Calibration for Parallel MRI Using Robust Low-Rank Matrix Completion

Dan Zhu1, Martin Uecker2, Joseph Y Cheng3, Zhongyuan Bi1, Kui Ying4, and Michael Lustig2

1Biomedical Engineering, Tsinghua University, Beijing, China, 2Electrical Engineering and Computer Sciences, University of California, Berkeley, California, United States, 3Electrical Engineering, Stanford University, California, United States, 4Department of Engineering Physics, Tsinghua University, Beijing, China

Target Audience: The target audience for this document includes those who are interested in MRI acceleration and motion compensation.

Introduction: The goal of this work is to develop a practical calibration method for parallel MRI which is robust against both under-sampling and corruption of the calibration data. It was demonstrated in [1, 2] that low-rank matrix completion can reconstruct non-uniformly under-sampled k-space without specific auto-calibration data (ACS). Furthermore the work in [3] demonstrated correction of k-space data corrupted by sparse motion. Here, we show a generalized formulation for motion-robust auto-calibration and reconstruction from under-sampled data that is incorporated into ESPIRiT [4]. The method is general and can incorporate navigation information when available. The feasibility of the method was demonstrated in simulation and in-vivo experiment.

Methods:

Low-rank matrix completion: Multi-channel k-space data is correlated and can be reformatted to form a low-rank block-Hankel matrix [1, 3]. Sparse errors due to motion corruption and missing k-space can be thought of as outliers that violate the low-rank property [5]. It is possible to restore both the missing and corrupted k-space by an outlier-robust low-rank matrix completion approach [6] of minimizing:

$$\hat{y} = \arg\min_{y} \|Py - y\|_1, \text{ subject to: } \text{rank}(H^y) = k$$

Here, \hat{y} is the estimated full k-space, y is the acquired data, P is the sampling operator, H is an operator that constructs a so called calibration matrix from the multi-channel k-space in which rows are sliding windows of the multi-channel data [1], and k is the apriori known rank of the calibration matrix. The l_1-norm in the objective is known to be robust to outliers. When navigator information is available, the robust method can be modified into a “weighted low-rank” algorithm [7, 8].

$$\hat{y} = \arg\min_w \|w(Py - y)\|_2^2, \text{ subject to: } \text{rank}(H^y) = k$$

Experimentally, w can be calculated with a 3D navigator. These objective functions can be solved by iterative singular-value thresholding [2].

Combination with ESPIRiT: The central k-space, i.e. the calibration region for ESPIRiT, can be corrected by the proposed method. Then, this recovered auto-calibration region is used to compute eigenvector (sensitivity) maps. The full k-space can then be reconstructed using ESPIRiT. With navigator weights available, the weighted low-rank method is used to correct auto-calibration data and additionally, a weighted ESPIRiT is used to reduce corruptions in the final reconstructed image:

$$m = \arg\min_{m} \|\mathcal{F}(PmS - y)\|_2 + \|Lm\|_1$$

Here, m is the reconstructed image, \mathcal{F} is the Fourier transform, S are ESPIRiT eigenvector maps, and L is a sparsity regularization.

Simulation: An 8-channel T1-weighted brain data acquired from 3D RF-spoiled FLASH (TR/TE=12.2/5.2ms, TI = 450ms, FA=20°, matrix size: 256x180x230) was artificially corrupted by random phase shifts in k-space and then retrospectively under-sampled by variable-density Poisson-disc sampling. 20% of the phase encoding lines were corrupted, followed by under-sampling without ACS region at a reduction factor of 5. After that, the corrupted k-space was corrected by the proposed methods. Weights for weighted methods were computed from the simulated motion. For comparison, images were also reconstructed using “conventional” ESPIRiT without any k-space correction.

In-vivo Experiment: Abdominal data from fat-suppressed 3D spoiled gradient echo sequence (TR/TE=3/1.2ms, FA=15°, matrix size: 192x180x68, 32 channels) was acquired during free-breathing using variable-density view-ordering (VDRad) [8]. Weights were obtained with a Butterfly navigator [8]. From this data set, a temporal phase with undersampling factor 8.4 was extracted and reconstructed with the proposed method. The reconstruction was conducted slice by slice after a 1D iFFT along frequency encoding direction. In order to reduce noise amplification, l_1-wavelet constraints were used in the reconstructions [4].

Results and discussion: Fig. 1a compares the simulation results of robust low-rank and weighted low-rank methods. Fig 1b shows the eigenvector maps computed from the calibration region via ESPIRiT with and without correction. These results demonstrate the efficiency of low-rank matrix completion on fixing corrupted and under-sampled data. Fig. 2 illustrates the results of in-vivo experiment. Weighted ESPIRiT significantly reduced corruption compared to not weighted ESPIRiT.

Conclusion: The proposed combination of ESPIRiT with low-rank matrix completion is robust against both under-sampling and corruption of the calibration region. Simulation and in-vivo experiment indicated the efficiency of the proposed method.