Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils

Xiao Gang Li a,*, Bin Jia a, Jieting Lv a, Qiujin Ma a, Yakov Kuzyakov b, Feng-min Li a

a School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
b Department of Soil Science of Temperate Ecosystems, University of Goettingen, Germany

Abstract

Nitrogen fertilization may affect the decomposition of soil organic matter (SOM) and plant residues in soil, but this effect is still very uncertain and depends on living plants. We investigated the effects of mineral N (Nmin) availability on SOM and plant residue decomposition in wheat (Triticum aestivum L.) growing soils in a pot experiment. Five treatments were assessed: (1) Control [no maize (Zea Mays L.) residues and no N fertilization]; (2) 15N-urea addition; (3) 15N maize leaves; (4) 15N maize leaves + urea; and (5) 15N-urea + maize straw. The decomposition of SOM and plant residues was traced by the changes of N and C in the light fraction (density < 1.80 g cm⁻³) during the 127 days. Urea fertilization decreased the decomposition of SOM and maize residues, as indicated by remaining N and C in the light fraction compared to soil without urea. The C decomposition was tightly coupled to that of N in the light fraction. In soils with maize residues, both maize- and SOM-derived light fractions decomposed slowly with N fertilization. Soil microbial biomass N content was increased by maize residues but was unaffected by urea addition. Under low soil Nmin levels, microbes met their N demand by increasing an acquisition from accelerated decomposition of organic sources. To mine N in the Nmin limited soils, soil microbes might have directly taken up more N-containing organics and thus facilitated SOM decomposition. For such an acceleration of SOM decomposition, the presence of N uptake by living plants was especially important, which decreased the Nmin in soil and so, increased N limitation for microorganisms. We concluded that N fertilization decreases SOM decomposition and increases the efficiency of C sequestration in soil through higher portion of un-decomposed crop residues.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Aboveground crop residues are byproducts of agriculture. One benefit of returning crop residues to soil is C sequestration and soil organic matter (SOM) formation. The higher C/N ratio of crop residues than the soil microbial biomass implies that mineral N (Nmin) availability may affect the microbial decomposition of crop residues (Sinsabaugh et al., 2013; Cyle et al., 2016; Zang et al., 2016). N fertilization may impact the efficiency of C sequestration through crop residue incorporation. Numerous studies (Recous et al., 1995; Mary et al., 1996; Henriksen and Breland, 1999; Neff et al., 2002; Potthoff et al., 2005) have suggested that high Nmin level stimulates the decomposition of plant residues and SOM. Some studies (Neff et al., 2002; Hobbie, 2005; Hobbie et al., 2012; Kaspari et al., 2008) have suggested that the effect of the Nmin level on plant residues and SOM decomposition is variable, depending on N content in residues and soil, abundances of other nutrients, organic compound’s composition, N leaching and microbial community structure. N fertilization reduces microbial biomass in many ecosystems (Treseder, 2008) and decreases soil CO2 emissions (Treseder, 2008; Janssens et al., 2010; Spohn et al., 2016; Zang et al., 2016). The decrease in the Nmin content changes the decomposer community and accelerates SOM mineralization, resulting in reduced SOM accumulation (Fontaine and Barot, 2005).

The effects of soil Nmin on SOM and plant residue decomposition may be biased by the study approach. Current studies on the effects of Nmin level on SOM and plant residue decomposition have two limitations: (1) the most of these studies have been conducted in short-term incubation experiments, with mineralization dynamics deduced from CO2 efflux and Nmin changes. In the short-term, the releases of CO2 and Nmin reflect the decomposition kinetics of readily labile compounds (Gunina and Kuzyakov, 2015; Cyle et al., ...
and thus poorly represent the complex components, which dominate plant residues and SOM. (2) In all incubation studies, the decomposition proceeds in soils without plant growth. In terrestrial ecosystems, microbial decomposition and plant nutrient uptake take place simultaneously, with yielded N\textsubscript{min} being removed continuously from decomposition sites.

The present paper quantified the effects of soil N\textsubscript{min} availability on the decomposition of SOM and plant residues in the presence of root N uptake. We hypothesized that N fertilization would decrease SOM and plant residue decomposition in soils with growing plants. Despite the fact that soil microbes preferentially use N\textsubscript{min} N\textsubscript{min} deficiency leads to organic N uptake by microbes (Hobbie, 2005; Geissler et al., 2009, 2010, 2012), which would facilitate N mineralization of SOM and plant residues. The increased N mineralization under low N\textsubscript{min} would be linked with increasing organic C mineralization (Jonasson et al., 1999; Manzoni et al., 2010). We investigated the dynamics of various soil N pools, N uptake by applied plant residues and urea fertilizer by using 15N as a tracer. The decomposition of SOM and plant residues was traced by the changes in light fraction N (LFN) and organic C (LFOC) during 127 days.

2. Materials and methods

2.1. Experimental design

The experiment was conducted from March to July 2016 in a large rainproof shelter at the Yuzhong Experimental Station (35°51′N, 104°7′S, altitude of 1620 m above sea level) of Lanzhou University. Soil was collected from the 0–20 cm depth in a cropland with wheat and soybean (Glycine max L. Merrill) growing for four years after conversion from native C3 grassland (no C4 species). The soil was developed from loess and had silt loam texture, with a pH value of 8.38 (water: soil = 2.5). Total SOC content was 7.43 g kg-1, total N 0.64 g kg-1, total P 0.70 g kg-1. The C/N ratio of SOM was 11.6. Soil N\textsubscript{min} and Olsen P were 12 and 6 mg kg-1, respectively.

The pot experiment had five treatments: (1) Control (no plant residues and no N fertilization); (2) 15N-urea (amended with 15N labeled urea at 129 mg N kg-1 soil); (3) 15N-leaves (amended with 15N labeled maize (Zea Mays L.) leaves at 115 mg N kg-1 soil); (4) 15N-leaves plus urea (amended with 15N labeled maize leaves at 115 mg N plus urea at 129 mg N kg-1 soil); and (5) 15N-urea plus straw (amended with 15N labeled urea at 129 mg N plus maize straw at 108 mg N kg-1 soil). In the fifth treatment (15N-urea plus straw), we used the maize straw (mixture of maize leaves and stems) instead of maize leaves, because it corresponds more to the agriculture practice. The 15N labeled maize leaves and (non-labeled) straw were collected at maturity, respectively from two field experiments conducted in 2015 at a high-altitude site (2013 m a. s. l.). In that 15N labeling experiment, the maize was fertilized at sowing with 15N labeled urea (15N abundance: 10.15%). The 15N labeled maize leaves contained 1.40% N (15N abundance: 1.97%) and 45.2% C, with a C/N ratio of 32.4. The (non-labeled) maize straw had N content of 1.10% and C 43.0%, with a C/N ratio of 39.1. maize residue materials were pulverized into powders (<1 mm). The urea application rate in this pot experiment was equivalent to 290 kg N ha-1, maize leaf and straw application rates were equivalent to 19 and 22 t plant residues ha-1, respectively.

Air-dried soil (equivalent to 6.72 kg oven-dry weight, sieved through 5 mm) was mixed with maize residue and/or fine urea powders (for Control, without residues or no N fertilizers) and then put in a plastic pot (height 22.5 cm; volume 6.8 L), resulting in a bulk density value of about 1.2 g cm-3. In order to avoid the potential phosphorus deficiency for wheat growth, KH\textsubscript{2}PO\textsubscript{4} (monopotassium phosphate) was added at 20 mg P kg-1 soil to all treatments (including control). Each treatment had five replicated pots (5 treatments × 5 replicates = 25 pots in total). After setup, all pots were watered. Twenty days later, 10 wheat (cultivar: Dingxi 24) seeds were sown in each pot. At the two–leaf stage, the crops were thinned to five seedlings per pot. Throughout the pot experiment, from setup to the time of wheat maturity, soil moisture was maintained at 70% of field capacity, with supplementation of distilled water every 1–3 days according to the water loss estimated by weighing. At day 63 after sowing (booting stage), a 1-cm layer of polythene polyfoam balls (3–4 mm in diameter) was placed on the soil surface and kept until the wheat’s harvest time, to reduce soil water evaporation. Twenty-five pots were randomly placed in an area of 4 m2 in the rainproof shelter. During the experiment, the air temperature measured daily at 09:00 varied from 10 °C to 36 °C.

2.2. Soil sampling

Five pots of each treatment were randomly divided into two groups: sampling group (three pots) and supplemental group (two pots). At days 32 (seedling stage), 63 (booting) and 107 (maturity) after sowing, soil samples were taken using an auger (inner diameter: 20 mm) from three pots of each sampling group, for measuring soil N\textsubscript{min}, microbial biomass N (MBN) and LFN content, and 15N abundances in all these pools. In each sampling pot, four sub-samples (from four points) were mixed to form a composite sample. After each sampling at days 32 and 63, the holes in the three sampling pots, formed due to the soil sampling, were filled with soils taken from two supplemental pots of the same treatment using the same auger. Plugging those holes with the substitute soils from the supplemental group reduced potential influence of disturbance of soil sampling on microbial activity and wheat growth.

For measuring the initial LFN and LFOC contents at the beginning of the experiment (at 20 days before wheat sowing), samples were taken from treated soils prior to being put into plastic pots. Each 100-g air-dried sample from those relative to the sampling group was placed in a beaker and incubated for 24 h under room temperature, after being moistened to 70% of field capacity. All incubated soils were then air-dried and prepared for analyses.

2.3. Soil analyses

Total N\textsubscript{min} and MBN were determined from fresh soil samples. N\textsubscript{min} was extracted using 0.5 M K\textsubscript{2}SO\textsubscript{4} and total N\textsubscript{min} in the extracts was distilled using Kjeldahl apparatus, in the presence of MgO (magnesium oxide) and Devarda alloy (Keeney and Nelson, 1982). Ammonium N in the distillate was titrated using H\textsubscript{2}SO\textsubscript{4} solution. After titration, the distillate was condensed under acidic conditions in a water bath to 2–3 ml, to analyse 15N isotope ratio via a gas isotope mass spectrometer (MAT-251, Thermo Fisher, America). The soil N\textsubscript{min} derived from 15N labeled sources (15N-N\textsubscript{min}) was calculated as:

\[
\text{15N} - \text{N}_{\text{min}} = \text{total N}_{\text{min}} \times \frac{\text{15N}_{\text{treatment}} - \text{15N}_{\text{control}}}{\text{15N}_{\text{source}} - \text{15N}_{\text{control}}} \times \frac{1}{\text{15N}_{\text{control}}}
\]

where 15N\textsubscript{treatment} and 15N\textsubscript{control} were 15N abundances of total N\textsubscript{min} in the 15N source-added treatment and (non-added) control, respectively; 15N\textsubscript{source} was 15N abundance in the 15N source. The soil N\textsubscript{min} derived from non-labeled sources was the difference between total N\textsubscript{min} and 15N-N\textsubscript{min}.

Total soil MBN was extracted via the chloroform
fumigation–extraction method (Brookes et al., 1985a). The fumigated and non-fumigated samples were shaken for 1 h in 0.5 M K₂SO₄. Total (ammonium and organic) N in the K₂SO₄ extracts was distilled after Kjeldahl digestion, exactly following the procedure described by Brookes et al. (1985b). After titration of total NH₃ by using H₂SO₄, the distillate was condensed in a water bath for 15N isotope ratio analysis. Total soil MBN was calculated by the difference between total N in the digested K₂SO₄ extracts from the fumigated and non-fumigated samples, and 0.54 for extract correction factor (Brookes et al., 1985a; Joergensen and Mueller, 1996). The soil MBN derived from labeled sources (15N-MBN) was calculated:

\[
15N - MBN = \left(\frac{\text{total } 15N_{\text{fumigated}} - \text{total } 15N_{\text{non-fumigated}}}{0.54} \right)
\]

where total 15N_{\text{fumigated}} and total 15N_{\text{non-fumigated}} were total N derived from 15N source in the digested K₂SO₄ extracts from fumigated and non-fumigated samples, respectively. The total 15N_{\text{fumigated}} or total 15N_{\text{non-fumigated}} was calculated using an equation similar to that for calculating 15N-N_{\text{min}}. The soil MBN derived from non-labeled sources was the difference between total MBN and 15N-MBN.

Soil light fraction organic matter (LFOM, density < 1.8 g cm⁻³) was separated using dense NaI solution (Hai et al., 2010). A 50-g air-dried soil sample (<2 mm) was placed in a 250-ml centrifuge bottle, to which 125 ml of NaI was added. The sample was stirred for 1 min with a glass stick. Material adhering to the wall of the bottle was rinsed into the solution with an additional 10 ml of NaI. After standing overnight, the sample was centrifuged for 30 min at 3000 rpm. Immediately after centrifugation, the supernatant was filtered through a 0.45-μm hydrophilic polyvinylidene fluoride filter under vacuum, and material retained on the filter (LFOM) was rinsed with distilled water until the water ran clear. After being oven-dried to constant weight at 60 °C, the separated soil LFOM was ground to fine powder. About 200 mg LFOM powders was digested in concentrated H₂SO₄ and H₂O₂ (Lu, 2000), and the N in the digest was distilled using micro Kjeldahl apparatus. After titration, the distillate was condensed in a water bath for 15N isotope ratio analysis. The 15N source derived soil LFN (15N-LFN) was calculated using a formula also similar to that for calculating 15N-N_{\text{min}}. Non-labeled soil LFN was the difference between total LFN and 15N-LFN.

We used the 13C/12C ratio of the total LFOM pool to distinguish maize-from SOM-derived LFOM sub-fractions at the beginning and end of the experiment. The C content in the LFOM was measured using an Elementar Analyzer (Vario Macro Cube, Germany), and the 13C/12C ratio was analyzed using an Isotope Ratio Mass Spectrometer (DELTA V Advantage, USA). The δ¹³C values of LFOM samples were expressed relative to the isotopic ratio of ⁰¹³C/⁰¹₂C in Pee Dee Belemnite (0.011237). The maize-derived LFOM was calculated as:

\[
\text{Maize derived LFOM} = \text{total LFOM} \times \left(\frac{\delta^{13}C_{\text{treatment}} - \delta^{13}C_{\text{control}}}{\delta^{13}C_{\text{residue}} - \delta^{13}C_{\text{control}}} \right)
\]

where \(\delta^{13}C_{\text{treatment}}\) and \(\delta^{13}C_{\text{control}}\) represented the δ¹³C values of LFOM in the maize residue (leaves or straw) amended treatments and in the control, respectively. \(\delta^{13}C_{\text{residue}}\) was the δ¹³C value of maize leaves or straw. The SOM-derived LFOM was the difference between total LFOM and maize-derived LFOM.

2.4. Plant sampling and analysis

At day 63 after wheat sowing, the aboveground biomass and roots were destructively sampled from pots of supplemental groups. At the time of wheat maturity, grains, stems and leaves (including glumes) and roots were collected from all pots in the sampling group. Roots were washed of soil with a sieve (aperture: 0.15 mm). All plant organs were oven-dried at 60 °C to a constant weight and ground to powders. Total N in various plants was digested in concentrated H₂SO₄ and H₂O₂ (Lu, 2000) and total N was distilled using micro Kjeldahl apparatus. After titration, the distillate was condensed for ¹⁵N isotope ratio analysis.

2.5. Statistics

One-way analysis of variance (ANOVA) was used to assess the effects of treatments on wheat N uptake by the booting stage and harvest time of wheat. One-way ANOVA was also used to assess the treatment effects on the decomposition percentages of LFN and LFOM and their sub-fractions. Two-way ANOVA, using treatment and sampling time as two fixed factors, was applied to assess variations in the measured soil N_{min}, MBN, LFN, LFOM and their sub-fraction contents. The least significant difference was used to identify the significance of variation between treatments at \(P < 0.05\). All statistical analyses were performed in GenStat 17.0 (VSN International Ltd. Rothamsted, England).

3. Results

3.1. Wheat nitrogen uptake

Compared to control, ¹⁵N-leaves decreased the total N uptake in wheat biomass (including roots) in the early growth. However, by the time of harvest, total N uptake increased by 71% in the soil with ¹⁵N-leaves compared to the control (Fig. 1a and b). By either wheat booting or maturity stage, the total N uptake by wheat was greater in ¹⁵N-leaves plus urea and ¹⁵N-urea plus straw soils, respectively, than in ¹⁵N-solea soils (Fig. 1a and b).

Urea slightly increased the wheat N use from the ¹⁵N-leaves and prominently increased the N uptake from the other sources (including urea) by booting stage. However, urea increased the wheat N uptake only from the other sources (including urea) by wheat maturity (Fig. 1c, d, e, f). In the two soils with ¹⁵N-urea added, maize straw amendment decreased the wheat N uptake from the ¹⁵N-urea but increased the wheat N uptake from the other sources (including straw) in the early and at the end of growth (Fig. 1c, d, e, f).

3.2. Dynamics of soil microbial biomass and mineral nitrogen

There were significant interactions between treatment and sampling time on total N and ¹⁵N in microbial biomass (Fig. 2a, b, c) \((P < 0.001)\). During wheat growth, only residue amendments increased total soil MBN content compared to the control (Fig. 2a). This indicated that only C availability limited soil microorganisms. In the soil with ¹⁵N-leaves added, total soil MBN dropped sharply from 51 mg N kg⁻¹ at day 63 after wheat sowing, to 25 mg N kg⁻¹ at harvest (Fig. 2a), reflecting N redistribution from microorganisms to the plants.

In the two soils with ¹⁵N-leaves added, urea addition decreased the microbial use of N from the ¹⁵N-leaves, but increased the N uptake from other sources (including urea) (Fig. 2b and c). In the two soils with added ¹⁵N-urea, straw addition increased the microbial use of N from both ¹⁵N-urea and other sources (including straw) compared to no straw addition (Fig. 2b and c). However, the
increment from other sources (mainly organic N) was greater than that from the 15N-urea (Fig. 2b and c).

The total N$_{\text{min}}$ concentration during wheat growth was highest in the soil with urea, followed by those in the soils with urea combined with plant residues and lowest in the soil of control or with 15N-leaves added only (Fig. 2d). Urea addition increased 14N-N$_{\text{min}}$ content in the soils with 15N-leaves added (Fig. 2e). Straw addition decreased 15N-N$_{\text{min}}$ content in the soils with 15N-urea added (Fig. 2f).

3.3. Dynamics of C and N in the light organic fraction

The dynamics of total LFN and its sub-fractions during the experiment are shown (Fig. 2g, h, i). Total LFN and 14N-LFN decreased in all soils with time (Fig. 2g, i). 15N enrichment of LFN decreased in the two soils with 15N-leaves added but increased with time in the other two soils with 15N-urea added, (Fig. 2h). This showed that the organic N release from the LFOM and the N$_{\text{min}}$ immobilization in the LFOM occurred simultaneously.

Over the 127-day period, total LFN decomposition (difference in the content between the beginning and end of the experiment) was 58 mg N kg$^{-1}$ in the control soil; in contrast with 10 mg N kg$^{-1}$ in the soil with 15N-urea added only (Fig. 2g). The total LFN decomposition was 72 mg N kg$^{-1}$ in the soil with 15N-leaves added only, compared to 56 and 44 mg N kg$^{-1}$ in the soils with 15N-leaves plus urea and 15N-urea plus straw, respectively (Fig. 2g).

There were significant interactions between treatment and sampling time on total soil LFOC content and the C/N ratio of LFOM ($P < 0.001$) (Fig. 3a and b). Similar to that of total LFN, the decomposed total LFOC during the 127-day period was greater in the soils without urea than in the soils with urea addition, regardless of the presence of maize residues (Fig. 3a). By the end of
The experiment, the control soil had the C/N ratio of total FLOC increased but other soils had the C/N ratio decreased (Fig. 3b).

The decomposed portions of total LFN and LFOC were both smaller in the soils with urea than without urea, independent on residue addition (Fig. 4a and b). The source partitioning based on 15N and 13C/12C ratio showed that the urea-fertilization decreased the decomposition of both maize- and SOM-derived LFOM fractions (Fig. 4c, d, e, f). The decomposition percentage of total LFN was
negatively correlated to total N uptake by wheat at maturity, whereas it was positively correlated to that of total LFOC (Fig. 5a and b).

4. Discussion

4.1. Wheat nitrogen uptake

In the soil with 15N-leaves addition, the decrease in the total wheat N uptake by booting stage was ascribed to the lower N_{min} availability compared to the control soil (Fig. 1a; Fig. 2d). Organic N may slightly contribute to plant N uptake (Persson and Nasholm, 2001; Nasholm et al., 2009), but the quantitative importance is negligible (Inselsbacher et al., 2010; Biernath et al., 2008; Rasmussen and Kuzyakov, 2009; Rasmussen et al., 2010). Moran-Zuloaga et al. (2015) and Huygens et al. (2016) even suggested that plants depend exclusively on N_{min} forms made available through microbial N mineralization of plant residues and SOM. The decreased N_{min} availability in the soil with 15N-leaves added only resulted from microbial community increase (i.e., MBN content) compared with the control (Fig. 2a; Fig. 2d). The incorporation of crop residues in soil usually decreases N_{min} due to microbial immobilization, and thus intensifies the competition for N_{min} between microorganisms and plants (Williams et al., 1968; Recous et al., 1995; Corbeels et al., 2000).

By the time of wheat harvest, the total N uptake by wheat from the soil with 15N-leaves added-only increased compared to that in the control soil (Fig. 1b). The occupation of soil volume by growing roots increased, and so, made plants more competitive for N_{min} compared to microbes (Xu et al., 2011; Kuzyakov and Xu, 2013).
addition, N assimilated in microbial biomass during the early wheat growth might have been released through microbial turnover in the late growth (Kuzyakov and Xu, 2013). Microbial necromass is more decomposable than plant residue in residue incorporated soils (Jensen, 1994).

In all soils with maize residues, an increase in the total wheat N uptake after urea fertilization was obviously due to the increased soil N$_{\text{min}}$ (Fig. 1a and b; Fig. 2d). In the two soils with 15N-urea, the decreased 15N use by wheat after straw addition was due to 15N immobilization in microbial biomass (Fig. 2b, e).

4.2. Soil organic matter decomposition

The present study clearly showed that N fertilization decreased SOM decomposition in soils with plants. This finding was indicated by the decreased decomposition of LFOM in urea amended than in non-amended soils, regardless of whether maize residues were added (Fig. 2g; Fig. 3a; Fig. 4a and b). In the soils with maize residues, both maize- and SOM-derived LFOM fractions decomposed less, under high than under low N$_{\text{min}}$ levels (Fig. 4c, d, e, f). The N amount recovered in the wheat biomass is a suitable indicator for soil N$_{\text{min}}$ availability. Thus, LFOM decomposition was negatively correlated to N uptake by wheat (Fig. 5a). The density fractionation is often used in SOM and plant residues decomposition studies (Francois et al., 1991; Neff et al., 2002; Wichern et al., 2006; Zareitlalbad et al., 2010; Gunina and Kuzyakov, 2014). LFOM generally holds a small but the most labile portion of the total SOM. In the soil used for the present study, LFOM and LFN accounted for 26% and 16% of the total SOC and N, respectively. This LFOM is more readily available for microbes than are the mineral-associated SOM pools. The LFOM is also sensitive to management practices; consequently, it is an early indicator for management effects (Gregorich et al., 1991; Neff et al., 2002; Potthoff et al., 2005). In fact, the effect of mineral N on plant residues or SOM decomposition is variable (Neff et al., 2002; Hobbie, 2005; Hobbie et al., 2012) and negative effects are frequently reported (Hobbie, 2005; Bradford et al., 2008; Janssens et al., 2010; Rousk et al., 2011; Riggs et al., 2015). After a close examination of these results, Zang et al. (2016) concluded that increasing addition of N as NO$_3^-$ or NH$_4^+$ exponentially decreases SOM decomposition.

In the present study, MBN was unaffected by soil N$_{\text{min}}$ availability (Fig. 2a, b, c, d, f). On the contrary, the microbial biomass affected N$_{\text{min}}$ level in soil. Urea addition decreased the microbial use of N from 15N-leaves in soils with 15N-leaves added, where total MBN was similar in the early and middle wheat growth. Straw-addition induced increase in the total MBN in the whole wheat growth originated more from organic sources than form 15N-urea in soils with 15N-urea added. 15N-urea addition increased N$_{\text{min}}$ but straw addition decreased N$_{\text{min}}$ level in soil. Therefore, under low N$_{\text{min}}$ levels, soil microorganisms used more N from organic sources than from inorganic sources. Soil microorganisms use both organic N and N$_{\text{min}}$ (Barraclough, 1997; Geisseler et al., 2009, 2010, 2012; Inselsbacher et al., 2010). Soil microorganisms take up either N$_{\text{min}}$ after mineralization (through mineralization—immobilization turnover route, MIT route) or low-weight organic N-containing molecules (direct route) (Drury et al., 1991; Mary et al., 1996; Barraclough, 1997; Geisseler et al., 2009, 2010, 2012). Under low N$_{\text{min}}$ availability, the direct route is a preferred pathway for microbial assimilation of N (Hobbie, 2005; Geisseler et al., 2009, 2010, 2012).

Thus, in the N$_{\text{min}}$ limited soils, the direct uptake of N-containing organic compounds helps microbes to increase or maintain the size of their community. After microbial death, the fate of debris-N includes being (i) re-used by microbes through direct and/or MIT routes, (ii) taken up by plants after N mineralization, and (iii) incorporated into soil mineral-associated and/or LFOM fractions (Francois et al., 1991; Vogel et al., 2015; Cyle et al., 2016). The plant uptake of N mineralized from organic sources would reduce the N$_{\text{min}}$ supply for microbes (Fig. 6). This would in turn push microbes to increase their mineralization of SOM and direct use of N-containing organics. The lower the N$_{\text{min}}$ availability in soil, the stronger the shift of microbial N uptake towards the direct route and thus, the greater amount of organic N-containing compounds was
The close correlation in the decomposition between LFN and LFOC (Fig. 5b) indicated that the C decomposition was tightly coupled to that of N in the present study. Riggs et al. (2015) and Spohn (2015) proposed that high N\textsubscript{min} availability leads to the lower microbial utilization of C for respiration and higher C allocation to growth. Spohn et al. (2016) further suggested that under high N availability, microbes do not only respire less but also take up less C, resulting in an increase in the microbial C use efficiency.

The synchronization between decomposition of LFN and LFOC in the control soil was different from that in the other treatments, with the C/N ratio in the LFOM increased after decomposition (Fig. 3b; Fig. 5b). This result indicates that without exogenous N input to planted soil, the direct microbial use of N-containing organics (with a low C/N ratio) during decomposition led to a small C loss per unit of N, leaving the increase C/N ratio of LFOM remains. Specific microbial species might have survived and met their both N and C demands relying on an assimilation of N-containing organics (Goddard and Bradford, 2003; Geisseler et al., 2009). The increased C/N ratio of LFOM in the soils without N fertilization compared to the N-fertilized soils has been frequently reported in long-term field experiments (Hai et al., 2010; E et al., 2012).

In conclusion, urea fertilization decreased the decomposition of plant residues and SOM in soils with growing plants. Microbial use of N was unaffected by N\textsubscript{min} level. Under low N\textsubscript{min} levels, the microorganisms used more N originated from organic sources than from added fertilizer. We speculated that the microbial direct uptake of N-containing organic molecules might have facilitated SOM decomposition in the N\textsubscript{min} limited soils. The mechanisms of the coupling between LFN and LFOC decomposition need to be further investigated. Continuous plant uptake of N\textsubscript{min} stimulated SOM and plant residue decomposition. Therefore, studies on SOM mineralization should be done in the presence of living plants.

Acknowledgments

This study was supported by the China Natural Science Foundation programs (41571279, 41671253). We highly appreciate comments from two anonymous reviewers, which are very constructive for improving the quality of the manuscript.

References

Cyle, K.T., Hill, N., Young, K., Jenkins, T., Hancock, D., Schroeder, P.A., 2016. Substrate
quality influences organic matter accumulation in the soil silt and clay fraction. Soil Biology and Biochemistry 103, 138–148.

