nag_zero_nonlin_eqns (c05nbc)

1. Purpose

nag_zero_nonlin_eqns (c05nbc) finds a solution of a system of nonlinear equations by a modification of the Powell hybrid method.

2. Specification

```c
#include <nag.h>
#include <nagc05.h>

void nag_zero_nonlin_eqns(Integer n, double x[], double fvec[],
                          void (*f)(Integer n, double x[], double fvec[],
                          Integer *userflag),
                          double xtol, NagError *fail)
```

3. Description

The system of equations is defined as:

\[f_i(x_1, x_2, \ldots, x_n) = 0, \quad \text{for} \quad i = 1, 2, \ldots, n. \]

nag_zero_nonlin_eqns is based upon the MINPACK routine HYBRD1 (Moré et al (1980)). It chooses the correction at each step as a convex combination of the Newton and scaled gradient directions. Under reasonable conditions this guarantees global convergence for starting points far from the solution and a fast rate of convergence. The Jacobian is updated by the rank-1 method of Broyden. At the starting point the Jacobian is approximated by forward differences, but these are not used again until the rank-1 method fails to produce satisfactory progress. For more details see Powell (1970).

4. Parameters

- **n**
 Input: the number of equations, \(n \).
 Constraint: \(n > 0 \).

- **x[n]**
 Input: an initial guess at the solution vector.
 Output: the final estimate of the solution vector.

- **fvec[n]**
 Output: the function values at the final point, \(x \).

- **f**
 The function \(f \), supplied by the user, must return the values of the \(f_i \) at a point \(x \).
 The specification of \(f \) is:

```c
void f(Integer n, double x[], double fvec[], Integer *userflag)
```

- **n**
 Input: the number of equations, \(n \).

- **x[n]**
 Input: the components of the point \(x \) at which the functions must be evaluated.

- **fvec[n]**
 Output: the function values \(f_i(x) \) (unless \(\text{userflag} \) is set to a negative value by \(f \)).

- **userflag**
 Input: \(\text{userflag} > 0 \).
 Output: in general, \(\text{userflag} \) should not be reset by \(f \). If, however, the user wishes to terminate execution (perhaps because some illegal point \(x \) has been reached), then \(\text{userflag} \) should be set to a negative integer. This value will be returned through \(\text{fail.errnum} \).
nag_zero_nonlin_eqns

xtol
Input: the accuracy in x to which the solution is required.
Suggested value: the square root of the machine precision.
Constraint: xtol ≥ 0.0.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_INT_ARG_LT
On entry, n must not be less than or equal to 0: n = ⟨value⟩.

NE_REAL_ARG_LT
On entry, xtol must not be less than 0.0: xtol = ⟨value⟩.

NE_ALLOC_FAIL
Memory allocation failed.

NE_USER_STOP
User requested termination, user flag value = ⟨value⟩.

NE_TOO_MANY_FUNC_EVAL
There have been at least 200 * (n+1) evaluations of f().
Consider restarting the calculation from the point held in x.

NE_XTOL_TOO_SMALL
No further improvement in the solution is possible. xtol is too small: xtol = ⟨value⟩.

NE_NO_IMPROVEMENT
The iteration is not making good progress.
This failure exit may indicate that the system does not have a zero, or that the solution is very close to the origin (see Section 6.1). Otherwise, rerunning nag_zero_nonlin_eqns from a different starting point may avoid the region of difficulty.

6. Further Comments

The time required by nag_zero_nonlin_eqns to solve a given problem depends on n, the behaviour of the functions, the accuracy requested and the starting point. The number of arithmetic operations executed by nag_zero_nonlin_eqns to process each call of f is about 11.5 × n^2. Unless f can be evaluated quickly, the timing of nag_zero_nonlin_eqns will be strongly influenced by the time spent in f.

Ideally the problem should be scaled so that at the solution the function values are of comparable magnitude.

6.1. Accuracy

If ̂x is the true solution, nag_zero_nonlin_eqns tries to ensure that

∥x - ̂x∥ ≤ xtol × ∥̂x∥.

If this condition is satisfied with xtol = 10^{-k}, then the larger components of x have k significant decimal digits. There is a danger that the smaller components of x may have large relative errors, but the fast rate of convergence of nag_zero_nonlin_eqns usually avoids this possibility.

If xtol is less than machine precision, and the above test is satisfied with the machine precision in place of xtol, then the routine exits with NE_XTOL_TOO_SMALL.

Note: this convergence test is based purely on relative error, and may not indicate convergence if the solution is very close to the origin.

The test assumes that the functions are reasonably well behaved. If this condition is not satisfied, then nag_zero_nonlin_eqns may incorrectly indicate convergence. The validity of the answer can be checked, for example, by rerunning nag_zero_nonlin_eqns with a tighter tolerance.
6.2. References

7. See Also

nag_zero_nonlin_eqns_deriv (c05pbc)

8. Example

To determine the values x_1, \ldots, x_9 which satisfy the tridiagonal equations:

$$(3 - 2x_1)x_1 - 2x_2 = -1$$

$$-x_{i-1} + (3 - 2x_i)x_i - 2x_{i+1} = -1, \quad i = 2, 3, \ldots, 8$$

$$-x_8 + (3 - 2x_9)x_9 = -1.$$

8.1. Program Text

/* nag_zero_nonlin_eqns(c05nbc) Example Program. *
* Copyright 1991 Numerical Algorithms Group. *
* Mark 2, 1991. *
*/

#include <nag.h>
#include <math.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc05.h>
#include <nagx02.h>

#define NMAX 9

main()
{
 double x[NMAX], fvec[NMAX];
 integer i, j;
 double xtol;
 static NagError fail;
 integer n = NMAX;

 vprintf("c05nbc Example Program Results\n\n");
 /* The following starting values provide a rough solution. */
 for (j=0; j<n; j++)
 x[j] = -1.0;
 xtol = sqrt(X02AJC);
 c05nbc(n, x, fvec, f, xtol, &fail);
 if (fail.code == NE_NOERROR)
 {
 vprintf("Final approximate solution\n\n");
 for (j=0; j<n; j++)
 vprintf("%12.4f", x[j], (j%3==2 || j==n-1) ? "\n" : "");
 exit(EXIT_SUCCESS);
 }
 else
 {
 vprintf("%s\n", fail.message);
 }
}
if (fail.code == NE_TOO_MANY_FUNC_EVAL ||
 fail.code == NE_XTOL_TOO_SMALL ||
 fail.code == NE_NO_IMPROVEMENT)
{
 Vprintf("Approximate solution\n\n");
 for (i=0; i<n; i++)
 Vprintf("%12.4f%s",x[i], (i%3==2 || i==n-1) ? "\n" : " ");
 exit(EXIT_FAILURE);
}

#ifdef NAG_PROTO
static void f(Integer n, double x[], double fvec[], Integer *userflag)
#else
static void f(n,x,fvec,userflag)
#endif
{
 Integer k;
 for (k=0; k<n; ++k)
 {
 fvec[k] = (3.0-x[k]*2.0)*x[k]+1.0;
 if (k>0)
 fvec[k] -= x[k-1];
 if (k<n-1)
 fvec[k] -= x[k+1]*2.0;
 }

8.2. Program Data
None.

8.3. Program Results

 c05nbc Example Program Results
Final approximate solution

-0.5707 -0.6816 -0.7017
-0.7042 -0.7014 -0.6919
-0.6658 -0.5960 -0.4164