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Introduction: The results of under-sampling reconstruction algorithms are 
often compared to a fully-sampled reconstruction. This comparison is overly 
optimistic because even if the reconstruction removes the aliasing due to under-
sampling, we would still have an inherent loss of SNR due to the reduced 
acquisition time. We present a predictor of image quality for a given 
reconstruction technique and under-sampling pattern, which operates by 
applying the reconstruction to fully-sampled data with added noise related to 
reduced acquisition time. Using this prediction image as a “gold standard” 
enables a fair comparison for reconstruction results. The prediction image also 
provides an efficient means of quickly assessing the capabilities of a given set 
of reconstruction strategies, such as denoising with K-SVD1,2,3 or BM3D4,5. 
 

Theory: The acquired MRI signal is modeled as the ideal signal corrupted with 
complex-valued, zero-mean Gaussian noise. When under-sampling, both the 
MRI signal and noise variance are scaled by the sampling density, ρ, where ρ<1 
indicates under-sampling. The resulting SNR is scaled by √ρ, which may be 
simulated by scaling the noise standard deviation of the fully-sampled image, 
σfull, by β=1/√ρ. For variable density under-sampling, this β noise factor is not 
uniform across k-space, as seen in the left column of figure 1. Even if our 
reconstruction algorithm provides a perfect solution to the aliasing problem, we 
still have an effective k-space noise with standard deviation βσfull. Solving 
βσfull=(σfull

2+σadd
2)1/2 for σadd, we can add the proper amount of noise to the 

fully-sampled k-space to simulate the result of reduced SNR without the 
incurred aliasing. In this ideal case, we can generate a prediction of image 
quality by reconstructing this noise-adjusted k-space with our reconstruction 
algorithm. 
 

Methods: We illustrate the results of this process by first applying it on a 
digital phantom known to be sparse in the wavelet domain (see figure 2). We 
then demonstrate the image quality predictor effectiveness on a 1.5T, 8 channel, 
fully-sampled, spoiled gradient echo, axial brain dataset, using 2x-by-2x and 
3x-by-3x variable density Poisson disc retrospective under-sampling and 
reconstructing with ESPIRiT6 with wavelet or K-SVD as a sparsity transform. 
 

Results & Conclusions: When we have an explicitly sparse digital phantom, 
we expect to recover from the 2x-by-2x under-sampling. However, as seen in 
figure 2, the actual reconstruction (C) is limited by acquisition time noise 
simulated by the image quality prediction process (B). Likewise, figure 3 shows 
that reconstructing the noise-adjusted k-space (E,G,J) successfully predicts the 
image quality of the actual reconstruction for our wavelet (F,H) and K-SVD (K) 
reconstructions described above. This image quality predictor provides a better 
metric for evaluating the effectiveness of a reconstruction algorithm than direct 
comparison to a fully-sampled reconstruction. In addition, this process allows 
reconstruction algorithm developers to quickly evaluate more complex 
algorithms, such as K-SVD and BM3D, and their parameters prior to investing 
time to implement and compute the complete reconstruction. 
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Figure 1: Process to add acquisition time adjusted noise to fully-
sampled k-space and reconstruct a prediction of image quality. 

Figure 3: Fully-sampled axial brain (D) followed by prediction 
(left column) and actual reconstruction (right column) for three 
different tests: wavelet on 2x2x under-sampled data (E,F), 
wavelet on 3x3x under-sampled data (G,H), and K-SVD on 2x2x 
under-sampled data (J, K). 
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Figure 2: Sparse phantom with noise (A) followed by prediction 
(B) and actual reconstruction (C) for 2x2x under-sampling. 
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