Linearisation as syntax-phonology mapping

Joost Kremers
Graduiertenkolleg “Satzarten”
J.W. Goethe Universität
Frankfurt am Main

GGS Tagung 2006
Stuttgart, 26-28 May
Syntax theory

- Syntactic structure is essentially hierarchical: it represents constituent structure.
- Utterances are essentially linear.
- What is the relation between the hierarchical and the linear structure?

The Big Question™: where does linear order come in: in syntax, or in phonology?
Syntactic structure is essentially hierarchical: it represents constituent structure.
Utterances are essentially linear.
What is the relation between the hierarchical and the linear structure?
The Big Question™: where does linear order come in: in syntax, or in phonology?
Syntax just represents hierarchical structure.

Linear order is a requirement of the modality of language.

Chomsky thinks so too:

“(…) that order does not enter into the generation of the C-I interface, and that syntactic determinants of order fall within the phonological component.”

(Chomsky, to appear: 5)
The solution — or is it?

- Syntax just represents hierarchical structure.
- Linear order is a requirement of the modality of language.

Chomsky thinks so too:

“(…) that order does not enter into the generation of the C-I interface, and that syntactic determinants of order fall within the phonological component.”

(Chomsky, to appear: 5)
Chomsky (2004) argues that there are three possible ways to derive linear order from hierarchical structure:

- Construction-specific (“the worst case”)
- Order reflects hierarchy (Kayne 1994)
Chomsky (2004) argues that there are three possible ways to derive linear order from hierarchical structure:

- **Construction-specific (“the worst case”)**
- **Order reflects hierarchy (Kayne 1994)**
Chomsky (2004) argues that there are three possible ways to derive linear order from hierarchical structure:

- Construction-specific (“the worst case”)
- Order reflects hierarchy (Kayne 1994)
Chomsky (2004) argues that there are three possible ways to derive linear order from hierarchical structure:

- Construction-specific ("the worst case")
- Order reflects hierarchy (Kayne 1994)
First assumption

Any approach within generative grammar toward linearisation makes three assumptions.

- Totality (Kayne 1994):
 Given a tree K and the set T of terminals in K, for every pair $x, y \in T$, an ordering is defined, either $x > y$ or $y > x$.
Any approach within generative grammar toward linearisation makes three assumptions.

- **Totality (Kayne 1994):**
 Given a tree K and the set T of terminals in K, for every pair $x, y \in T$, an ordering is defined, either $x > y$ or $y > x$.
Second assumption

- Linear Correspondence (Ackema & Neeleman 2004): If X is structurally external to Y, then Ph(X) is linearly external to Ph(Y).
 - Ph(X): the phonological material associated with X. (Kremers 2007)

```
  X   Y
   \  /
    z abc
```

/\zabc/
/\abcz/
*/azbc/
*/abzc/
Second assumption

- Linear Correspondence (Ackema & Neeleman 2004): If X is structurally external to Y, then Ph(X) is linearly external to Ph(Y).
 - Ph(X): the phonological material associated with X. (Kremers 2007)
Linear Correspondence (Ackema & Neeleman 2004): If X is structurally external to Y, then Ph(X) is linearly external to Ph(Y).

- Ph(X): the phonological material associated with X. (Kremers 2007)
The only *real* question to be answered is: how must the head parameter be integrated in the theory.

All three assumptions are incorrect. Well, at least partially.
The only *real* question to be answered is: how must the head parameter be integrated in the theory.

All three assumptions are incorrect. Well, at least partially.
Third assumption

The only *real* question to be answered is: how must the head parameter be integrated in the theory.

All three assumptions are incorrect. Well, at least partially.
The most conspicuous data comes from sign languages:

(1) mit mühe STUDENT GEBÄRDENSPRACHE LERNEN (Leuninger 2005)

- Totality
 - There is no precedence relation between Ph(AdvP) and Ph(V).

- Linear Correspondence
 - Ph(AdvP) is linearly internal to Ph(VP).
The most conspicuous data comes from sign languages:

(1) \textit{mit mühe} \\
\underline{STUDENT GEBÄRDENSPRACHE LERNEN} \\
(Leuninger 2005)

Totality

- There is no precedence relation between Ph(AdvP) and Ph(V).

Linear Correspondence

- Ph(AdvP) is linearly internal to Ph(VP).
The most conspicuous data comes from sign languages:

(1) \underline{mit m"uhe}
STUDENT GEBÄRDENSPRACHE LERNEN
(Leuninger 2005)

- **Totality**
 - There is no precedence relation between Ph(AdvP) and Ph(V).

- **Linear Correspondence**
 - Ph(AdvP) is linearly internal to Ph(VP).
Spoken languages show similar phenomena:

(2) \[\text{wh} \quad \text{tu sais danser?} \]
\[\text{you know.2SG dance} \]
\[\text{‘do you know how to dance?’} \]
Synchronicity: the simultaneous expression of two meaning-bearing elements.

The second question that we face in discussing linearisation is:

How can synchronicity be handled?
Synchronicity: the simultaneous expression of two meaning-bearing elements.

The second question that we face in discussing linearisation is:

How can synchronicity be handled?
Synchronicity: the simultaneous expression of two meaning-bearing elements.

The second question that we face in discussing linearisation is:

How can synchronicity be handled?
The Language Faculty

(3)

SEMANTICS

phrasal semantics

word semantics

SYNTAX

phrasal syntax

word syntax

PHONOLOGY

phrasal phonology

word phonology

Joost Kremers
Linearisation as syntax-phonology mapping
Lexical mapping rules

- Lexical items are language-specific mapping rules:
 \[\text{tree}(x) \leftrightarrow [\text{N}, \text{count}]\langle \nu \rangle \leftrightarrow /\text{t}i:/ \]

- The same is true for affixes:
 \[\lambda P[P(x)] \leftrightarrow [\text{N}, \text{count}]\langle \nu \rangle \leftrightarrow /-\text{v}^1/ \]
Prosodic hierarchy

Utterance (U)
Intonational Phrase (IntP)
Phonological Phrase (φ) ←
Prosodic Word (ω) ←
Foot (Ft)
Syllable (σ) ←
Mora (µ) ←
Arabic non-linear morphology is synchronous.

The deverbal noun *nfiṣāl* ‘agitation’ has four morphemes:

- **Root** $/fṢl/$
- **Verb Stem VII** $(\sigma_{\mu}) \sigma_{\mu}$
- **Nominaliser** $/i\ a/$
- **Non-finite** $-\sigma_{\mu\mu}$
Arabic morphology

- Arabic non-linear morphology is **synchronous**.
- The deverbal noun *nfiʕāl* ‘agitation’ has four morphemes:

 \[
 \begin{align*}
 \text{root} & \leftrightarrow /fʕl/ \\
 \text{verb stem VII} & \leftrightarrow (\sigma_\mu) \sigma_\mu \\
 \text{nominaliser} & \leftrightarrow /i\ a/ \\
 \text{non-finite} & \leftrightarrow -\sigma_{\mu\mu}
 \end{align*}
 \]
Putting the morphemes together yields the following form:

- (syllabic tier)

- (segmental tier)

The linear order of the segments is derived in phonology:
- Lexically specified: root and nominaliser morphemes; non-finiteness morpheme.
Putting the morphemes together yields the following form:

\[
(\sigma) \quad \sigma \quad \sigma \quad (\sigma)
\]

(syllabic tier)

\[
\begin{array}{cccc}
\mu & \mu & \mu \\
n & f & i & a & l
\end{array}
\]

(segmental tier)

The linear order of the segments is derived in phonology:

- Lexically specified: root and nominaliser morphemes; non-finiteness morpheme.
Arabic morphology

- Putting the morphemes together yields the following form:

```
(σ) σ σ (σ)  
\/ \ / \ /  
\ / \ / \ /  
n μ i a l
```

(syllabic tier)

```
(σ)
\/  
\ /  
fi Qa l
```

(segmental tier)

- The linear order of the segments is derived in phonology:
 - Lexically specified: root and nominaliser morphemes; non-finiteness morpheme.
Putting the morphemes together yields the following form:

\[
\begin{align*}
(\sigma) & \quad \sigma & \quad \sigma & \quad (\sigma) \\
\mu & \quad \mu & \quad \mu \\
n & i & f & a & l
\end{align*}
\]

(syllabic tier) (segmental tier)

The linear order of the segments is derived in phonology:

- Lexically specified: root and nominaliser morphemes; non-finiteness morpheme.
Back to the original problem: linearisation.

Arabic has syllabic morphemes, i.e. (morpho)syntactic elements that map onto a syllabic structure.

Proposal: syntactic structures map onto phonological structures consisting of φ’s and ω’s.

For example, the head parameter (head-first):

$$[x', \ X^a \ YP^b] \leftrightarrow \{ \omega^a \ \varphi^b \}$$
Back to the original problem: linearisation.

Arabic has syllabic morphemes, i.e. (morpho)syntactic elements that map onto a syllabic structure.

Proposal: syntactic structures map onto phonological structures consisting of φ’s and ω’s.

For example, the head parameter (head-first):

$$[X', X^a Y P^b] \leftrightarrow \{\omega^a \varphi^b\}$$
Back to the original problem: linearisation.

Arabic has syllabic morphemes, i.e. (morpho)syntactic elements that map onto a syllabic structure.

Proposal: syntactic structures map onto phonological structures consisting of φ’s and ω’s.

For example, the head parameter (head-first):

$$[X', X^a Y P^b] \leftrightarrow \{ \omega^a \varphi^b \}$$
Back to the original problem: linearisation.

Arabic has *syllabic* morphemes, i.e. (morpho)syntactic elements that map onto a syllabic structure.

Proposal: syntactic structures map onto phonological structures consisting of φ’s and ω’s.

For example, the head parameter (head-first):

$$[\chi', X^a YP^b] \leftrightarrow \{ \omega^a \varphi^b \}$$
Principles known from the literature on the syntax-phonology interface (Selkirk 1986, Nespor & Vogel 1986, Truckenbrodt 1999):

- **\text{WRAP-XP}:** $X^a \leftrightarrow \varphi^a$
- **\text{ALIGN-XP}:** $[Y X^a] \leftrightarrow \{ \omega^* \varphi^a \}$

Note: **ALIGN-XP** resembles the head parameter. As Truckenbrodt (1995) notes, there is indeed a correlation between the two.
Principles known from the literature on the syntax-phonology interface (Selkirk 1986, Nespor & Vogel 1986, Truckenbrodt 1999):

- **W**RAP-XP: $\text{XP}^a \leftrightarrow \varphi^a$
- **ALIGN-XP**: $[Y \text{XP}^a] \leftrightarrow \{ \omega^* \varphi^a \}$

Note: **ALIGN-XP** resembles the head parameter. As Truckenbrodt (1995) notes, there is indeed a correlation between the two.
Principles known from the literature on the syntax-phonology interface (Selkirk 1986, Nespor & Vogel 1986, Truckenbrodt 1999):

- **WRAP-XP:** $XP^a \leftrightarrow \varphi^a$
- **ALIGN-XP:** $[Y XP^a] \leftrightarrow \{ \omega^* \varphi^a \}$

Note: **ALIGN-XP** resembles the head parameter. As Truckenbrodt (1995) notes, there is indeed a correlation between the two.
Principles known from the literature on the syntax-phonology interface (Selkirk 1986, Nespor & Vogel 1986, Truckenbrodt 1999):

- W_{RAP}-XP: $X P^a \leftrightarrow \varphi^a$
- $ALIGN$-XP: $[Y X P^a] \leftrightarrow \{ \omega^* \varphi^a \}$

Note: $ALIGN$-XP resembles the head parameter. As Truckenbrodt (1995) notes, there is indeed a correlation between the two.
Synchronicity supports the hypothesis that linear order is a requirement of the modality.

What are the properties of synchronicity? What are the limitations?

- Inventory of synchronicity phenomena.
- Can the properties and limitations be related to the modality (i.e. the structure of the phonological system)?
Synchronicity supports the hypothesis that linear order is a requirement of the modality.

What are the properties of synchronicity? What are the limitations?

- Inventory of synchronicity phenomena.
- Can the properties and limitations be related to the modality (i.e. the structure of the phonological system)?
Synchronicity supports the hypothesis that linear order is a requirement of the modality.

What are the properties of synchronicity? What are the limitations?

- Inventory of synchronicity phenomena.
- Can the properties and limitations be related to the modality (i.e. the structure of the phonological system)?