NAG C Library Function Document

nag_fft_multid_full (c06pjc)

1 Purpose

nag_fft_multid_full (c06pjc) computes the multi-dimensional discrete Fourier transform of a multivariate sequence of complex data values.

2 Specification

void nag_fft_multid_full (Nag_TransformDirection direct, Integer ndim, const Integer nd[], Integer n, Complex x[], NagError *fail)

3 Description

nag_fft_multid_full (c06pjc) computes the multi-dimensional discrete Fourier transform of a multi-dimensional sequence of complex data values \(z_{j_1 j_2 \ldots j_m} \), where \(j_1 = 0, 1, \ldots, n_1 - 1 \), \(j_2 = 0, 1, \ldots, n_2 - 1 \), and so on. Thus the individual dimensions are \(n_1, n_2, \ldots, n_m \), and the total number of data values \(n = n_1 \times n_2 \times \cdots \times n_m \).

The discrete Fourier transform is here defined (e.g., for \(m = 2 \)) by

\[
\hat{z}_{k_1 k_2} = \frac{1}{\sqrt{n}} \sum_{j_1=0}^{n_1-1} \sum_{j_2=0}^{n_2-1} z_{j_1 j_2} \times \exp\left(\pm 2\pi i \left(\frac{j_1 k_1}{n_1} + \frac{j_2 k_2}{n_2} \right) \right),
\]

where \(k_1 = 0, 1, \ldots, n_1 - 1 \) and \(k_2 = 0, 1, \ldots, n_2 - 1 \). The plus or minus sign in the argument of the exponential terms in the above definition determine the direction of the transform: a minus sign defines the forward direction and a plus sign defines the backward direction.

The extension to higher dimensions is obvious. (Note the scale factor of \(\frac{1}{\sqrt{n}} \) in this definition.) A call of the function with direct = Nag_ForwardTransform followed by a call with direct = Nag_BackwardTransform will restore the original data.

The data values must be supplied in a one-dimensional array using column-major storage ordering of multi-dimensional data (i.e., with the first subscript \(j_1 \) varying most rapidly).

This function uses a variant of the fast Fourier transform (FFT) algorithm (Brigham (1974)) known as the Stockham self-sorting algorithm, which is described in Temperton (1983b).

4 References

5 Parameters

1: direct – Nag_TransformDirection

Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then direct must be set equal to Nag_ForwardTransform. If the Backward transform is to be computed then direct must be set equal to Nag_BackwardTransform.

Constraint: direct = Nag_ForwardTransform or Nag_BackwardTransform.
2: \textbf{ndim} – Integer \hspace{1cm} \textit{Input}

On entry: the number of dimensions (or variables) in the multivariate data, \(m \).

Constraint: \(\text{ndim} \geq 1 \).

3: \textbf{nd[ndim]} – const Integer \hspace{1cm} \textit{Input}

On entry: the elements of \textbf{nd} must contain the dimensions of the \textbf{ndim} variables; that is, \textbf{nd}[i - 1]
must contain the dimension of the \(i \)th variable.

Constraints:
\[
\text{nd}[i] \geq 1 \quad \text{for} \quad i = 0, 1, \ldots, \text{ndim} - 1;
\]
\[
\text{nd}[i] \quad \text{must have less than 31 prime factors (counting repetitions) for} \quad i = 0, 1, \ldots, \text{ndim} - 1.
\]

4: \textbf{n} – Integer \hspace{1cm} \textit{Input}

On entry: the total number of data values, \(n \).

Constraint: \(n \) must equal the product of the first \textbf{ndim} elements of the array \textbf{nd}.

5: \textbf{x[n]} – Complex \hspace{1cm} \textit{Input/Output}

On entry: the complex data values. Data values are stored in \textbf{x} using column-major ordering for
storing multi-dimensional arrays; that is, \(z_{j_1j_2\ldots j_n} \) is stored in \(x[j_1 + n_1j_2 + n_1n_2j_3 + \cdots] \).

On exit: the corresponding elements of the computed transform.

6: \textbf{fail} – NagError * \hspace{1cm} \textit{Input/Output}

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

\textbf{NE_INT}

On entry, \textbf{ndim} = \langle value \rangle.

Constraint: \(\text{ndim} \geq 1 \).

\textbf{NE_INT_2}

\textbf{nd}[i - 1] \ must have < 31 prime factors: \textbf{nd}[i - 1] = \langle value \rangle, \ i = \langle value \rangle.

\textbf{n} \ must equal the product of the dimensions held in array \textbf{nd}: \textbf{n} = \langle value \rangle, \ product \ of \ \textbf{nd} \ elements \ is \ \langle value \rangle.

\textbf{nd}[i - 1] < 1: \textbf{nd}[i - 1] = \langle value \rangle, \ i = \langle value \rangle.

\textbf{NE_ALLOC_FAIL}

Memory allocation failed.

\textbf{NE_BAD_PARAM}

On entry, parameter \langle value \rangle had an illegal value.

\textbf{NE_INTERNAL_ERROR}

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing
the results with the original sequence (in exact arithmetic they would be identical).
Further Comments

The time taken is approximately proportional to $n \times \log n$, but also depends on the factorization of the individual dimensions n_{dim}. The function is somewhat faster than average if their only prime factors are 2, 3 or 5; and fastest of all if they are powers of 2.

Example

This program reads in a bivariate sequence of complex data values and prints the two-dimensional Fourier transform. It then performs an inverse transform and prints the sequence so obtained, which may be compared to the original data values.

Program Text

```c
/* nag_ftt_multid_full(c06pjc) Example Program
 * Copyright 2002 Numerical Algorithms Group.
 * Mark 7, 2002.
 */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc06.h>
#include <nagx04.h>

int main(void)
{
    /* Scalars */
    Integer i, n, ndim;
    Integer exit_status=0;
    NagError fail;
    /* Arrays */
    Complex *x=0;
    Integer *nd=0;

    INIT_FAIL(fail);
    Vprintf("c06pjc Example Program Results\n");
    /* Skip heading in data file */
    Vscanf("%*\[\n");
    Vscanf("%ld%ld", &ndim, &n);
    if (n >= 1)
    {
        /* Allocate memory */
        if ( !(x = NAG_ALLOC(n, Complex)) ||
            !(nd = NAG_ALLOC(ndim, Integer)) )
        {
            Vprintf("Allocation failure\n");
            exit_status = -1;
            goto END;
        }
        for (i = 0; i < ndim; ++i)
        {
            Vscanf("%ld",&nd[i]);
        }
        /* Read in complex data and print out. */
        Vscanf("%*\[\n");
        for (i = 0; i < n; ++i)
        {
            Vscanf(" ( %lf, %lf ) ", &x[i].re, &x[i].im);
        }
        Vscanf("%*\[\n");
        Vprintf("\n");
        x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, nd[0],
               n/nd[0], x, nd[0], Nag_BracketForm, "%6.3f",
               "Original data values\n", Nag_NoLabels, 0, Nag_NoLabels,
```
if (fail.code != NE_NOERROR) {
 Vprintf("Error from x04dbc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Compute transform */
c06pjc(Nag_ForwardTransform, ndim, nd, n, x, &fail);
if (fail.code != NE_NOERROR) {
 Vprintf("Error from c06pjc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
Vprintf("\n");
x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, nd[0],
 n/nd[0], x, nd[0], Nag_BracketForm, "%6.3f",
 "Components of discrete Fourier transform\n",
 Nag_NoLabels, 0, Nag_NoLabels, 0, 90, 0, 0, &fail);
if (fail.code != NE_NOERROR) {
 Vprintf("Error from x04dbc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

/* Compute inverse transform */
c06pjc(Nag_BackwardTransform, ndim, nd, n, x, &fail);
if (fail.code != NE_NOERROR) {
 Vprintf("Error from c06pjc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
Vprintf("\n");
x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, nd[0],
 n/nd[0], x, nd[0], Nag_BracketForm, "%6.3f",
 "Original data as restored by inverse transform\n",
 Nag_NoLabels, 0, Nag_NoLabels, 0, 90, 0, 0, &fail);
if (fail.code != NE_NOERROR) {
 Vprintf("Error from x04dbc.\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}

else
{
 Vfprintf(stderr,\n"Invalid value of n.\n");
}

END:
if (x) NAG_FREE(x);
if (nd) NAG_FREE(nd);
return exit_status;

9.2 Program Data

c06pjc Example Program Data

2 15
3 5
(1.000,0.000) (0.994,-0.111) (0.903,-0.430)
(0.999,-0.040) (0.989,-0.151) (0.885,-0.466)
(0.987,-0.159) (0.963,-0.268) (0.823,-0.568)
(0.936,-0.352) (0.891,-0.454) (0.694,-0.720)
(0.802,-0.597) (0.731,-0.682) (0.467,-0.884)
9.3 Program Results

c06pjc Example Program Results

Original data values

(1.000, 0.000) (0.999,-0.040) (0.987,-0.159) (0.936,-0.352) (0.802,-0.597)
(0.994,-0.111) (0.989,-0.151) (0.963,-0.268) (0.891,-0.454) (0.731,-0.682)
(0.903,-0.430) (0.885,-0.466) (0.823,-0.568) (0.694,-0.720) (0.467,-0.884)

Components of discrete Fourier transform

(3.373,-1.519) (0.481,-0.091) (0.251, 0.178) (0.054, 0.319) (-0.419, 0.415)
(0.457, 0.137) (0.055, 0.032) (0.009, 0.039) (-0.022, 0.036) (-0.076, 0.004)
(-0.170, 0.493) (-0.037, 0.058) (-0.042, 0.008) (-0.038,-0.025) (-0.002,-0.083)

Original data as restored by inverse transform

(1.000, 0.000) (0.999,-0.040) (0.987,-0.159) (0.936,-0.352) (0.802,-0.597)
(0.994,-0.111) (0.989,-0.151) (0.963,-0.268) (0.891,-0.454) (0.731,-0.682)
(0.903,-0.430) (0.885,-0.466) (0.823,-0.568) (0.694,-0.720) (0.467,-0.884)