1. **Purpose**

_nag_fft_multiple_real (c06fpc)_ computes the discrete Fourier transforms of _m_ sequences, each containing _n_ real data values.

2. **Specification**

```c
#include <nag.h>
#include <nagc06.h>

void nag_fft_multiple_real(Integer m, Integer n, double x[], double trig[], NagError *fail)
```

3. **Description**

Given _m_ sequences of _n_ real data values

\[x_p^j, \text{ for } j = 0, 1, \ldots, n-1; \quad p = 1, 2, \ldots, m, \]

this function simultaneously calculates the Fourier transforms of all the sequences defined by

\[
\hat{z}_k^p = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j^p \exp(-2\pi i j k / n), \quad \text{for } k = 0, 1, \ldots, n-1; \quad p = 1, 2, \ldots, m.
\]

(Note the scale factor \(1/\sqrt{n}\) in this definition.)

The transformed values \(\hat{z}_k^p\) are complex, but for each value of _p_ the \(\hat{z}_k^p\) form a Hermitian sequence (i.e., \(\hat{z}_{n-k}^p = \overline{\hat{z}_k^p}\), so they are completely determined by \(mn\) real numbers.

The first call of _nag_fft_multiple_real_ must be preceded by a call to _nag_fft_init_trig (c06gzc)_ to initialise the array _trig_ with trigonometric coefficients according to the value of _n_.

The discrete Fourier transform is sometimes defined using a positive sign in the exponential term

\[
\hat{z}_k^p = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j^p \exp(+2\pi i j k / n).
\]

To compute this form, this function should be followed by a call to _nag_multiple_conjugate_hermitian (c06gqc)_ to form the complex conjugates of the \(\hat{z}_k^p\).

The function uses a variant of the fast Fourier transform algorithm (Brigham 1974) known as the Stockham self-sorting algorithm, which is described in Temperton (1983). Special coding is provided for the factors 2, 3, 4, 5 and 6.

4. **Parameters**

- **m**
 - Input: the number of sequences to be transformed, _m_.
 - Constraint: \(m \geq 1\).

- **n**
 - Input: the number of real values in each sequence, _n_.
 - Constraint: \(n \geq 1\).

- **x[m*n]**
 - Input: the _m_ data sequences must be stored in _x_ consecutively. If the data values of the _p_th sequence to be transformed are denoted by \(x_j^p\), for \(j = 0, 1, \ldots, n-1\), then the \(mn\) elements of the array _x_ must contain the values
 \[
 x_0^1, x_1^1, \ldots, x_{n-1}^1, x_0^2, x_1^2, \ldots, x_{n-1}^2, \ldots, x_0^m, x_1^m, \ldots, x_{n-1}^m.
 \]
 - Output: the _m_ discrete Fourier transforms in Hermitian form, stored consecutively, overwriting the corresponding original sequences. If the _n_ components of the discrete Fourier transform \(\hat{z}_k^p\) are written as \(a_k^p + ib_k^p\), then for \(0 \leq k \leq n/2\), \(a_k^p\) is in array element _x[(p-1)*n+k]_ and for \(1 \leq k \leq (n-1)/2\), \(b_k^p\) is in array element _x[(p-1)*n + n - k]_.

[NP3275/5/pdf] 3.c06fpc.1
nag_fft_multiple_real

trig[2*n]
Input: trigonometric coefficients as returned by a call of nag_fft_init_trig (c06gzc).
NAG fft multiple real makes a simple check to ensure that trig has been initialised and that
the initialisation is compatible with the value of n.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_INT_ARG_LT
On entry, m must not be less than 1: m = ⟨value⟩.
On entry, n must not be less than 1: n = ⟨value⟩.

NE_C06_NOT_TRIG
Value of n and trig array are incompatible or trig array not initialised.

NE_ALLOC_FAIL
Memory allocation failed.

6. Further Comments
The time taken by the function is approximately proportional to nm log n, but also depends on the
factors of n. The function is fastest if the only prime factors of n are 2, 3 and 5, and is particularly
slow if n is a large prime, or has large prime factors.

6.1. Accuracy
Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

6.2. References

7. See Also
nag_multiple_conjugate_hermitian (c06gqc)
nag_fft_init_trig (c06gzc)

8. Example
This program reads in sequences of real data values and prints their discrete Fourier
transforms (as computed by nag_fft_multiple_real). The Fourier transforms are expanded
into full complex form using nag_multiple_hermitian_to_complex (c06gsc) and printed. Inverse
transforms are then calculated by calling nag_multiple_conjugate_hermitian (c06gqc) followed by
nag_fft_multiple_hermitian (c06fqc) showing that the original sequences are restored.

8.1. Program Text
/* nag_fft_multiple_real(c06fpc) Example Program
 * Copyright 1990 Numerical Algorithms Group.
 * Mark 1, 1990.
 */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc06.h>
#define MMAX 5
#define NMAX 20
main()
{
 double trig[2*NMAX];
 Integer i, j, m, n;
 double u[MMAX*NMAX], v[MMAX*NMAX];
 double x[MMAX*NMAX];

 Vprintf("c06fpc Example Program Results\n");
 /* Skip heading in data file */
 Vscanf("%*[\n]");
 while (scanf("%ld%ld", &m, &n)!=EOF)
 if (m<=MMAX && n<=NMAX)
 {
 Vprintf("\n\n\nm = %2ld n = %2ld\n", m, n);
 /* Read in data and print out. */
 for (j = 0; j<m; ++j)
 for (i = 0; i<n; ++i)
 Vscanf("%lf", &x[j*n + i]);
 Vprintf("\nOriginal data values\n\n");
 for (j = 0; j<m; ++j)
 {
 Vprintf(" ");
 for (i = 0; i<n; ++i)
 Vprintf("%10.4f%s", x[j*n + i],
 (i%6==5 && i!=n-1 ? \n " : "));
 Vprintf("\n");
 }
 c06gzc(n, trig, NAGERR_DEFAULT); /* Initialise trig array */
 /* Calculate transforms */
 c06fpc(m, n, x, trig, NAGERR_DEFAULT);
 Vprintf("\nDiscrete Fourier transforms in Hermitian format\n\n");
 for (j = 0; j<m; ++j)
 {
 Vprintf(" ");
 for (i = 0; i<n; ++i)
 Vprintf("%10.4f%s", x[j*n + i],
 (i%6==5 && i!=n-1 ? \n " : "));
 Vprintf("\n");
 }
 /* Calculate full complex form of Hermitian result */
 c06gsc(m, n, x, u, v, NAGERR_DEFAULT);
 Vprintf("\nFourier transforms in full complex form\n\n");
 for (j = 0; j<m; ++j)
 {
 Vprintf("Real");
 for (i = 0; i<n; ++i)
 Vprintf("%10.4f%s", u[j*n + i],
 (i%6==5 && i!=n-1 ? \n " : "));
 Vprintf("\nImag");
 for (i = 0; i<n; ++i)
 Vprintf("%10.4f%s", v[j*n + i],
 (i%6==5 && i!=n-1 ? \n " : "));
 Vprintf("\n");
 }
 /* Calculate inverse transforms */
 /* Conjugate Hermitian sequences of transforms */
 c06gcc(m, n, x, NAGERR_DEFAULT);
 /* Transform to give inverse transforms */
 c06fgc(m, n, x, trig, NAGERR_DEFAULT);
 Vprintf("\nOriginal data as restored by inverse transform\n\n");
 for (j = 0; j<m; ++j)
 {
 Vprintf(" ");
 for (i = 0; i<n; ++i)
 Vprintf("%10.4f%s", x[j*n + i],
 (i%6==5 && i!=n-1 ? \n " : "));
 Vprintf("\n");
 }
 } else
 [NP3275/5/pdf] 3.c06fpc.3
Vfprintf(stderr, "\nInvalid value of m or n.\n");
exit(EXIT_SUCCESS);
}

8.2. Program Data

c06fpc Example Program Data

3 6
0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815

8.3. Program Results

c06fpc Example Program Results

m = 3 n = 6

Original data values

<table>
<thead>
<tr>
<th>Real</th>
<th>Imag</th>
<th>Real</th>
<th>Imag</th>
<th>Real</th>
<th>Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3854</td>
<td>0.6772</td>
<td>0.1138</td>
<td>0.6751</td>
<td>0.6362</td>
<td>0.1424</td>
</tr>
<tr>
<td>0.5417</td>
<td>0.2983</td>
<td>0.1181</td>
<td>0.7255</td>
<td>0.8638</td>
<td>0.8723</td>
</tr>
<tr>
<td>0.9172</td>
<td>0.0644</td>
<td>0.6037</td>
<td>0.6430</td>
<td>0.0428</td>
<td>0.4815</td>
</tr>
</tbody>
</table>

Discrete Fourier transforms in Hermitian format

<table>
<thead>
<tr>
<th>Real</th>
<th>Imag</th>
<th>Real</th>
<th>Imag</th>
<th>Real</th>
<th>Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0737</td>
<td>-0.1041</td>
<td>0.1126</td>
<td>-0.1467</td>
<td>-0.3738</td>
<td>0.0044</td>
</tr>
<tr>
<td>1.3961</td>
<td>-0.0365</td>
<td>0.0780</td>
<td>-0.1521</td>
<td>-0.0607</td>
<td>0.4666</td>
</tr>
<tr>
<td>1.1237</td>
<td>0.0914</td>
<td>0.3936</td>
<td>0.1530</td>
<td>0.3458</td>
<td>-0.0508</td>
</tr>
</tbody>
</table>

Fourier transforms in full complex form

<table>
<thead>
<tr>
<th>Real</th>
<th>Imag</th>
<th>Real</th>
<th>Imag</th>
<th>Real</th>
<th>Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0737</td>
<td>-0.1041</td>
<td>0.1126</td>
<td>-0.1467</td>
<td>0.1126</td>
<td>-0.1041</td>
</tr>
<tr>
<td>0.0000</td>
<td>-0.0044</td>
<td>-0.3738</td>
<td>0.0000</td>
<td>0.3738</td>
<td>0.0044</td>
</tr>
<tr>
<td>1.3961</td>
<td>-0.0365</td>
<td>0.0780</td>
<td>-0.1521</td>
<td>0.0780</td>
<td>-0.0365</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.4666</td>
<td>-0.0607</td>
<td>0.0000</td>
<td>0.0607</td>
<td>-0.4666</td>
</tr>
<tr>
<td>1.1237</td>
<td>0.0914</td>
<td>0.3936</td>
<td>0.1530</td>
<td>0.3936</td>
<td>0.0914</td>
</tr>
<tr>
<td>0.0000</td>
<td>-0.0508</td>
<td>0.3458</td>
<td>0.0000</td>
<td>-0.3458</td>
<td>0.0508</td>
</tr>
</tbody>
</table>

Original data as restored by inverse transform

<table>
<thead>
<tr>
<th>Real</th>
<th>Imag</th>
<th>Real</th>
<th>Imag</th>
<th>Real</th>
<th>Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3854</td>
<td>0.6772</td>
<td>0.1138</td>
<td>0.6751</td>
<td>0.6362</td>
<td>0.1424</td>
</tr>
<tr>
<td>0.5417</td>
<td>0.2983</td>
<td>0.1181</td>
<td>0.7255</td>
<td>0.8638</td>
<td>0.8723</td>
</tr>
<tr>
<td>0.9172</td>
<td>0.0644</td>
<td>0.6037</td>
<td>0.6430</td>
<td>0.0428</td>
<td>0.4815</td>
</tr>
</tbody>
</table>