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Synopsis
We present a fast auto-tuned l ibrary for computing non-uniform fast Fourier Transform (NUFFT) on GPU. The
l ibrary includes forward and adjoint NUFFT using precomputation-free and ful ly-precomputed methods, as  
wel l  as Toepl i tz-based operation for computing forward and adjoint NUFFT in a single step. Computation of    
NUFFT depends heavi ly on gridding parameters, desired accuracy, trajectory type, amount of
undersampling, and level  of precomputation. The l ibrary automatical ly chooses optimal  gridding parameters    
and algorithms, and i t can be easi ly extended to include implementations from other l ibraries. The l ibrary       
al lows researchers to accelerate i terative reconstructions without the diff iculties of choosing optimal   
parameters and algorithms.

Purpose
With the emergence of iterative algorithms for reconstruction from undersampled data and the resurgence of non-
Cartesian MRI, fast computation of the non-uniform fast Fourier Transform (NUFFT) is more important than ever. Here we
show that the computation of NUFFT depends heavily on gridding parameters (grid oversampling ratio α and kernel width
W), desired accuracy, trajectory type, amount of undersampling, and level of precomputation. These choices can lead to
order-of-magnitude differences in computation of the same problem.

We present an auto-tuned library for computing NUFFT on GPU. Much like FFTW, it is based on separate planning and
execution stages. Existing GPU-based libraries require the parameters α and W to be specified. Choosing these parameters
can be difficult, as they affect both accuracy and runtime. Instead, the library automatically chooses α and calculates the
corresponding W for a user-specified error level ε,  defined as the maximum aliasing amplitude.  Oversampling ratios are
selected to produce grid sizes of the form 2 ∙3 ∙5 ∙7  which are known to have fast FFT runtimes.

The library implements several algorithms, including adjoint and forward NUFFT using precomputation-free and fully-
precomputed methods. The precomputation-free method is implemented as a direct convolution parallelized across non-
Cartesian samples with atomic operations for thread coordination, whereas the fully-precomputed method performs
convolution via sparse matrix-vector multiplication. The library also includes a Toeplitz-based method for computing
forward and adjoint NUFFT in a single combined step,  which can be used in iterative reconstructions. The library is easily
extended, and it can include other implementations such as gpuNUFFT,  which uses partial precomputation and load-
balancing, where non-Cartesian samples are grouped into spatial sectors. Through planning, the library can choose
algorithms and parameters that will optimize the runtime. 

Methods
We compare our library to existing GPU-based libraries, gpuNUFFT and PowerGrid,  on a Tesla K40 GPU. We also compare to
a serial CPU-based implementation from the BART library.

We benchmarked total time for forward and adjoint operations on 3D problems with reconstruction size N , where N = 62,
94, 126, 154, 190, 222, 254; radial, stack-of-stars, cones,  and uniformly random trajectories; levels of undersampling R = 1, 4,
16; and error levels ε = 0.01, 0.001. Each measurement is taken from the median time of 100 executions, without CPU-GPU
memory transfer times.

Results and Discussion
Results show that auto-tuning improves performance. Speedups are lower when α is fixed, compared to speedups when we
tune for α  (Fig. 1).

Fig. 2-3 show speedups over BART NUFFT for various implementations, with ε = 0.01 and ε = 0.001. The fully-precomputed
method attains high speedups overall. Precomputation is beneficial at higher accuracy levels, where W is high and other
methods need to enumerate many grid points on-the-fly. However, the fully-precomputed method requires much more
memory than other methods. This method is suitable for high levels of undersampling, where it achieves high speedups
and the required memory is low.

gpuNUFFT performs well on trajectories with uneven distribution of samples (i.e. radial), where load-balancing is crucial to
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performance. gpuNUFFT also performs well for moderate accuracy levels and levels of undersampling. At high accuracy
levels, gpuNUFFT requires more shared memory due to increased kernel width, which limits GPU occupancy. Additionally,
synchronization is required for writing to shared and global memory, creating overhead that may be less suitable to highly
undersampled trajectories.

The precomputation-free method can be used in all other situations for high levels of accuracy or undersampling, limited
memory usage, or when load-balancing is unnecessary.

The Toeplitz method achieves the highest speedups for high accuracy levels and fully sampled trajectories. Unlike gridding-
based methods, the runtime for Toeplitz method is independent of ε, as only a change in the computed PSF is required
during the planning stage.

PowerGrid achieves lower speedups than other libraries by an order of magnitude. Since its performance is not currently
competitive with other implementations, we will not discuss it further here.

Fig. 4 shows the oversampling ratios α  chosen by auto-tuning. α  decreases with increased undersampling
because interpolation time decreases and the runtime is more evenly distributed between interpolation and FFT (Fig. 5). The
decrease in α  is less pronounced at higher accuracy levels, since interpolation time is longer relative to FFT time due
to correspondingly higher kernel widths. These observations can be used to design further heuristics for choosing α based
on ε and R.

Conclusion
Through planning stages and heuristics, our auto-tuned NUFFT library allows researchers to accelerate iterative image
reconstructions, without the burden of choosing gridding algorithms and parameters that affect runtime on different GPU
architectures in unpredictable ways.
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Figure 1. Speedup over BART NUFFT (serial CPU implementation) for gpuNUFFT, with and without auto-tuning (fixed α and
tuned α ).optimal

http://indexsmart.mirasmart.com/ISMRM2017/PDFfiles/images/235/ISMRM2017-000235_Fig1.png


Auto-tuning strongly impacts NUFFT runtime. Speedups are much higher when using auto-tuned α , than when using
a fixed α (α  = 1.125, α  = 2). (Error level ε = 0.01, with factors of undersampling R = 1, 4, 16. Speedup is averaged across

different problem sizes. Error bars show minimum and maximum speedup.)

Figure 2. Speedup over BART NUFFT (serial CPU implementation) for various GPU implementations of forward and adjoint
NUFFT, averaged across different problem sizes. Error level ε = 0.01, with factors of undersampling R = 1, 4, 16.

Fully precomputed method achieves high speedups, but uses much more memory than other methods. gpuNUFFT achieves
comparable speedups, while using much less memory. gpuNUFFT performs especially well for the radial trajectory due to
load balancing. (gpuNUFFT was benchmarked with sector size 8  and with W rounded both up and down, since gpuNUFFT

allows integral W values only.)

Figure 3. Speedup over BART NUFFT (serial CPU implementation) for various GPU NUFFT implementations of forward and
adjoint NUFFT, averaged across different problem sizes. Error level ε = 0.001, with factors of undersampling R = 1, 4, 16.

Toeplitz method achieves high speedups at high accuracy levels, since its runtime is independent of ε. Fully precomputed
method also achieves high speedups at this error level, whereas performance of gpuNUFFT is limited by its shared memory

usage.

Figure 4. Average optimal oversampling ratios α  selected via auto-tuning, vs. level of undersampling R = 1, 4, 16.
Accuracy levels ε = 0.01 (solid lines) and ε = 0.001 (dashed lines).

As R increases, α  decreases because the interpolation time decreases and FFT time starts to become a larger fraction
of total runtime. The change in α  is larger for the fully-precomputed method than precomputation-free approach,
since interpolation requires less time for the fully-precomputed method. For the same reason, the change in α  is

larger at ε = 0.01 than at ε = 0.001.
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Figure 5. Computation time vs. oversampling ratio. As oversampling ratio increases, interpolation time decreases and FFT
time increases. As the level of undersampling R increases, the interpolation time required decreases. The total runtime

becomes more evenly distributed between interpolation and FFT, resulting in a lower α . (Parameters: N = 94, stack-of-
stars trajectory, R = 4, ε = 0.01, fully-precomputed method.)
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