Determination of phosphate in soil extracts

by malachite green (MG) colorimetric procedure

(d'Angelo et al., 2001, slightly modified)

The color reaction based on complexation of malachite green with phosphomolybdate under acidic conditions is provided by mixing Reagents 1 and 2.

Reagent 1 is 14.2 mmol L\(^{-1}\) ammonium molybdate tetrahydrate in 3.1 M H\(_2\)SO\(_4\).

Reagent 2 is 3.5 g L\(^{-1}\) aqueous polyvinyl alcohol (PVA) reagent (molecular weight between 89 000 and 98 000) (Sigma Aldrich Co), prepared by stirring with deionized distilled water at 80°C. After cooling to room temperature, MG carbinol hydrochloride (Sigma Aldrich Co) was added at 0.35 g L\(^{-1}\). Both reagents are stable at room temperature.

150 µl of acid or neutralized NaHCO\(_3\) extract is mixed with 30 µl **Reagent 1** in disposable 96-well polystyrene microplates for 10 min on an orbital shaker at low rate (< 90 rev min\(^{-1}\)). Then, 30 µl of **Reagent 2** is added and the plate is shaken more rapidly for an additional 20 min. After the shaking, microplates are exposed to 40°C for 30 – 40 min in a dryer (thermostat). In 1-1.5 h the microplates can be read on the plate reader **Victor** at 630 nm using “Peroxidase” protocol. For better results, the microplates can be left for 10-12 hours (e.g. overnight) before reading. It would decrease variability of replicates.

Standards should be prepared in triplicate and with the same extractant as used for phosphate extraction (e.g. H\(_2\)SO\(_4\), HCl, water etc). The standards set can vary
depending on the P concentrations range, typically – 0, (0.005); 0.1; 0.2; 0.4; 0.6; 0.8; 1.0; (1.25); 1.5; 2.0; (3.0) μg P ml⁻¹. P concentrations range with linearity of calibration depends on extractant; typically, the concentrations > 2 μg P ml⁻¹ should be omitted. P concentrations are calculated according to the linear equation y = Bx+A, where y is P concentration, μg P ml⁻¹, x is optical density at 630 nm; B is usually varied from 1.6 to 2.0.

Note: malachite-reactive P (MRP) does not represent all the P pools in P extract. However, it comprises more than 95% of extractable P (Cheesman et al., 2010), and therefore can be used as an index of “total” phosphorus in soil extracts.

References
