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Abstract

We give a unified proof for a theorem of S. Zhang and a theorem of Yu.Bilu. First, if A
is a polarized abelian variety overQ and X ⊂ A a closed subvariety containing a generic
sequence of points with Néron-Tate height tending to zero then X is torsion. Secondly, if
X ⊂ PnQ contains a generic sequence of points whose naive heights tend to zero then
X is preperiodic under coordinate-wise formation of d-th powers for every d > 2.

1. Introduction

Classical results. In 1972, J.-P. Serre proved the following remarkable result.

Theorem 1.1 (Serre). Let K be an algebraic number field and E be an elliptic curve over K with-

out complex multiplication. Then, for almost every prime number l, the Galois group Gal(K/K)
acts transitively on the l-torsion points of E.

Notation 1.2. For x ∈ E(K), we denote by δx the Dirac measure associated to its Galois or-
bit. I.e., if x ∈ E(F ) for some number field F ⊇ K then δx(ϕ) := 1

♯ Gal(F/K)

∑
σ : F →֒Cϕ(σ(x)) for

each ϕ ∈ C0(E(C)).

1.3. In this language, Serre’s theorem immediately implies the following.

Corollary. Let K be an algebraic number field and E be an elliptic curve over K without

complex multiplication. Further, let (xi)i∈N be a sequence of torsion points in E not containing

any constant subsequence.

Then, the associated sequence (δxi)i∈N of measures on E(C) converges in the weak sense to the

Haar measure normalized to volume one.

1.4. In 1997, L. Szpiro, E.Ullmo and S. Zhang [SUZ] showed a generalization from torsion points
(which are of Néron-Tate height zero) to points of a small positive height. Their result is as follows.

Theorem 1.5 (Szpiro, Ullmo, Zhang). Let A be an abelian variety over a number field K
and (xi)i∈N be a sequence of closed points in A. Assume that (xi)i∈N converges to the generic

point of A in the sense of the Zariski topology. Suppose further that lim
i→∞

hNT (xi) = 0.

Then, the associated sequence (δxi)i∈N of measures on A(C) converges in the weak sense to the

Haar measure of volume one.

1.6. Somewhat surprisingly, there is a completely parallel theorem for the naive height on pro-
jective space due to Yu. Bilu [Bi97].
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Theorem 1.7 (Bilu). Let (xi)i∈N be a sequence of closed points in PnQ. Assume that

(xi)i∈N converges to the generic point in the sense of the Zariski topology. Assume further

that lim
i→∞

hnaive(xi) = 0.

Then, the associated sequence (δxi)i∈N of measures on Pn(C) converges weakly to the Haar

measure of volume one on (S1)n ⊂ Cn ⊂ Pn(C).

Remark 1.8. For n = 1, Yu. Bilu proved this result already in 1988 [Bi88].

Canonical heights.

Definition 1.9. Let P be a projective variety over Q equipped with an ample invertible
sheaf L ∈ Pic(P ). Further, we assume there is given a self-map f : P → P such that there
is an isomorphism Φ: L ⊗d

∼=
−→ f∗L .

Then, the canonical height function hf,L on P is given by

hf,L (x) := lim
n→∞

1

dn
hL

(
f (n)(x)

)

for x ∈ P a closed point. Here, f (n) means the n-fold iteration of f . By hL , we denote the height
defined by the ample invertible sheaf L .

Remark 1.10. The limit process defining hf,L is a generalization of the classical one for the
Néron-Tate height [CS, Chapter VI, §4]. We will show in Example 1.15.ii) that the naive height
is a canonical height, too.

Remark 1.11. The height hL is defined only up to a bounded summand. Nevertheless, the canon-
ical height function hf,L is independent of the choice of a particular representative. Indeed, if
|h

(1)
L

(x) − h
(2)
L

(x)| 6 C for every x ∈ P then
∣∣∣∣

1

dn
h

(1)
L

(
f (n)(x)

)
−

1

dn
h

(2)
L

(
f (n)(x)

)∣∣∣∣ 6
C

dn
.

An equidistribution result. The goal of the present article is to prove a common generalization
of Theorems 1.5 and 1.7. We will give an Arakelovian approach for a situation covering the case
of the Néron-Tate height as well as that of the naive height.

Situation 1.12. Let P be a regular projective variety over Q containing a group scheme G ⊆ P
as an open dense subset. Further, let a morphism f : P → P be given and assume that

i) the unit e is a repelling fixed point. I.e., all eigenvalues of the tangent map Tef : TeG → TeG
are of absolute value strictly bigger than 1.

ii) f |G is a group homomorphism f |G : G → G.

iii) There is some compact, Zariski dense subgroup K ⊆ G(C) which is both backward and
forward invariant under fC.

Finally, let L ∈ Pic(P ) be ample and Φ: L ⊗d
∼=

−→ f∗L be an isomorphism. Then, there is the
canonical height hf,L on P .

Theorem 1.13 (Equidistribution on P (C)). Let P , f , L , and Φ be as in 1.12. Further, let

(xi)i∈N be a sequence of closed points in P which is convergent to the generic point of P in the

sense of the Zariski topology. Finally, suppose that hf,L (xi) → 0.
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Then, the associated sequence (δxi)i∈N of measures on P (C) converges in the weak sense to the

measure τ on P (C) being the zero measure on P (C)\K and the Haar measure of volume one

on K.

Remark 1.14. For a general self-map f , iterating will lead to a fractal. Unfortunately, not much
is known about the corresponding fractal heights.

Examples 1.15. The condition that e is a repelling fixed point is fulfilled, in particular, when G is
commutative and f : g 7→ gl is the homomorphism raising to the l-th power for l > 2. This includes
the two standard cases. Namely,

i) let P = G = A be an abelian variety and L ∈ Pic(A) a symmetric, ample invertible sheaf.
One has

f = [l] : A → A

and puts K = A(C). Then, independently of the choice of l, hf,L is the Néron-Tate height
corresponding to L .

ii) Let P = Pn, G = Gn+1
m /Gm

∼=Gn
m and L = O(1). We have

f = [l] : (x0, . . . , xn) 7→ (xl
0, . . . , x

l
n)

and put K := U(1)n. Here, hf,L is the naive height.

iii) One may combine abelian varieties and projective spaces and consider a split semi-abelian

variety A × Pn. Here, G = A ×Gn
m, K = A × U(1), and L = S ⊠ O(p) for S a symmetric,

ample invertible sheaf on A. One may put f := [l] × [l2].

A. Chambert-Loir’s equidistribution result [CL] for quasi-split semi-abelian varieties is easily
deduced from Theorem 1.13.

iv) Consider a free abelian group N of finite rank and a finite rational polyhedral decomposition
{σα}α of N⊗ZR. These data define a proper toric variety X.

The multiplication map N → N , n 7→ ln induces a self-morphism f = [l] : X → X. Fur-
ther, consider a function g : N ⊗ZR → R which is strictly convex in the sense of [KKMS,
Chapter I, Theorem 13]. Then, L := Fg is a T -invariant ample invertible sheaf on X.
One has [l]∗Fg

∼= Flg = F⊗l
g . In this situation, P = X, G = T ∼= Gn

m is the Zariski dense
torus in X, and K ⊂ T is its maximal compact subgroup.

We have a canonical height on the toric variety X such that equidistribution is fulfilled for
sequences which are generic and small.

Remark 1.16. The latter example clearly contains the case of the naive height on projective space.
Note that it also contains the blow-up of P2 in one point and the canonical height defined by
the ample divisor nH − mE for n,m ∈ N, n > m.

Remark 1.17. For abelian varieties, our proof will coincide with that of Szpiro, Ullmo, and Zhang.
In the case of the projective space, it seems to us that our proof is different from Bilu’s.

2. The dynamics of f

Arakelovian interpretation of the canonical height. Let P , f , L , and Φ be as in Definition 1.9.
In order to understand the canonical height better, we have to use the language of Arakelov
geometry [GS90].
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First, recall that in Definition 1.9 we may replace hL by any other height function which differs
from hL only by a bounded summand. For example, we may work with h′

L (x) := 1
m hl2

(
iL ⊗m(x)

)
.

Further, there is a projective model P of P over SpecZ to which L ⊗m extends. Indeed, L ⊗m

defines a closed embedding iL ⊗m : P → PN and one may put P := iL ⊗m(P ).

Then, L := O(1)|P is an extension of L ⊗m to P. We equip L with the restriction of the
Fubini-Study metric. This guarantees that, for every closed point x ∈ P ,

hL ,0(x) := hL (x) =
1

m
h(L ,‖ .‖)(x) .

Here, h(L ,‖ .‖) is the absolute height defined [BGS] by the smooth Hermitian line bundle (L , ‖ .‖).

The recursion is given by hL ,i+1(x) := 1
d hL ,i

(
f(x)

)
. Unfortunately, the isomorphism

Φ: L ⊗d
∼=
−→ f∗L does not extend to P. If it would then we could put ‖ .‖0 := ‖ .‖ and, re-

cursively,

‖ .‖i := Φ−1f∗‖ .‖
1/d
i−1 .

This would then lead to hL ,i(x) = 1
m h(L ,‖ .‖i)(x).

2.1. To make the idea above precise, one has to work in the more flexible context of adelic
Picard groups. This is a theory due to S. Zhang [Zh95a]. In an appendix, we will recall it shortly
and fix notation.

There is the adelic metric ‖ .‖
(0)
∼ on L ⊗m induced by L ,

(L ⊗m, ‖ .‖(0)
∼ ) := iP (L , ‖ .‖0) .

Since L is very ample and ‖ .‖0 is a restriction of the Fubini-Study metric, we see that

(L ⊗m, ‖ .‖
(0)
∼ ) ∈ C>0

P . Further, we define, recursively,

‖ .‖(i)
∼ := (Φ⊗m)−1f∗

[
‖ .‖(i−1)

∼

] 1
d .

We have (L ⊗m, ‖ .‖
(i)
∼ ) ∈ C>0

P for every i ∈ N. We also observe that the isomorphism Φ does

extend to an open neighbourhood of the generic fiber of P. Therefore, the sequence (‖ .‖
(i)
∼ )i∈N is

actually constant at all but finitely many valuations. Furthermore,

δ
(
(L ⊗m, ‖ .‖(i)

∼ ), (L ⊗m, ‖ .‖(i+1)
∼ )

)
6

1

di
·δ

(
(L ⊗m, ‖ .‖(0)

∼ ), (L ⊗m, ‖ .‖(1)
∼ )

)
.

This means, for every ν ∈ Val(Q), the sequence (‖ .‖
(i)
ν )i∈N of metrics is uniformly convergent.

The limit ‖ .‖∼ clearly fulfills all the requirements of Definition A.4. I.e., ‖ .‖∼ is an adelic metric
on L ⊗m. Even more,

L := (L ⊗m, ‖ .‖∼) ∈ C>0
P .

Finally, we have hf,L = 1
m h

L
= 1

m h(L ⊗m,‖ .‖∼).

Lemma 2.2. f is automatically finite of degree ddim P .

Proof. P is a projective variety over Q and f : P → P is a morphism such that L ⊗d ∼= f∗L

for some ample L ∈ Pic(P ). In particular, f∗L is ample which implies f is quasi-finite.
As f is a projective morphism, this is sufficient for finiteness. Further, we have degL P 6= 0
and degf∗L P = degL ⊗d P = ddim P degL P .

Lemma 2.3. i) pP
Z

(
(L ⊗m, ‖ .‖∼), . . . , (L ⊗m, ‖ .‖∼)

)
= 0,

ii) e1(hL
) = . . . = edim P+1(hL

) = 0.
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Proof. i) For every i ∈ N, write

Pi := pP
Z

(
(L ⊗m, ‖ .‖(i)

∼ ), . . . , (L ⊗m, ‖ .‖(i)
∼ )

)
.

Then, since f is of degree ddim P ,

ddim P Pi−1 := pP
Z

(
(f∗

L
⊗m, f∗‖ .‖(i−1)

∼ ), . . . , (f∗
L

⊗m, f∗‖ .‖(i−1)
∼ )

)
= 0 .

Applying the isomorphism Φ⊗m and dividing each of the (dimP + 1) operators by d yields

Pi−1

d
= pP

Z

(
(L ⊗m, ‖ .‖(i)

∼ ), . . . , (L ⊗m, ‖ .‖(i)
∼ )

)
= Pi .

(Pi)i∈N is, therefore, a zero sequence.

ii) There is a constant C such that hL ,0(x) > C for every x ∈ P . Consequently, hL ,i(x) > C/di

and h
L

(x) > 0 for every x ∈ P . This means edim P+1(hL
) > 0 . Theorem A.14 implies the claim.

Remark 2.4. As the construction of ‖ .‖∼ depends on the iterated pull-backs under f , one has
to understand the dynamics of the system (f i)i>1. For our purposes, it will be sufficient to pay
attention to the infinite place. I.e., to the dynamics of that system on P (C).

Analyzing the dynamics of f . Let us analyze the special situation described in 1.12.

i) G ⊆ P is an open dense subset being a group scheme. The self-map f has a restriction
m := f |G : G → G which is a homomorphism of group schemes. Therefore, ker m is a group
scheme of finite order ddim P .

As f is surjective, im m is a priori Zariski dense. Being a homomorphism, m is surjective, too.

There is a compact subgroup K ⊆ G(C) which is both forward and backward invariant under mC.
In particular, all the finite groups ker(mC ◦ . . . ◦ mC) are contained in K.

ii) All eigenvalues of the tangent map Tem have absolute value strictly bigger than 1. There-
fore, on G(C), there is a left invariant Riemannian metric µ such that q := ‖(TemC)−1‖max < 1.

Indeed, based on the Jordan normal form, one easily finds a Hermitian scalar product on TeG(C)
satisfying the analogous inequality. We take its real part. By transport of structure, we find a
left invariant Riemannian metric µ on G(C).

We will denote by δ the metric on G(C) given by the lengths of the µ-shortest paths.

Convention 2.5. In order to simplify notation, we will usually write f and m instead of fC
and mC when there is no danger of confusion.

Lemma 2.6. a) m induces a diffeomorphism m : G(C)/K → G(C)/K.

b) m is expanding for the Riemannian metric µ on G(C)/K induced by µ. More precisely,

δ
(
mC(z1),mC(z2)

)
>

1

q
δ(z1, z2)

for any z1, z2 ⊆ G(C)/K.

Proof. a) m is well-defined since K is forward invariant under m. Backward invariance of K
implies that m is even an injection. Further, as m : G(C) → G(C) is a surjection, the same is
then true for m. Finally, the tangent map Tem : TeG(C)/K → TeG(C)/K is expanding, too.
In particular, Tem is invertible. This yields that m is a local diffeomorphism.

b) The preimage m−1(w) of a path w in G(C)/K is a path, too. All tangent maps of m are
expanding by a factor > 1

q . Therefore, ℓ
(
m−1(w)

)
6 q · ℓ(w). This implies the claim.
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Corollary 2.7. Let G(C) = G(C) ∪ {∞} be the one-point compactification of G(C).

Then, for each x ∈ G(C)\K, the sequence (xi)i∈N given by x0 = x and xi+1 = m(xi) converges

to ∞. In other words, K is the Julia set of the dynamical system (mi)i>1 on G(C).

Proof. We have to show that, for each compact set A ⊆ G(C), there are only finitely many i ∈ N
such that xi ∈ A. Replacing A by KA, if necessary, we may assume that A is left K-invariant.
This means, we are given a compact set A ⊆ G(C)/K and have to verify that xi ∈ A for
only finitely many values of i. As m : G(C)/K → G(C)/K is expanding and x0 6= [K], we
have δ(xi, [K]) → ∞. However, A is a compact set. In particular, A is bounded.

Corollary 2.8. The union over all the groups ker(m ◦ . . . ◦ m) is dense in K.

Proof. Otherwise, the topological closure of K ′ :=
⋃

i∈N ker(

i times︷ ︸︸ ︷
m ◦ . . . ◦ m) would be a compact

Lie group properly contained in K. It is obvious that K ′ is forward and backward invariant
under fC. Therefore, the map induced by f on the compact homogeneous space K/K ′ would be
injective and expanding.

Notation 2.9. For N ∈ R, we will write UN (K) := {x ∈ G(C) | δ(x,K) 6 N}.

Proposition 2.10. Let µi be the measure induced by the smooth differential form

c1(L , ‖ .‖(i)
∞ ) ∧ . . . ∧ c1(L , ‖ .‖(i)

∞ )

of type (dim P,dim P ) on P (C). Then, the sequence (µi)i∈N converges weakly to the measure µ
which is the zero measure on P (C)\K and the Haar measure of volume degL P on K.

Proof. First step. Generalities.

Each µi is of volume degL P . Further, the sequence (µi)i∈N obeys the recursive low
µi+1 = 1

ddim P m∗µi.

Second step. µi|P (C)\K → 0.

Let g ∈ C0(P (C)\K) be a continuous function with compact support. We consider the se-
quence (gi)i∈N given by g0 := g and gi+1 := 1

ddim P f∗gi. As usual, the push-forward of a function
is given by summation over the fibers of the morphism f . By definition, µi(g) = µ0(gi). Thus, let
us show µ0(gi) → 0 for i → ∞.

For this, we note that |g| is bounded by some constant C. This implies |gi| 6 C for every i.
Further, there is some ε > 0 such that supp(g) ⊆ P (C)\Uε(K). Consequently,

|µi(g)| = |µ0(gi)| 6 C

∫

P (C)

χ(P (C)\Uε/qi ) dµ0 .

Here, χA denotes the characteristic function of a measurable set A. The integrand con-
verges monotonically to χP (C)\G(C) which is of integral zero. The theorem of Beppo Levi
yields µi(g) → 0.

Third step. The assertion in general.

Let g ∈ C0(G(C)) be a continuous function with compact support. As above, we put
g0 := g and gi+1 := 1

ddim P m∗gi. Thus, we have µi(g) = µ0(gi). The sequence (gi)i∈N is uni-
formly bounded. Hence, it suffices to show that it converges pointwise to the constant

I :=
1

vol K

∫

K
g dρ .
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We claim that the convergence is actually uniform in every compact set A ⊆ G(C).

For this, we may assume without loss of generality that A = UN (K) for some N ∈ R.
Further, note that

gi(x) =
1

♯ ker mi

∑

k∈ker mi

g(ky)

for any y such that f(y) = x. Here, we clearly have (mi)−1(A) ⊆ UNqi(K) and Nqi → 0
for i → ∞.

In addition, g is uniformly continuous on A and m is expanding. Thus, for each ε > 0, there
is some i ∈ N such that, for two arbitrary points x, x′ ∈ A, one can find y, y′ such that f(y) = x,
f(y′) = x′, and δ(y, y′) < ε. Consequently, (max gi|A − min gi|A) tends to zero for i → ∞.
Finally, for every i ∈ N, I is the mean value of gi on K.

Some further observations. It is not true in general that the curvature current, given by
c1(LC, ‖ .‖∞) := 1

2πi∂∂ log ‖s‖2 for a non-zero rational section of LC, vanishes on P (C)\K.
Nevertheless, one has at least the following.

Lemma 2.11. The curvature current c1(LC, ‖ .‖∞) has the properties below.

a) The restriction c1(LC, ‖ .‖∞)|G(C) is left and right K-invariant.

b) It satisfies the equation f∗c1(LC, ‖ .‖∞) = d · c1(LC, ‖ .‖∞).

Proof. a) By construction, c1(LC, ‖ .‖∞,i) is invariant under ker(miC). Thus, c1(LC, ‖ .‖∞), being
the weak limit of that sequence of currents, is invariant under

⋃
i∈N ker(miC). Invariance under

any k ∈ K follows as ki → k implies that the test forms kiω converge to kω in the Schwartz space.

b) is clear.

3. Perturbing almost semiample metrics

3.1. One of the most natural ways to produce a new adelic metric from an old one is to replace
‖ .‖∞ by ‖ .‖∞ ·exp(−g) for some continuous function g ∈ C(P (C)). For the new metric, we want
to use the theorem of successive minima A.14 as a fundamental tool. It is, therefore, necessary to
understand for which g this metric is almost semiample, i.e., the limit of a uniformly convergent
sequence of metrics with positive curvature.

Notation 3.2. In this section, we will continue to use the notation of 1.12. Further, we will denote
by S the set of all continuous functions g ∈ P (C) such that ‖ .‖∞ · exp(−g) is almost semiample.

Lemma 3.3. a) One has C ∈ S for every constant C.

b) Let g1, g2 ∈ S and 0 < a < 1. Then, ag1 + (1 − a)g2 ∈ S.

c) If g ∈ S then 1
df∗g ∈ S.

d) Let g ∈ S be a function such that supp g ⊆ G(C). Then, for each k ∈ K, one has g · k ∈ S for

(g · k)(x) :=

{
g(kx) if x ∈ G(C) ,

0 otherwise .

e) S is closed under uniform convergence.

Proof. e) is trivial.
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a) ‖ .‖∞ is almost semiample. Thus, there is a sequence (‖ .‖i
∞)i∈N of smooth Hermitian met-

rics with strictly positive curvature on LC which is uniformly convergent to ‖ .‖∞. The met-
rics ‖ .‖∞,i · exp(−C) have the same curvatures and converge uniformly to ‖ .‖∞ · exp(−C).

b) Let (‖ .‖′i)i∈N and (‖ .‖′′i )i∈N be sequences uniformly convergent versus ‖ .‖∞ · exp(−g1)
and ‖ .‖∞ · exp(−g2), respectively. Put ‖ .‖i := ‖ .‖′ ai · ‖ .‖

′′ (1−a)
i . These metrics have positive cur-

vature and, uniformly,

‖ .‖i → ‖ .‖∞ · exp
(
− ag1 − (1 − a)g2

)
.

c) Put ‖ .‖′∞ := ‖ .‖∞ · exp(−g). Then,

Φ−1f∗‖ .‖
′ 1
d
∞ = Φ−1f∗‖ .‖

1
d
∞ · exp

(
−

1

d
f∗g

)
= ‖ .‖∞ · exp

(
−

1

d
f∗g

)
.

Therefore, if (‖ .‖′∞,i)i∈N is a sequence of metrics with positive curvature uniformly convergent
to ‖ .‖′∞ then (Φ−1f∗‖ .‖

′ 1
d

∞,i)i∈N converges uniformly to ‖ .‖∞ · exp(−1
df∗g).

d) We denote by ek : G(C) → G(C) the multiplication by k from the left. By e), we may assume
that k ∈ ker(mj) for some j ∈ N. To show ‖ .‖∞ · exp(−g · k) is almost semiample, it suffices
to consider the Hermitian metric ‖ .‖dj

∞ · exp(−djg · k) on L
⊗djC . Let us consider its restriction

to G(C), first. Iterated application of Φ induces an isomorphism

e∗kL
⊗djC |G(C)

∼= e∗k(f
j)∗LC|G(C)

∼= (f j)∗LC|G(C)
∼= L

⊗djC |G(C) . (1)

Here, the isomorphism in the middle is canonical as f j◦ek = f j.

By construction 2.1, ‖ .‖∞ is the uniform limit of a sequence (‖ .‖
(i)
∞ )i∈N such that, for ev-

ery i > j,

e∗k
[
‖ .‖(i)

∞

]dj

=
[
‖ .‖(i)

∞

]dj

under the identification (1). By consequence, e∗k‖ .‖dj

∞ = ‖ .‖dj

∞, too, which shows

e∗k
[
‖ .‖dj

∞ · exp(−djg)
]

= ‖ .‖dj

∞ · exp(−djg · k) .

Clearly, ‖ .‖dj

∞ · exp(−djg · k) is almost semiample on G(C). In fact, almost semiampleness is
preserved under holomorphic pull-back.

On the other hand, there is some neighbourhood U of P (C) \G(C) such that g|U = 0.
This implies −djg · k = 0 and, therefore, ‖ .‖dj

∞ · exp(−djg · k) = ‖ .‖dj

∞ on U . In particular,
‖ .‖dj

∞ · exp(−djg · k) is almost semiample on U . The assertion follows from Sublemma 3.4, below.

Sublemma 3.4. Let M be a projective complex manifold, G ∈ Pic(M) be ample, and

{U1, . . . , Un} an open covering. Further, let ‖ .‖1, . . . , ‖ .‖n be continuous Hermitian metrics

on G |U1 , . . . ,G |Un such that, for some δ > 0, the sets D1,δ, . . . ,Dn,δ, given by

Di,δ := {x ∈ Ui | ‖ .‖i,(x) 6 (1 + δ) · min(‖ .‖1,(x), . . . , ‖ .‖n,(x))} ⊆ Ui

are compact. Assume, each ‖ .‖i is almost semiample. Then, the continuous Hermitian met-

ric ‖ .‖ := mini ‖ .‖i is almost semiample.

Proof. We may assume that G is very ample. For every i, let (‖ .‖ij)j∈N be a sequence of smooth
and positively curved metrics on G |Ui which converges uniformly to ‖ .‖i. Put

‖ .‖−j := min(‖ .‖1j , . . . , ‖ .‖nj) .

For j ≫ 0, ‖ .‖−j is a continuous Hermitian metric on the whole of G . The sequence (‖ .‖−j )j
converges uniformly to ‖ .‖.

8
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We choose an embedding i : M →֒ PN such that i∗O(1) ∼= G . Further, we extend the smooth
metrics ‖ .‖ij to smooth metrics ‖ .‖′ij on O(1) which are defined on open subsets Wi ⊇ Ui of PN .

Under the tautological action PGLn(C) × PN → PN , each γ ∈ PGLn(C) defines an auto-
morphism eγ : PN → PN such that there is a natural identification e∗γO(1) ∼= O(1). We find an
open neighbourhood O of e ∈ PGLn(C) such that, for every γ ∈ O and every i ∈ {1, . . . , n}, the
pull-back e∗γ ‖ .‖′ij is well-defined on Di,δ and e∗γ‖ .‖′ij |Ui∩ e−1

γ (Wi)
has strictly positive curvature in

every point of Di,δ.

We claim that, for each γ ∈ O, the perturbation

‖ .‖−,γ
j := e∗γ

(
min(‖ .‖′1j , . . . , ‖ .‖′nj)

)
|M

of ‖ .‖−j has a positive curvature current on each holomorphic curve inside M .

Indeed, this is a local statement. Let x ∈ M . Fix a holomorphic section 0 6= s ∈ Γ(U,G )
defined in some neighbourhood U of x. Then,

c1(G , ‖ .‖−,γ
j )|U = −ddc log

(
‖s‖−,γ

j

)2

= ddc
(
max(− log e∗γ‖s‖

′ 2
1j , . . . ,− log e∗γ‖s‖

′ 2
nj)

)
.

Observe that the maximum of a finite system of plurisubharmonic functions is plurisubhar-
monic, again.

Now, we use Sobolev’s averaging procedure. For every non-negative smooth function ϕ 6= 0
on PGLn(C) such that suppϕ ⊆ O, we get the approximation

‖ .‖−,ϕ
j :=

∫

PGLn(C)

ϕ(γ)·‖ .‖−,γ
j dργ

/ ∫

PGLn(C)

ϕ(γ) dργ

of ‖ .‖−j . Here, ρ is the left Haar measure on PGLn(C).

Finally, consider a sequence (ϕk)k∈N of functions as above which converges weakly to the
delta distribution δe. Every ‖ .‖−,ϕk

j is smooth and positively curved. The sequence (‖ .‖−,ϕk
k )k∈N

converges uniformly to ‖ .‖.

Corollary 3.5. If g1, g2 ∈ S then g := max{g1, g2} ∈ S.

Corollary 3.6. Let l ∈ N, 0 < a < 1, and 0 6= s ∈ Γ(P (C),L ⊗lC ). Then,

g := max{a log ‖s‖l, 0} ∈ S .

Proof. Consider the function g on U := {x ∈ P (C) | log ‖s‖(x) >−1} given by

g(x) := a log ‖s‖l(x) .

We have to show that the Hermitian metric

‖ .‖′∞ := ‖ .‖l
∞ · exp(−g)

on L
⊗lC |U is the limit of a uniformly convergent sequence of smooth metrics with positive cur-

vature. We put ‖ .‖′∞,i := ‖ .‖l
∞,i/

(
‖s‖l

∞,i

)a
. It is clear that, uniformly, ‖ .‖′∞,i → ‖ .‖′∞. Further,

c1(LC|U , ‖ .‖′∞,i) = ddc(− log ‖s‖′2∞,i)

= ddc
(
− log(‖s‖l

∞,i)
2(1−a)

)

= (1 − a)l · c1(LC|U , ‖ .‖∞,i) > 0 .

9
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Lemma 3.7. Let g ∈ S such that supp g ⊆ G(C). Consider the K-invariant function g given by

g(x) :=

{
max
k∈K

g(kx) if x ∈ G(C) ,

g(x) otherwise .

Then, g ∈ S, too.

Proof. g is the uniform limit of sequence (gi)i∈N, defined by gi(x) := maxk∈ker(mi) g(kx).

Proposition 3.8. Let ε > 0 and U ⊆ G(C) be an open set containing K. Then, there is some

non-negative K-invariant function 0 6= g ∈ R+·S such that

i) g(e) = 1,

ii) max
x∈P (C)

g(x) 6 1 + ε,

iii) supp g ⊆ U .

Proof. Put D := P \ G. For some j ≫ 0, the coherent sheaf L ⊗j⊗ID has a section which
does not vanish in e ∈ G. I.e., there is a section s ∈ Γ(P,L ⊗j) vanishing in D but not in e.
Using Corollary 3.6, we see

g̃C := max
{ 1

2j
log ‖Cs‖j , 0

}
= max

{ 1

2j
log ‖s‖j +

log C

2j
, 0

}
∈ S

for every C > 0. It is clear that supp g̃C ⊆ G(C) is a compact set.

We put A := maxx∈K
1
2j log ‖s‖j(x) and B := maxx∈P (C)

1
2j log ‖s‖j(x). Then, we choose C

such that log C + A > 0 and log C+B
log C+A 6 1 + ε. Further, let g0 be the K-invariant function

associated to g̃C . I.e.,

g0 :=

{
max
k∈K

g̃C(kx) if x ∈ G(C) ,

g(x) otherwise .

By construction, g0(e) > 0 and maxx∈P (C) g0(x)/g0(e) 6 1 + ε. Further, supp g0 ⊆ K ·supp g̃C

is compact. Lemma 3.7 shows that g0 ∈ S.

Finally, we define a sequence (gi)i∈N of functions on P (C) by putting, recursively,
gi+1 := 1

df∗gi. Then, one clearly has gi(e) = g0(e) > 0 and

max
x∈P (C)

gi(x)/gi(e) = max
x∈P (C)

g0(x)/g0(e) 6 1 + ε

for every i ∈ N. Lemma 3.3.c) implies that gi ∈ S. As supp g0 is compact, there is some N ∈ R
such that supp g0 ⊆ UN (K). This yields, by Lemma 2.6.b), that supp gi ⊆ UNqi(K). There-
fore, the function g, given by g(x) := gi(x)/gi(e) for some i ≫ 0, has all the properties de-
sired.

4. Equidistribution

Definition 4.1. Let X be a projective variety over Q. Then, a sequence (xi)i∈N of closed points
on X is called generic if no infinite subsequence is contained in a proper closed subvariety of X.

Remark 4.2. In other words, (xi)i∈N is generic if it converges to the generic point with respect
to the Zariski topology.

10
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Definition 4.3. Let X be a projective variety over Q and L ∈ P̃ic(X). Suppose that
edim X+1(hL

) = 0. Then, a sequence (xi)i∈N of closed points on X is called small if h
L

(xi) → 0.

Lemma 4.4. Let X be a projective variety over Q and L ∈ C>0
X . Assume edim X+1(L ) = 0.

Then, pX
Z (L , . . . ,L ) = 0 is equivalent to the existence of a sequence of closed points on X which

is generic and small.

Proof. “=⇒” There are only countably many closed subvarieties X1,X2, . . . ⊂ X. Further, The-
orem A.14 implies e1(hL

) = 0. Therefore, we may choose a sequence (xi)i∈N of closed points
on X such that xi ∈ X\X1\X2\. . .\Xi and h

L
(xi) < 1

i . The sequence (xi)i∈N is generic and small.

“⇐=” Let (xi)i∈N be a sequence of closed points on X which is generic and small. Let Y ⊂ X
be a closed subset of codimension one. Then, only finitely many of the xi are contained in Y .
Hence, infx∈X\Y h

L
(x) = 0. As this is true for every Y , we see that e1(hL

) = 0. Theorem A.14
yields pX

Z (L , . . . ,L ) = 0.

Lemma 4.5. Let P , f , L , and Φ be as in 1.12. Denote by S the set of all continuous func-

tions g ∈ C(P (C)) such that ‖ .‖∞ · exp(−g) is almost semiample.

Let ϕ ∈ C(P (C)). Then, for every ε > 0, there exist a function ϕ1 ∈ C(P (C)) supported

in P (C)\K and a function ϕ2 ∈ R+·S such that

‖ϕ − ϕ1 − ϕ2‖max < ε .

Proof. The set T := {h ∈ C(K) | h = ϕ|K for some ϕ ∈ R+·S} fulfills all the assumptions of Sub-
lemma 4.6, except for closedness under uniform convergence. Indeed, Lemma 3.3.a) and b) imply
that assumptions i) and ii) are satisfied. Corollary 3.6 is general enough to guarantee assump-
tion iii). Lemma 3.3.d) yields assumption iv). Finally, Corollary 3.5 implies that assumption v)
is fulfilled.

Therefore, there is some ϕ2 ∈ R+·S such that |ϕ(x) − ϕ2(x)| < ε
2 for every x ∈ K. A de-

composition of the unit adapted to a suitable open covering {P (C)\K,U} of P (C) yields some
ϕ1 ∈ C(P (C)) such that suppϕ1 ⊆ P (C)\K and

∣∣(ϕ(x) − ϕ2(x)
)
− ϕ1(x)

∣∣ < ε

for every x ∈ P (C).

Sublemma 4.6. Let L be a compact topological group and T ⊆ C(L) a set of continuous real-

valued functions fulfilling the following conditions.

i) T contains all the constant functions.

ii) T is closed under addition and multiplication by positive constants.

iii) For each x ∈ L such that x 6= e, there is some g ∈ T such that g(e) > g(x).

iv) For each x ∈ L and g ∈ T , the shift g · x is in T , too.

v) If g ∈ T then g+∈ T for g+(x) := max {g(x), 0}.

vi) T is closed under uniform convergence.

Then, T = C(L).

Proof. We fix a Haar measure ρ on L. Then, conditions ii,) iv) and vi) together imply the fol-
lowing.

11
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(†) Let h ∈ T and g be a non-negative, measurable, and bounded function. Then, for the
convolution, we have g∗h ∈ T .

Therefore, it suffices to show that, for each open set U ⊆ L containing e, there is some non-
negative function gU ∈ T such that gU 6= 0 and supp gU ⊆ U . For this, by i), ii), and v), we only
need a function g ∈ T taking its maximum entirely in U .

Assume, for some open U0, there would be no such function. Then, for every g ∈ T taking
its maximum in e, there is a non-empty set

Ag := {y ∈ L\U0 | g(y) = g(e)} ⊆ L\U0

where the maximum is taken, too. If
⋂

g∈T Ag = ∅ then, by compactness, already a finite inter-
section Ag1 ∩ . . . ∩ Agn would be empty. Then, g1 + . . . + gn ∈ S had its maximum in U0, only.

Consequently, AU0 :=
⋂

g∈T Ag is a non-empty set. Put A := {e} ∪
⋃

U∋e,U open
AU . By construction,

this set has the property below.

(‡) Every function g ∈ T taking its maximum in e is necessarily constant on A. Further, A ⊆ L
is the largest set containing e with this property.

The property (‡) implies that A is closed. Further, for y ∈ A and g ∈ T , the shift g ·y−1 has its
maxima in yA. Therefore, A = yA for every y ∈ A. This means that A ⊆ L is a subgroup. Fix a
Haar measure ρA on A and denote by i : A → L the natural inclusion. Property (‡) together
with i), ii) and v) implies that there is a sequence of functions of T such that the associated
distributions converge weakly to i∗ρA. Finally, property (†), together with vi), guarantees that
every A-left invariant continuous function is an element of T .

Now, we use condition iii). Choose some x0 ∈ A different from e. There exists some g ∈ T
such that g(e) > g(x0). Shifting by an element of A, if necessary, we may assume that
g(e) = maxx∈A g(x).

Define another continuous function M on L by M(x) := −maxa∈A g(ax). Obviously, M is A-
invariant. Thus, M ∈ T . Consequently, g̃ := g + M ∈ T , too. However, g̃(x) 6 0 for every x ∈ L,
g̃(e) = 0, and g̃(x0) < 0 together form a contradiction to property (‡).

Proposition 4.7. Let P , f , L , and Φ be as in 1.12. Further, let (xi)i∈N be a sequence of closed

points on P which is generic and small. Assume, some non-negative ϕ ∈ C(P (C)) fulfills either

suppϕ ⊆ P (C)\K or ϕ ∈ R+·S. Then,

lim inf
i→∞

∫

P (C)

ϕdδxi >

∫

P (C)

ϕdτ .

Here, τ is the zero measure on P (C) \ K and the Haar measure of volume one on K.

Proof. For ϕ such that suppϕ ⊆ P (C)\K, the right hand side is zero. Thus, in this case, the
assertion is clear.

Let ϕ ∈ R+·S. Then, for any positive λ ∈ R, let ‖ .‖λ
∼ be the adelic metric on L ⊗m given

by ‖ .‖λ
p := ‖ .‖p for the non-archimedean valuations and by ‖ .‖λ

∞ := ‖ .‖∞ · exp(−λϕ) for the

archimedean valuation. For λ → 0, the adelic metric ‖ .‖λ fulfills the assumptions of Theo-
rem A.14. Further, one clearly has

h(L ⊗m,‖ .‖λ)(xi) = h
L

(xi) + λ

∫

X(C)

ϕdδxi .

12
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As (xi)i∈N is generic and h
L

(xi) → 0, we obtain, according to the very definition of e1,

λ·lim inf
i→∞

∫

X(C)

ϕdδxi > e1(h(L ⊗m,‖ .‖λ)) . (4)

On the other hand,

1

(dim X + 1) c1(L
⊗mQ )dim X

pX
Z

(
(L ⊗m, ‖ .‖λ

∼), . . . , (L ⊗m, ‖ .‖λ
∼)

)

=
1

(dim X + 1)mdim X degL X
pX
Z (L , . . . ,L )

+
1

mdimX degL X
·

pX
Z

(
(OX , ‖ .‖∞ · exp(−λϕ)), (L ⊗m, ‖ .‖∼), . . . , (L ⊗m, ‖ .‖∼)

)

+ O(λ2) .

By virtue of Lemma 4.4, we have pX
Z (L ,. . .,L ) = 0. Further,

1

mdimXdegL X
·pX

Z

(
(OX , ‖ .‖∞ · exp(−λϕ)), (L ⊗m, ‖ .‖∼),. . ., (L ⊗m, ‖ .‖∼)

)

= λ lim
i→∞

Ii(ϕ)

for

Ii(ϕ) :=
1

mdimX
pX
Z

(
(OX , ‖ .‖∞ · exp(−ϕ)), (L ⊗m, ‖ .‖(i)

∼ ),. . ., (L ⊗m, ‖ .‖(i)
∼ )︸ ︷︷ ︸

dimX times

)
.

At this level, we can make the arithmetic intersection product explicit and find

Ii(ϕ) =

∫

P (C)
ϕc1(L , ‖ .‖(i)

∞ ) ∧. . .∧ c1(L , ‖ .‖(i)
∞ ) .

Theorem A.14 therefore yields in view of Proposition 2.10

e1(h(L ⊗m,‖ .‖λ)) > λ·

∫

P (C)

ϕdτ . (5)

The equations (4) and (5) together imply the assertion.

Theorem 4.8 (Equidistribution on P (C)). Let P , f , L , and Φ be as in 1.12. Then, for each

sequence (xi)i∈N of closed points on P which is generic and small, the associated sequence of

measures (δxi)i∈N converges weakly to the measure τ which is the zero measure on P (C)\K and

the Haar measure of volume one on K.

Proof. First step. δxi |P (C)\K → 0.

By Proposition 3.8, for every ε1, ε2 > 0, there is some non-negative gε1,ε2 ∈ S such
that supp gε1,ε2 ⊆ Uε1(K),

max
x∈P (C)

gε1,ε2 6 1 + ε2 ,

and ∫

P (C)
gε1,ε2 dτ = 1 .

13
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Then, by Proposition 4.7,

lim inf
i→∞

∫

P (C)

gε1,ε2 dδxi > 1 .

This yields

lim sup
i→∞

∫

P (C)

(1 − gε1,ε2) dδxi 6 0 .

But

1 − gε1,ε2(x) >

{
1 if x ∈ P (C)\Uε1(K) ,

−ε2 if x ∈ Uε1(K) .

Consequently,

lim sup
i→∞

[
δxi

(
P (C)\Uε1(K)

)
− ε2δxi

(
Uε1(K)

)]
6 0 .

This shows

lim sup
i→∞

δxi(P (C)\Uε1(K)) 6 ε2 .

As the latter is true for every ε2 > 0, we have

lim
i→∞

δxi(P (C)\Uε1(K)) = 0 .

Further, this formula is true for each ε1 > 0. Hence, (δxi |P (C)\K)i∈N converges weakly to the
zero measure.

Second step. The assertion in general.

Let ϕ ∈ C(P (C)) be an arbitrary continuous function. As we can interchange the roles of ϕ
and (−ϕ), it suffices to prove

lim inf
i→∞

∫

P (C)

ϕdδxi >

∫

P (C)

ϕdτ.

By Lemma 4.5, we have continuous functions ϕ1 and ϕ2 on P (C) such that suppϕ1 ⊆ P (C)\K
and ϕ2 ∈ R+·S. The result of the first step shows

lim
i→∞

∫

P (C)

ϕ1 dδxi = 0 .

Further, by Proposition 4.7,

lim inf
i→∞

∫

P (C)

ϕ2 dδxi >

∫

P (C)

ϕ2 dτ .

Consequently,

lim inf
i→∞

∫

P (C)

ϕdδxi >

∫

P (C)

ϕdτ − ε .

The assertion follows since ε > 0 is arbitrary.

Corollary 4.9. Let X ⊂ P be a closed subvariety and (xi)i∈N be a sequence of closed points

on X which is generic and small.

Then, the sequence (δxi |X(C)\K)i∈N converges in the weak sense to the zero measure.

14
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Proof. As there are only finitely many i such that xi 6∈ G, let us assume that the whole se-
quence (xi)i∈N is contained in G. Choose some K-invariant metric on G(C) and assume that,
for some ε > 0, we would have

lim inf
i→∞

δxi

(
X(C)\Uε(K)

)
= δ > 0 .

We will construct another sequence (yi)i∈N which is generic and small on the whole of P .
For this, note first that we have h

L
(x) = 1

deg f h
L

(
f(x)

)
. Consequently, h

L
is invariant under

shift by any torsion point t ∈ Ktor =
⋃

j∈N ker(mj). Further, all the sequences (t·xi)i∈N fulfill

lim inf
i→∞

δt·xi

(
P (C)\Uε(K)

)
= δ .

Finally, K ⊆ G(C) is Zariski dense. Therefore, for each i, the union
⋃

t∈Ktor

{t·xi} is a Zariski dense
subset of P .

Recall, at this point, the fact there are only countably many proper closed subvari-
eties P0, P1, P2, . . . ⊂ P . We may choose a sequence (yi)i∈N such that, for every i ∈ N, one has
yi ∈

⋃
t∈Ktor,i>0

{t·xi} and yi ∈ P \P0\. . .\Pi. Then,

δyi

(
P (C)\Uε(K)

)
> δ/2

for i ≫ 0 and h
L

(yi) → 0. This is a contradiction to Theorem 4.8.

Remark 4.10. This corollary shows, in particular, the following. If X ∩ K = ∅ then

pX
Z (L , . . . ,L ) > 0 .

In other words, there are no small and generic sequences on X.

Appendix A. The adelic Picard group

In this appendix, we will recall S. Zhang’s adelic Picard group [Zh95a] and fix notation.

The local case. Preparations. Let K be an algebraically closed valuation field. The cases we
have in mind are K = Qp for a prime number p and K = Q∞ = C but, of course, there are
many other examples, all of which are non-archimedean.

Definition A.1. Let X be a projective scheme over K. Then, a metric on an invertible sheaf
L ∈ Pic(X) is a system of K-norms on the K-vector spaces L (x) for all x ∈ X(K).

Example A.2. Let K be non-archimedean and OK the ring of integers in K. Then, a model of X,
i.e. a flat projective scheme π : X → OK such that XK

∼= X, together with an invertible sheaf
L̃ ∈ Pic(X ) with L̃ |X ∼= L ⊗n for some n > 0 induces a metric ‖.‖ on L as follows:

The point x ∈ X(K) has a unique extension x : SpecOK → X . Then x∗L̃ is a projective
OK-module of rank 1. Each l ∈ L (x) induces l⊗n ∈ L ⊗n(x) and a rational section of x∗L̃ . Put

‖l‖x :=
[
inf

{
|a| | a ∈ K, l ∈ a · x∗

L̃

}] 1
n

.

This metric is called the metric on L being induced by the model (X ,L̃ ).
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Definition A.3. Let X be a smooth, projective scheme over K.

a) Assume K = C. Then, a metric ‖.‖ on L ∈ Pic(X) is called continuous respectively smooth

if, for each x ∈ X(C), there exist some open neighborhood Ux and a holomorphic section
s ∈ Γ(Ux,L |Ux) such that ‖s‖ is continuous, respectively smooth.

b) Assume K is non-archimedean. Then, a metric ‖.‖ on L ∈ Pic(X) is called continuous if
‖.‖ = f · ‖.‖′ for f a continuous function on X(K) and ‖.‖′ a metric being induced by a model.

The global case. The adelic Picard group. Let now X be a projective variety over Q and
L ∈ Pic(X) be a invertible sheaf.

Definition A.4. An adelic metric ‖.‖ on L is a system {‖.‖p}p∈{2,3,5,...;∞} of continuous and
bounded metrics on LQp

∈ Pic(XQp
) such that

i) for each p ∈ {2, 3, 5, . . . ;∞} the metric ‖.‖p is Gal(Qp/Qp)-invariant,

ii) for some n ∈ N, there exist a projective model X of X over SpecZ[ 1
n ] and an invertible sheaf

L̃ ∈ Pic(X ) with L̃ |X ∼= L , which induces ‖.‖p for almost all p.

L being equipped with an adelic metric is called an adelicly metrized invertible sheaf. The group
of all adelicly metrized invertible sheaves on X will be denoted by Picad(X).

Remark A.5. Let X → SpecZ be a model of X. Then, there are the following two natural
homomorphisms given by the induced metrics.

iX : P̂ic(X ) → Picad(X)

aX : ker(Pic(X ) → Pic(X)) ⊗Z Q→ Picad(X)

Here, P̂ic(X ) denotes the arithmetic Picard group of Gillet and Soulé [GS90]. Further, one has
the forgetful homomorphism v : Picad(X) → Pic(X). Note, if ζ ∈ im aX then there exists some
n ∈ N such that nζ ∈ im iX .

Definition A.6. a) The group

Picin(X) := 〈im iX , im aX 〉X model of X ⊆ Picad(X)

is called the group of the invertible sheaves on X with induced metrics.

b) ζ ∈ Picin(X) is called semipositive, ζ ∈ C>0
X , if there are a natural number n, a model X of

X, and L ∈ P̂ic(X ) such that nζ = iX (L ) where

i) L has a non-negative curvature form c1(L ),

ii) for every prime number p, the underlying bundle L is of non-negative degree on each curve
in XFp .

Definition A.7 (Metric on v−1(L ) ⊆ Picad(X)).
Let (L , ‖.‖) and (L , ‖.‖′) be two adelicly metrized invertible sheaves with the same underly-
ing bundle. Then, the distance between (L , ‖.‖) and (L , ‖.‖′) is given by

δ
(
(L , ‖.‖), (L , ‖.‖′)

)
:=

∑

p∈{2,3,5,...;∞}

sup
x∈X(Qp)

∣∣∣∣log
‖.‖′p
‖.‖p

∣∣∣∣ .

Lemma A.8. Let X be a flat, projective scheme over Z of dimension d + 1. Denote its generic

fiber by X.
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Further, let (L ′, ‖.‖′), (L ′′, ‖.‖′′),L 1, . . . ,L d ∈ P̂ic(X ) where L ′ and L ′′ are extensions of

one and the same invertible sheaf L ∈ Pic(X). If iX (L 1), . . . , iX (L d) are semipositive then
∣∣[ĉ1(L

′, ‖.‖′)−ĉ1(L
′′, ‖.‖′′)

]
· ĉ1(L 1) · . . . · ĉ1(L d)

∣∣ 6

6 δ
(
iX (L ′, ‖.‖′), iX (L ′′, ‖.‖′′)

)
· c1(L1|X) · . . . · c1(Ld|X).

Proof. This result is contained in [Zh95a, Theorem 1.4]. The main ingredient is the fact that on
a variety over a field the intersection product of semipositive divisors is always non-negative.

The adelic Picard group.

Definition A.9. Let C>0
X be the closure of the semipositive cone in Picad(X).

i) Then, the subgroup P̃ic(X) ⊆ Picad(X) generated by C>0
X is called the adelic Picard group

of X.

ii) If (L , ‖.‖) ∈ P̃ic(X) then (L , ‖.‖) is said to be an integrably metrized invertible sheaf.
The metric ‖.‖ is called an integrable metric on L .

Theorem A.10 (Zhang). Let X be a scheme which is smooth, projective, and equidimensional

over Q.

i) Then, there is exactly one continuous map, the adelic intersection product

pX
Z : P̃ic(X) × . . . × P̃ic(X)︸ ︷︷ ︸

dimX+1 times

→ R,

such that, for every model X of X, the diagram

P̃ic(X) ×. . .× P̃ic(X)
pX
Z

// R
P̂ic(X ) ×. . .× P̂ic(X )

idimX+1
X

OO

pX
GS

55
k

k
k

k
k

k
k

k
k

k
k

k
k

k
k

k
k

k
k

commutes. Here, pX
GS is the arithmetic intersection product of Gillet and Soulé.

ii) pX
Z is multi-linear and symmetric.

Example A.11. For L a number field, P̃ic(SpecL) = P̂ic(SpecOL). I.e., there is an exact sequence
0 → ClL → P̃ic(SpecL) → R→ 0.

Example A.12. Let V be a semistable projective curve over Q. Then, there is an exact sequence
0 → A→ P̃ic(V ) → Pic(V ) → 0 whereA =

⊕

ν∈Val(Q)

C0(V (Qν)) .

Here, C0(V (Q∞)) = C(V (C))F∞ is the space of all continuous F∞-invariant functions on V (C).

For p a prime number, C0(V (Qp)) is given as follows. We choose a minimal semistable
model V of V over SpecQp. Let D1,. . .,Dr be the irreducible divisors in the special fiber.
Further, for each k ∈ N, we define a countable disjoint covering {U

(k)
i }i∈N of V (Qp) by the re-

quirement that x, y ∈ V (Qp) belong to the same set if they coincide modulo pk. Then, C0(V (Qp))
consists of all Gal(Qp/Qp)-invariant functions V (Qp) → R of the type

r∑

i=1

αi‖1‖(V ,O(Di)) +
∞∑

l=1

∑

ik

βikl χU
(k)
i

.
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Here, ‖ .‖(V ,O(Di)) denotes the metric, induced by the model (V ,O(Di)), χ
U

(k)
i

is the characteristic
function of U

(k)
i , and αi as well as βikl are real numbers. We require that the inner sum is finite

for each l ∈ N and that the outer series is uniformly convergent.

A.13. Finally, let us recall the theorem of successive minima. We suppose that X is a scheme
which is smooth, projective, and equidimensional over Q. Further, L ∈ P̃ic(X).

i) Then, the height of an L-valued point x ∈ X(L) for L a number field is given by

h
L

(x) :=
1

[L : Q]
deg L |X .

For i = 1, 2, . . . ,dim X + 1, put

ei(L ) := sup
cod Y = i

inf
x∈X\Y

h
L

(x) .

ii) The height of X itself with respect to L is given by the formula

h
L

(X) :=
c1(L )dim X+1

(dim X + 1) c1(LQ)dim X
.

Theorem A.14 (Zhang). Let X be a scheme which is smooth, projective, and equidimensional

over Q and L ∈ P̃ic(X). Assume L ∈ C>0
X . Then,

e1(L ) > h
L

(X) >
e1(L ) + . . . + edim X+1(L )

dim X + 1
.

Proof. This is [Zh95a, Theorem 1.10]. It is obtained by an easy limit argument from an analo-
gous statement for arithmetic varieties [Zh95b, (5.2)]. Note that the arithmetic Riemann-Roch
theorem [GS92] is the main ingredient here.
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