Pseudoclefts and Specificational Clauses
Structure of the presentation

- What are specificational sentences?
- What are connectivity effects?
- An HPSG analysis of pseudoclefts
A taxonomy of copular structures

Pseudoclefts/wh-cleft

a. What they bombed first was Afghanistan.

it-cleft/cleft

b. It was Afghanistan that they bombed first.
“It is a disgrace to the human race that it has chosen to employ the same word ‘is’ for these two entirely different ideas – a disgrace which a symbolic logical language of course remedies.”
A taxonomy of copular structures

According to Higgins (1976) we can distinguish the following types of copular structures.

Predicational:
a. That thing is heavy.
b. That woman is Mayor of Cambridge.

Specificational:
c. What I don’t like about John is his tie.
d. The only girl who helps us on Friday is Mary Gray.
A taxonomy of copular structures

Identificational:
e. That is Joe Smith.
f. That is the Mayor of Cambridge.
g. The girl who helped us on Friday is Mary Gray.

Identity:
h. The morning star is the evening star.
i. Cicero is Tully.
A taxonomy of copular structures

Structures of the remaining 3 sentence types:

<table>
<thead>
<tr>
<th>Specificational Semantic type</th>
<th>The winner of the race $\langle e, t \rangle$</th>
<th>is</th>
<th>Mike. $\langle e \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicational Semantic type</td>
<td>Mike $\langle e \rangle$</td>
<td>is</td>
<td>the winner of the race $\langle e, t \rangle$</td>
</tr>
<tr>
<td>Equative Semantic type</td>
<td>This $\langle e \rangle$</td>
<td>is</td>
<td>Mike. $\langle e \rangle$</td>
</tr>
</tbody>
</table>

The NPs need not necessarily be of these types. What is important here is the order of argument and functor.
A taxonomy of copular structures

Mikkelsen (2004) gives a couple of tests that support this three-way distinction of copular sentences. These tests support the order of semantic types for copular sentences as given above under the following premisses:

a) the form of a pronoun reflects the semantic type of the pronoun itself and the one of its antecedent

b) *it* and *that* cannot denote humans

c) in all three environments of her tests the pronoun is (resp. corresponds) to the subject of the sentence.
A taxonomy of copular structures

Mikkelsen (2004) gives the following evidence that supports this three-way distinction of copular sentences.

(6) Tag-questions

a. The tallest girl in the class is Molly, isn’t it/she? SPEC/EQUATIVE
b. SHE is Molly Jacobson, isn’t she? EQUATIVE

c. The tallest girl in the class is Swedish, isn’t she/*it? PREDICATIONAL
A taxonomy of copular structures

Mikkelsen (2004) gives the following evidence that supports this three-way distinction of copular sentences.

(7) Left-dislocation

a. The tallest girl in the class, that/it’s Molly. SPECIFICATIONAL
b. The tallest girl in the class, she’s Molly. EQUATIVE
c. The tallest girl in the class, she/*it/*that’s Swedish. PREDICATIONAL
d. As for being the president of the company, that/it is a tough job. PRED
Mikkelsen (2004) gives the following evidence that supports this three-way distinction of copular sentences.

(8) Question-Answer pairs

 a. Q: Who is the tallest girl in the class?
 A₁: That/It’s Molly.
 A₂: She’s Molly.
 SPECIFICATIONAL
 EQUATIVE

 b. Q: What nationality is Molly?
 A: She/*It/*That’s Swedish.
 PREDICATIONAL
A taxonomy of copular structures

<table>
<thead>
<tr>
<th>Specificational Semantic type</th>
<th>The winner of the race $\langle e, t \rangle$ is $\langle e \rangle$ Mike.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicational Semantic type</td>
<td>Mike $\langle e \rangle$ is the winner of the race. $\langle e, t \rangle$</td>
</tr>
<tr>
<td>Equative Semantic type</td>
<td>This $\langle e \rangle$ is $\langle e \rangle$ Mike.</td>
</tr>
</tbody>
</table>

Specificational sentences are neither equative structures nor predicate inversion structures. In predicate inversion structures the semantic predicate precedes the semantic subject, but it is not in the canonical subject position. In specificational sentences we find a semantic predicate in the canonical subject position.
Connectivity Effects
Connectivity Effects

The standard form of a specificational pseudocleft is

What Bush invaded + was + Iraq.

cleft clause copula clefted const.

Although the post-copular constituent is not part of the cleft clause, it behaves in many ways as if it were.
Connectivity Effects

The standard form of a specificational pseudocleft is

\[\text{What Bush invaded} \quad + \quad \text{was} \quad + \quad \text{Iraq.} \]

cleft clause copula clefted const.

Although the post-copular constituent is not part of the cleft clause, it behaves in many ways as if it were.

This is also the case in specificational pseudoclefts with definite description subjects.

\[\text{The thing Bush invaded} \quad + \quad \text{was} \quad + \quad \text{Iraq.} \]
Connectivity Effects

Principle A-B-C connectivity:

a. What he is is a nuisance to himself / him / John

b. He is nuisance to himself / him / John

Diagram 1:
- S
- what
- Mike
- likes
- t
- is
- himself

Diagram 2:
- S
- Mike
- likes
- himself
Connectivity Effects

Opacity effects:

a. What Mike seeks is a unicorn.

b. Mike seeks a unicorn.
Connectivity Effects

NPI licensing:

a. [What they didn’t find] was any trace of weapons of massdestruction.
b. They didn’t find any trace of weapons of massdestruction.
c. *[What they found] was any trace of weapons of massdestruction.
d. *They found any trace of weapons of massdestruction.
Connectivity Effects

Bound variable effects:

a. What $\textit{every linguist}_i$ loves is her$_i$ first syntax class.
b. $\textit{Every linguist}_i$ loves her$_i$ first syntax class.
c. What $\textit{no student}_i$ enjoys is his$_i$ finals.
d. $\textit{No student}_i$ enjoys his$_i$ finals.
Connectivity Effects

Connectivity effects are not found in predicational sentences:

a. What Mike$_i$ eats is important to him$_i$.

b. *What Mike$_i$ eats is important to himself$_i$.
Connectivity Effects

Connectivity effects are also found in 'pseudoclefts' with definite description NPs.

a. The thing [every linguist]$_i$ loves is her$_i$ first syntax class.
b. The thing that Mike did not buy was any beer.
c. The thing that Mike seeks is a unicorn.
d. The thing that he$_i$ is is a nuisance to himself$_{i,j}$ / him$_{i,j}$ / John$_{i,j}$
Pseudoclefts in HPSG

There has been one attempt to analyze pseudoclefts in HPSG.

Yoo (2003) followed the Question in Disguise Theory (QDT), which assumes that pseudoclefts are self-answering question.
Pseudoclefts in HPSG

The first piece in Yoo’s analysis is a lexical entry for *be* with a question and a proposition on the argument structure.
Pseudoclefts in HPSG

For the analysis of the post-copular constituent, Yoo makes use of Ginzburg and Sag’s *declarative-fragment clause* (decl-frag-cl). This type is proposed to handle short answers and reprises. It inherits properties of its supertypes *headed-fragment-phrase* (hd-frag-ph) and *declarative-clause* (decl-cl).

Its basic purpose:
=> take the most salient utterance of the context (in case of a question that is the focus) and make it the daughter of a finite clause.
Pseudoclefts in HPSG

(184) \(hd\text{-}frag\text{-}ph:\)

\[
\begin{align*}
\text{HEAD} & \left[\begin{array}{c}
\text{verb} \\
\text{VFROM fin}
\end{array} \right] \\
\text{SUBJ} & \langle \rangle \\
\text{SPR} & \langle \rangle \\
\text{CTXT} & | \text{SAL-UTT} \{ \left[\begin{array}{c}
\text{CAT} \left[\begin{array}{c}
1 \\
\text{CONT|INDEX 2}
\end{array} \right]
\end{array} \right] \}
\end{align*}
\]

\[\rightarrow \text{H}\left[\begin{array}{c}
\text{CAT} \left[\begin{array}{c}
1 \\
\text{CONT|INDEX 2}
\end{array} \right]
\end{array} \right] \]

(185) \(decl\text{-}frag\text{-}cl:\)

\[
\begin{align*}
\text{HEAD} & \left[\begin{array}{c}
\text{IC} + \\
\text{proposition}
\end{array} \right] \\
\text{CONT} & \left[\begin{array}{c}
\text{SOA} \left[\begin{array}{c}
\text{QUANTS} [A] \circ \text{order}(\Sigma_3) \\
\text{NUCL} \ [5]
\end{array} \right]
\end{array} \right] \\
\text{STORE} & \Sigma_1 \\
\text{PARAMS} & \text{question} \\
\text{MAX\text{-}QUD} & \text{PROP} \\
\text{PROP} & \left[\begin{array}{c}
\text{proposition} \\
\text{SOA} \left[\begin{array}{c}
\text{QUANTS} [A] \\
\text{NUCL} \ [5]
\end{array} \right]
\end{array} \right]
\end{align*}
\]

\[\rightarrow \text{H}\left[\begin{array}{c}
\text{STORE} \Sigma_1 \cup \Sigma_3
\end{array} \right] \]
Pseudoclefts in HPSG

Since Caponigro and Heller (2005) showed that the cleft clause of pseudoclefts should not be analyzed as a question, I will interpret it as a free relative clause.
Pseudoclefts in HPSG

The basic idea is to use an ambiguous *be* as in Mikkelsen (2004).
Pseudoclefts in HPSG

The basic idea is to use an ambiguous *be* as in Mikkelsen (2004).

\[
\begin{align*}
\text{CAT} & \quad \text{VERB} \\
\text{HEAD} & \quad \text{AUX} + \\
\text{AGR} & \quad [0] \\
\text{SPR} & \quad \langle [AGR [0]] \rangle \\
\text{MODE} & \quad \text{prop} \\
\text{INDEX} & \quad s \\
\text{RESTR} & \quad \langle \rangle \\
\text{ARG-ST} & \quad \langle \rangle \\
\text{CAT} & \quad \text{VERB} \\
\text{SPR} & \quad \langle 3 \rangle \\
\text{COMPS} & \quad \langle \rangle \\
\text{CONT} & \quad \text{INDEX} \quad s \\
\end{align*}
\]
Pseudoclefts in HPSG

To get an ambiguous *be* I use a new type *copula-lexeme* and a constraint.
Pseudoclefts in HPSG

Generalized Predicative Argument Principle (GPAP)

\[
\begin{align*}
\text{copula-lxm} \Rightarrow & \quad \text{ARG-ST} \left< \left< \begin{array}{c}
\text{CAT} \\
\text{CONT} \\
\text{STORE}
\end{array} \right>, \left< \begin{array}{c}
\text{HEAD} \left[\text{PRED } + \right] \\
\text{SUBJ} \left[\text{LOC } 4 \right]
\end{array} \right> \right>, \left[\text{LOC } 4 \right>
\end{align*}
\]

\[
\left.< \begin{array}{c}
\text{LOC } 4
\end{array}, \left< \begin{array}{c}
\text{CAT} \\
\text{CONT} \\
\text{STORE}
\end{array} \right>, \left< \begin{array}{c}
\text{HEAD} \left[\text{PRED } + \right] \\
\text{SUBJ} \left[\text{LOC } 4 \right]
\end{array} \right> \right> \right>
\]

\[
\left.< \begin{array}{c}
\text{be, } \text{copula-lxm}
\end{array}, \left[\begin{array}{c}
\text{CAT|HEAD|AUX } +
\end{array} \right> \right>
\]

Pseudoclefts in HPSG

(21)

\[\begin{align*}
S_1 & \quad \text{spec-pseudocleft-clause} \\
& \quad \text{SUBJ } \langle \rangle \\
S_2 & \quad \text{pred-free-rel-cl} \\
& \quad \text{SS } \llbracket \text{SUBJ } \langle \llbracket \text{LOC } 6 \rrbracket \rangle \rrbracket \\
S_3 & \quad \text{decl-hd-subj-cl} \\
& \quad \text{SLASH } \{6\} \\
& \quad \text{what} \\
& \quad \text{John bought} \\
VP & \quad \text{hd-comp-ph} \\
V & \\
NP & \quad \text{hd-spr-ph} \\
& \quad \text{SS } \llbracket \text{LOC } 6 \rrbracket \\
& \quad \text{this donkey} \\
& \quad \text{was}
\end{align*} \]
Pseudoclefts in HPSG

The *pred-free-rel-clause* puts a copy of the filler-daughter's LOC-values in its subject slot. This way the *pred-free-rel-clause* can be used for reversed pseudoclefts, too. [PC +] marks the possibility to introduce a predicative clause.
Pseudoclefts in HPSG

A constraint on the top node *specificational-pseudocleft-clause* takes care of the quantifier scope and of tense harmony/tense connectivity.
Pseudoclefts in HPSG

A constraint on the top node *specificational-pseudocleft-clause* takes care of the quantifier scope and of tense harmony/tense connectivity.

a. What every student admires is some teacher. \(\text{AE/EA} \)
b. What does every student admire? Some teacher. \(\text{AE/EA} \)
c. What some student admires is every teacher. \(\text{AE/EA} \)
d. What does some student admire? Every teacher. \(\text{AE/EA} \)
Pseudoclefts in HPSG

A constraint on the top node *specificational-pseudocleft-clause* takes care of the quantifier scope and of tense harmony/tense connectivity.

a. What Mike was __ was a fool.
b. What Mike is ___ is a fool.
c. What Mike was ___ is a fool.
d. *What Mike is ___ was a fool.
Pseudoclefts in HPSG

\[
\text{spec-pc-cl:} \quad \begin{bmatrix} \text{CAT|HEAD} \\ \text{IC + AGR 3rd}_\text{sg} \end{bmatrix} \rightarrow \begin{bmatrix} \text{CAT|SUBJ ne_list} \end{bmatrix}, \text{ H}
\]
Pseudoclefts in HPSG

\[
\text{spec-pc-cl:} \quad \begin{bmatrix} \text{CAT|HEAD} \\ \text{IC} + \\ \text{AGR} \ (3rd_{sg}) \end{bmatrix} \rightarrow \begin{bmatrix} \text{CAT|SUBJ} \ ne_{-list}, \ H \end{bmatrix}
\]

\[
\text{spec-pc-cl:} \quad \begin{bmatrix} \text{LOC|CONT|SIT} \\ \text{BACKGROUND} \ \{1 \leq t} \end{bmatrix} \rightarrow \begin{bmatrix} \text{CONT|SIT} \ \llbracket s, \ H \end{bmatrix}
\]
Pseudoclefts in HPSG

\[spec-pc-cl: \]
\[
\left[\text{CAT|HEAD} \left[\text{IC + AGR } 3rd_{sg} \right] \right] \rightarrow \left[\text{CAT|SUBJ } ne_{-list} \right], \ H
\]

\[spec-pc-cl: \]
\[
\left[\text{LOC|CONT|SIT } t \right]
\left[\text{BACKGROUND } \{1 \leq t\} \right] \rightarrow \left[\text{CONT|SIT } 1_{s} \right], \ H
\]

\[spec-pc-cl: \]
\[
\left[\text{CONT|SOA|QUANTS } ne_{-list} \oplus \Sigma_2 \right] \rightarrow \left[\text{LOC|SUBJ } \left[\text{CONT|SOA|QUANTS } \Sigma_2 ne_{-list} \right] \right], \ H
\]
Pseudoclefts in HPSG

Principle A-, B-, C-effects are completely covert by the binding theory of HPSG.

Principle A: A locally o-commanded anaphor must be locally o-bound.

Principle B: A personal pronoun must be locally o-free.

Principle C: A nonpronoun must be o-free.

One referential *synsem* object locally o-commands another provided they have distinct LOCAL values and either (1) the second is more oblique than the first, or (2) the second is a member of the SUBCAT [here ARG-ST] list of a *synsem* object that is more oblique than the first.
Pseudoclefts in HPSG
Pseudoclefts in HPSG

The crucial point here is that *himself* is exempt from Principle A, because the preceding argument is not referential.
Pseudoclefts in HPSG

NPIs

\[
\text{quant-rel} \\
\quad \text{pquant-rel} \quad \text{nquant-rel} \\
\quad \text{no-rel} \quad \text{not-rel} \\
\text{soa} \\
\quad [\text{neg-soa} \\
\quad \text{QUANTS|FIRST} \quad \text{nquant-rel}] \\
\quad \text{pos-soa} \\
\quad [\text{qf-pos-soa} \\
\quad \text{QUANTS|FIRST} \quad \text{pquant-rel}] \\
\quad [\text{qf-free-pos-soa} \\
\quad \text{QUANTS (\)}}
\]
Pseudoclefts in HPSG

NPIs

To account for the distribution of NPIs, one must simply constrain the NPIs to appear in neg-soas only.
Pseudoclefts in HPSG
Pseudoclefts in HPSG

At the moment opacity effects can only be explained in LRS.

Neither MRS nor the system used in Ginzburg/Sag (2000) resp. Pollard/Yoo (1996) can account for them in general.

As soon as opacity effects can be explained within the system used in Ginzburg/Sag (2000), the same mechanism that explains binding effects will ensure that the post-copular constituent gets an opaque reading, too.
Pollard/Yoo 1996

de dicto
Pollard/Yoo 1996

de re
Pollard/Yoo 1996

de re

(71)

NP

[STORE {[]}]

Mike

V

[STORE {{I}}]

seeks

NP

[STORE {{I}}]

[QUANTS {｝}

RETRIEVED {｝]

S

[QUANTS {｝]

RETRIEVED {｝]

STORE {}]
Pseudoclefts in HPSG

MRS

Mike seeks a unicorn.
Pseudoclefts in HPSG

(75)
\[\text{Mike} \rightarrow _{-q\text{-rel}10} \rightarrow \text{(\text{_\text{unicorn_rel}6})} \rightarrow \text{_\text{a_q_rel}2} \rightarrow \text{_\text{seek_rel}7}\]

(76)
\[\text{_\text{a_q_rel}2} \rightarrow \text{_\text{unicorn_rel}6} \rightarrow \text{_\text{q_rel}10} \rightarrow \text{\text{_\text{Mike}9}} \rightarrow \text{_\text{seek_rel}7}\]

(77)
\[\text{_\text{q_rel}10} \rightarrow \text{_\text{Mike}9} \rightarrow \text{_\text{seek_rel}7} \rightarrow \text{_\text{a_q_rel}2} \rightarrow \text{_\text{unicorn_rel}6}\]
Reversed pseudoclefts

This + was + what Bush invaded first.
Dem. pronoun copula cleft clause

This country + was + what Bush invaded first.
NP copula cleft clause
Reversed pseudoclefts make use of the copula, too, but use a different construction for the top node.
Pseudoclefts in HPSG

(47) This

word

LOC

CAT

CONT

INDEX

n

SS

[decl-hd-subj-cl

CONT

proposition

SIT

s

SOA|NUCL

S]

hd-comp-ph

CAT

SUBJ

\{2\}

COMPS

\{\}

CONT

[hd-comp-ph

CAT

SUBJ

\{2\}

COMPS

\{\}

CONT

[pred-free-rel-cl

LOC

CAT

SUBJ

\{2\}

COMPS

\{\}

CONT

[head

\{v\}

PRED

+

SUBJ

\{LOC

\{3\}\}]

CONT

SOA

S

NUCL

[buy.rel

BUYER

\{7\}

BOUGHT

\{5\}]

is

what Mike bought
Pseudoclefts in HPSG

Predicative and equative pseudoclefts

What John is + is + a nuisance to him.
 \(<e> \) copula \(<e,t> \)

Where he spent his vacation + was + Chester.
 \(<e> \) = \(<e> \)
Pseudoclefts in HPSG

For predicative and equative pseudoclefts one could use a cleft clause with a *parameter* as content value.

It could be derived via an unary phrase structure rule. The daughter would be a standard modifying relative clause.

The alternative approach of letting the new type *free-relative-phrase* be a subtype of the modifying relative clause would not work, because then it would be constrained to have content of type *message*.
Pseudoclefts in HPSG

(50)

S

\[\text{fin-wh-fill-rel-cl} \]
\[\text{CAT|HEAD|MOD|INDEX} \]
\[\text{CONT} \]
\[\text{SIT} \]
\[\text{SOA} \]

\[\text{word} \]
\[\text{LOC} \]
\[\text{CONT} \]
\[\text{INDEX} \]
\[\text{RESTR} \]

\[\text{What} \]

\[\text{free-rel-ph} \]
\[\text{CAT|HEAD} \]
\[\text{MOD} \]
\[\text{none} \]
\[\text{parameter} \]
\[\text{INDEX} \]
\[\text{RESTR} \]
\[\text{thing(1)} \]
\[\text{thing(2)} \]

\[\text{decl-hd-subj-cl} \]
\[\text{QAUNTS} \]
\[\text{NUCL} \]
\[\text{BUYER} \]
\[\text{BOUGHT} \]

\[\text{Mike bought} \]
Pseudoclefts in HPSG

```
free-rel-ph:

[ [ HEAD $^n$ MOD none ] ]

[ CAT SUBJ $\langle \rangle$ SPR $\langle \rangle$ COMPS $\langle \rangle$ ]

[ LOC parameter ]

[ CONT INDEX $\overset{1}{\square}$ RESTR $\overset{2}{\uplus} \overset{3}{\square}$ ]

[ DTRS $\langle$ CAT|HEAD|MOD|INDEX $\overset{1}{\square}$ $\rangle$ ]

[ SS CONT $\langle$ proposition $\rangle$ ]

[ SOA $\overset{2}{\square}$ ]

[ DTRS $\langle$ RESTR $\overset{3}{\square}$ $\rangle$ ]
```
Pseudoclefts in HPSG

Alternatively one could combine the relative pronoun/phrase and the clause immediately. However, since the result is not a headed construction it could not inherit from *hd-fill-phrase*. Therefore a lot of things that it shares with other constructions would have to be specified about it idiosyncratically.
Pseudoclefts in HPSG
Pseudoclefts in HPSG

(54)

What Mike bought

[\text{cat|head}_n \text{mod none}_n \text{parameter}_n \text{index 1}_n \text{restr 5}_n \text{thing(1)} \cup 2]

\text{free-rel-ph}

\text{cat|head}

\text{loc}

\text{cont}

\text{slash} \langle \rangle
Pseudoclefts in HPSG

From the three options:

- using an idiosyncratic construction type
- bending the locality principle
- introducing a new feature
Pseudoclefts in HPSG

Predicative pseudocleft
Equative pseudoclefts make use of the same construction for the cleft clause, but use an equative *be*.
Pseudoclefts in HPSG

(56)

[free-rel-ph
 [CAT|HEAD
 [CONT
 [n
 [MOD none
 [parameter
 [INDEX 1
 [RESTR 5 location(1) ∪ 2]]]]]]]]

[decl-hd-subj-cl
 [LOC 6
 [CAT|HEAD n
 [CONT
 [INDEX 1
 [RESTR 5]]]]]

Where

[QAUNTS 3
 [SS|CONT|SOA 2
 [NUCL spend_rel
 [SPENDER 4
 [SPENDT 6]]]]

Mike spent his vacation
Pseudoclefts in HPSG

Equative pseudocleft

```
[free-rel-ph]
[ss [3] cont
[index [1] restr 5]]
```

Where Mike spent his vacation

```
[decl-hd-subj-cl
[cont
[proposition
[sit s
[soa 6]]]]
```

```
[hd-compl-ph
[cat
[subj 3]
[comps ()]]
```

```
[word
[cat
[subj 3]
[comps 4]]
```

```
[arg-st 3,4]
```

```
[ss 4[index 2]]
```

Chester

```
[was
[identity_rel
[arg_1 1
[arg_2 2]]]
```
Wh-amalgam cleft

What Mike did not buy + was + Mike did not buy any beer.
Wh-amalgam cleft

What Mike did not buy + was + **Mike did not buy any beer.**

For wh-amalgam clefts we can assume an equation of two sentences.
Pseudoclefts in HPSG
Pseudoclefts in HPSG

Definite description subjects

The thing Bush invaded + was + Iraq.
Pseudoclefts in HPSG

Definite description subjects

The thing Bush invaded + was + Iraq.

For specificational sentences with definite descriptions as subject we can follow Mikkelsen (2004) and Schueler (2004) and assume that the subjects are predicative.
The thing that every Englishman likes is his beer gut.
Pseudoclefts in HPSG

S

[fin-hd-subj-cl]

NP

[hd-spr-ph]

SS 2 [LOC 1]

His beer gut

VP

[hd-comp-ph]

SUBJ 〈2〉

COMPS 〈〉

V

word

LOC|CAT

ARG-ST

COMPS 〈2,3〉

is

NP

[hd-spr-ph]

SS 3 [LOC

CAT|HEAD

n PRED +

SUBJ

[LOC 1]〈〉]
Pseudoclefts in HPSG

(63)

\[
\text{word}\left[\begin{array}{c}
\text{CAT} \\
\text{LOC} \\
\text{SS} 3 \\
\text{CONT} 8 \\
\text{STORE}\{\begin{array}{c}
\text{the}_\text{rel} \\
\text{INDEX} 6 \\
\text{RESTR} 5 1 \\
\end{array}\}
\end{array}\right]
\]

\[
\text{hd-spr-ph}\left[\begin{array}{c}
\text{SUBJ} 2 \\
\text{SPR} \\
\text{CONT} 9 \\
\end{array}\right]
\]

\[
\text{hd-rel-ph}\left[\begin{array}{c}
\text{HEAD} 5 12 \\
\text{SUBJ} 2 \\
\text{SPR} 11 \\
\text{CONT} 9 \text{INDEX} 6 \\
\text{RESTR} 5 1 (4 \equiv 7) \\
\end{array}\right]
\]

\[
\text{fin-wh-fill-rel-cl}\left[\begin{array}{c}
\text{CAT|HEAD|MOD} 12 \\
\text{CONT} 4 \text{proposition} \\
\text{that every Englishman likes} \\
\end{array}\right]
\]
Pseudoclefts in HPSG

Lunch