On entry, max_num_subint must not be less than 1: max_num_subint = <value>.

NE_ALLOC_FAIL
 Memory allocation failed.
NE_QUAD_MAX_SUBDIV

The maximum number of subdivisions has been reached: \texttt{max_num_subint} = \texttt{<value>}. The maximum number of subdivisions has been reached without the accuracy requirements being achieved. Look at the integrand in order to determine the integration difficulties. If the position of a local difficulty within the interval can be determined (e.g., a singularity of the integrand or its derivative, a peak, a discontinuity, etc.) you will probably gain from splitting up the interval at this point and calling the integrator on the sub-intervals. If necessary, another integrator, which is designed for handling the type of difficulty involved, must be used. Alternatively, consider relaxing the accuracy requirements specified by \texttt{epsabs} and \texttt{epsrel}, or increasing the value of \texttt{max_num_subint}.

NE_QUAD_ROUNDOFF_TOL

Round-off error prevents the requested tolerance from being achieved: \texttt{epsabs} = \texttt{<value>}, \texttt{epsrel} = \texttt{<value>}. The error may be underestimated. Consider relaxing the accuracy requirements specified by \texttt{epsabs} and \texttt{epsrel}.

NE_QUAD_BAD_SUBDIV

Extremely bad integrand behaviour occurs around the sub-interval (\texttt{<value>}, \texttt{<value>}). The same advice applies as in the case of NE_QUAD_MAX_SUBDIV.

NE_QUAD_ROUNDOFF_EXTRAPL

Round-off error is detected during extrapolation. The requested tolerance cannot be achieved, because the extrapolation does not increase the accuracy satisfactorily; the returned result is the best that can be obtained. The same advice applies as in the case of NE_QUAD_MAX_SUBDIV.

NE_QUAD_NO_CONV

The integral is probably divergent or slowly convergent. Please note that divergence can occur with any error exit other than NE_INT_ARG_LT and NE_ALLOC_FAIL.

6 Further Comments

The time taken by nag_1d_quad_gen depends on the integrand and the accuracy required.

If the function fails with an error exit other than NE_INT_ARG_LT or NE_ALLOC_FAIL, then the user may wish to examine the contents of the structure \texttt{qp}. These contain the end-points of the sub-intervals used by nag_1d_quad_gen along with the integral contributions and error estimates over the sub-intervals. Specifically, for \(i = 1, 2, \ldots, n \), let \(r_i \) denote the approximation to the value of the integral over the sub-interval \([a_i, b_i]\) in the partition of \([a, b]\) and \(e_i \) be the corresponding absolute error estimate.

Then, \(\int_a^b f(x) \, dx \simeq r_i \) and \texttt{result} = \(\sum_{i=1}^{n} r_i \) unless the function terminates while testing for divergence of the integral (see Section 3.4.3 of Piessens et al. (1983)). In this case, \texttt{result} (and \texttt{abserr}) are taken to be the values returned from the extrapolation process. The value of \(n \) is returned in \texttt{num_subint}, and the values \(a_i, b_i, r_i \) and \(e_i \) are stored in the structure \texttt{qp} as

\[
\begin{align*}
 a_i &= \text{sub_int_beg_pts}[i - 1], \\
 b_i &= \text{sub_int_end_pts}[i - 1], \\
 r_i &= \text{sub_int_result}[i - 1] \text{ and} \\
 e_i &= \text{sub_int_error}[i - 1].
\end{align*}
\]
6.1 Accuracy
The function cannot guarantee, but in practice usually achieves, the following accuracy:

\[|I - \text{result}| \leq \text{tol} \]

where

\[\text{tol} = \max\{|\text{epsabs}|, |\text{epsrel}| \times |I|\} \]

and \text{epsabs} and \text{epsrel} are user-specified absolute and relative error tolerances. Moreover it returns the quantity \text{abserr} which, in normal circumstances, satisfies

\[|I - \text{result}| \leq \text{abserr} \leq \text{tol}. \]

6.2 References
Wynn P (1956) On a device for computing the \(c_m(S_n)\) transformation Math. Tables Aids Comput. 10 91–96

7 See Also
nag_1d_quad_osc (d01aek)
nag_1d_quad_brkpts (d01alc)

8 Example
To compute

\[\int_0^{2\pi} \frac{x \sin(30x)}{\sqrt{1 - (\frac{x}{\pi})^2}} \, dx. \]

8.1 Program Text
/* nag_1d_quad_gen(d01ajc) Example Program
 * Mark 6 revised, 2000.
 */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagd01.h>
#include <nagx01.h>

static double f(double x);

main()
\begin{verbatim}
{ double a, b;
 double epsabs, abserr, epsrel, result;
 Nag_QuadProgress qp;
 Integer max_num_subint;
 static NagError fail;
 double pi = X01AAC;

 Vprintf("d01ajc Example Program Results\n");
 epsabs = 0.0;
 epsrel = 0.0001;
 a = 0.0;
 b = pi*2.0;
 max_num_subint = 200;
 d01ajc(f, a, b, epsabs, epsrel, max_num_subint, &result, &abserr,
 &qp, &fail);
 Vprintf("a - lower limit of integration = %10.4f\n", a);
 Vprintf("b - upper limit of integration = %10.4f\n", b);
 Vprintf("epsabs - absolute accuracy requested = %9.2e\n", epsabs);
 Vprintf("epsrel - relative accuracy requested = %9.2e\n", epsrel);
 if (fail.code != NE_NOERROR)
 Vprintf("%s\n", fail.message);
 if (fail.code != NE_INT_ARG_LT && fail.code != NE_ALLOC_FAIL)
 {
 Vprintf("result - approximation to the integral = %9.5f\n", result);
 Vprintf("abseerr - estimate of the absolute error = %9.2e\n", abseerr);
 Vprintf("qp.fun_count - number of function evaluations = %4ld\n",
 qp.fun_count);
 Vprintf("qp.num_subint - number of subintervals used = %4ld\n",
 qp.num_subint);
 /* Free memory used by qp */
 NAG_FREE(qp.sub_int_beg_points);
 NAG_FREE(qp.sub_int_end_points);
 NAG_FREE(qp.sub_int_result);
 NAG_FREE(qp.sub_int_error);
 exit(EXIT_SUCCESS);
 }
 else
 exit(EXIT_FAILURE);
}

static double f(double x)
{
 double pi = X01AAC;
 return (x*sin(x*30.0)/sqrt(1.0-x*x/(pi*pi*4.0)));
}

8.2 Program Data
None.
\end{verbatim}
8.3 Program Results

d0lajc Example Program Results
a - lower limit of integration = 0.0000
b - upper limit of integration = 6.2832
epsabs - absolute accuracy requested = 0.00e+00
epsrel - relative accuracy requested = 1.00e-04

result - approximation to the integral = -2.54326
abserr - estimate of the absolute error = 1.28e-05
qp.fun_count - number of function evaluations = 777
qp.num_subint - number of subintervals used = 19