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Introduction

In their paper [14] G. Harder and M.S. Narasimhan (and independently D.
Quillen) have constructed a canonical flag of subbundles on any vector bun-
dle on a complete smooth algebraic curve over a field. This flag measures how
far away from semistability the vector bundle is.

Influenced by this D. Grayson and the third author of this paper have studied the
corresponding situation over number fields [9, 10], [20, 25]. Here one is looking
at lattices in some euclidean or hermitean vector space. It turns out that one has
again a canonical filtration by a flag of sublattices.

If one compares both situations more carefully one sees that the second is more
general.

This leads one to consider what we call generalized vector bundles in this paper.
The idea is to replace locally or better over the completion of the local rings of
the curve the lattices given by the stalks of the locally free sheaf associated to the
vector bundle by the real valued norms given by the lattices on the associated
vector spaces.

This relation between norms and lattices is not new and has been considered for
example in [8] or for a particularly nice and more recent exposition [7].

In the more general context of reductive groups over local field it corresponds to
the relation of the Bruhat-Tits building as a simplicial complex to its topological
realisation. It turns out that the H-N-filtration exists also in this more general
context. This is done in section two of this paper and we could follow for this
more or less completely the exposition in [11] with the minor difference that we
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have to be more careful with questions of existence here, because the degree of
a generalized vector bundle can be an arbitrary real number. We have included
in this section a study of the H-N-filtration where the vector bundle is deformed
in a family. This is related to the well known paper of S. Shatz [19] where he
studies algebraic deformations of vector bundles. The two results however do not
compare directly because our deformations are definitely not algebraic.

Looking at normed vector spaces (usually finite dimensional here) over com-
plete discretely valued fields in section one as a preparation for the following
we could not resist to study the relevant additive category in greater detail. We
construct an embedding of this category into an abelian category which includes
so to say torsion objects. This is quite natural and it would be possible to do
a similar thing for the category of generalized vector bundles on an algebraic
curve.

The third section contains some applications and further results: If one studies
generalized vector bundles over an affine curve one obtains a direct sum decompo-
sition into line bundles as in the classical case. Using some input from reduction
theory we have a Grothendieck-type decomposition theorem for vector bundles
over the projective line.

The main motivation for us to consider this kind of generalisation comes from
reduction theory of the general linear group. It allows to consider invariants of
reduction theory given usually by the H-N-filtration which are a priori only de-
fined for the vertices of the relevant building on the whole topological realisation
of the building. It might be possible that this point of view is sometimes more
flexible.
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1. Normed vector spaces

A) In this section F denotes a discretely valued complete field with a valuation

| | : F → IR≥0

satisfying the usual rules
i) |a| = 0 iff a = 0
ii) |a+ b| ≤ Max {|a|, |b|}
iii) |ab| = |a||b|

for arbitrary elements a, b ∈ F .

The valuation ring is O := {x ∈ F : |x| ≤ 1} with maximal ideal m := {x ∈ F :
|x| < 1} and residue field k := O/m.
π ∈ O denotes a uniformising element.

We consider F -vector spaces V equipped with a seminorm

‖ ‖ : V → IR

satisfying
i) ‖x‖ ≥ 0
ii) ‖x+ y‖ ≤ Max {‖x‖, ‖y‖}
iii) ‖αx‖ = |α|‖x‖

for arbitrary elements x, y ∈ V , α ∈ F . ‖ ‖ is a norm iff ‖x‖ > 0 for all x ∈
V \ {0}.

1.1. Examples

1) The standard vector space V = F n can be equipped with the maximum norm
that is for x = (x1, . . . , xn) ∈ F n one has

‖x‖ := Max {|xi| : 1 ≤ i ≤ n.}

2) V denotes an arbitrary F -vector space, L ⊂ V an O-submodule satisfying
F · L = V .
We can associate with L the seminorm

‖x‖L := Inf {|a| : a ∈ F, x ∈ aL}

In particular, ‖ ‖ will be a norm on the vector space V iff for any x ∈ V the
intersection Fx ∩ L is a finitely generated O-module.
Conversely if L = V then the seminorm ‖ ‖L = 0.
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1.2. Remarks: We have the following well known properties of seminormed
vector spaces. See for example [2], 2.4.4, Prop. 2.

1) Any linear subspace W ⊂ V of a seminormed vector space (V, ‖ ‖) obtains an
induced seminorm ‖ ‖W .

2) For W , (V, ‖ ‖) as in 1), the quotient vector space V/W obtains the seminorm

‖x̄‖ := Inf {‖x‖ : x ∈ x̄},

where x̄ ∈ V/W .

3) If (Vi, ‖ ‖i) for i = 1, . . . , n are seminormed vector spaces then the finite direct

sum V =
n⊕

i=1
Vi obtains the seminorm

‖x‖ := Max {‖xi‖i : 1 ≤ i ≤ n}

where x =
n∑

i=1
xi ∈ V , the xi ∈ Vi.

If an arbitrary seminormed vector space (V, ‖ ‖) can be decomposed as above by
subspaces (Vi, ‖ ‖i) where

‖ ‖i = ‖ ‖V |Vi
(i = 1, . . . , n)

then we say that (V, ‖ ‖) is the orthogonal sum of the subspaces (Vi, ‖ ‖i).

4) For a seminormed vector space (V, ‖ ‖) the subspace

rad (V ) := {x ∈ V : ‖x‖ = 0}

is an F -subspace of V .
One has the orthogonal decomposition

V = rad (V )⊕ V/rad (V ).

5) The unit ball L := {x ∈ V : ‖x‖ ≤ 1} of the seminormed vector space (V, ‖ ‖)
is an O-module.
For finite dimensional seminormed vector spaces (V, ‖ ‖) one has particularly nice
properties, namely

6) Any one dimensional seminormed space (V, ‖ ‖) is isomorphic (in the obvious
sense) to a seminormed space (F, ‖ ‖λ) where the seminorm ‖ ‖λ is given by
‖1‖λ = λ, λ ∈ IR and λ ≥ 0, for the norm of the unit element 1 ∈ F .

7) Any finite dimensional seminormed space (V, ‖ ‖) is the orthogonal sum of
one dimensional spaces.

8) Suppose, (V, ‖ ‖) is now again an arbitrary seminormed vector space. Then a
finite dimensional subspace (quotient space) in the sense of 1) (resp. 2)) is always
a direct summand such that one has an orthogonal decomposition

(V, ‖ ‖) ∼= (W, ‖ ‖)⊕ (V/W, ‖ ‖)
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resp.
(V, ‖ ‖) ∼= (ker(V → W ), ‖ ‖)⊕ (W, ‖ ‖).

For a proof of 7) and 8) which are less trivial then the other statements see [2].
2.4.1, Prop. 5.

9) Given two seminormed vector spaces (V1, ‖ ‖1) and (V2‖ ‖2) which we assume
to be finite dimensional (this suffices for our purposes) we can associate other
seminormed vector spaces, in particular

i) Hom F (V1, V2) equipped with the norm

‖ϕ‖ := Inf {c ∈ IR : ‖ϕ(v)‖2 ≤ c‖v‖1 for all v ∈ V1}.

In particular, if (V2, ‖ ‖2) = (F, ‖ ‖O), then this makes the dual space V ∗
1

into a seminormed vector space.
ii) The tensor product V1⊗F V2 can be made into a seminormed vector space

by

‖v‖ := Inf
{
Max ‖v(1)

i ‖1 · ‖v(2)
i ‖2 : 1 ≤ i ≤ n

=
n∑

i=1

v
(1)
i ⊗ v

(2)
i any representation of v in V1 ⊗F V2

}

10) Suppose, F1 ⊃ F is a finite extension of the discretely valued complete
field F with valuation | |. There is a unique extension of the valuation | | to an
extension | |1 on F1. This makes (F1, | |1 =: ‖ ‖) into a normed F -vector space.
If (V, ‖ ‖) is an arbitrary finite dimensional seminormed F -vectorspace then F1⊗F

V is, using ii), in a natural way a seminormed F1-vector space.

The class of seminormed vector spaces will be made into a category in the fol-
lowing way:

1.3. Definition: A morphism

ϕ : (V, ‖ ‖V ) → (W, ‖ ‖W )

between seminormed spaces is an F -linear map satisfying

‖ϕ(x)‖W ≤ ‖x‖V .

1.4. Remarks:
i) The seminormed vector spaces together with contracting F -linear maps

as above form an additive category where even further the Hom-groups
Hom ((V, ‖ ‖V ), (W, ‖ ‖W )) are O-modules.

ii) One has a functor from the category of seminormed F -vector spaces to
the category of O-modules given by

(V, ‖ ‖) 7→ {x ∈ V : ‖x‖ ≤ 1} =: V (1)

which associates with a seminormed vector space its unit ball.
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Conversely given a torsion free O-module M one can associate a normed vector
space by posing

V := F ⊗O M

with the natural embedding

M 7→ V, m 7→ m⊗ 1

and for x ∈ V one has

‖x‖ := Inf {|a| : a ∈ F, x ∈ aM ⊂ F ⊗O M}.

Obviously the composed functor

M 7→ (F ⊗O M, ‖ ‖) 7→ (F ⊗O M, ‖ ‖)(1)

is the identity. The other composition

(V, ‖ ‖) 7→ V (1) 7→ F ⊗O V (1)

is not the identity.

(B) Relation to the Bruhat-Tits building of the group GLn(F ):

The Bruhat-Tits building BT (GL n/F ) of the general linear group GL n(F ) is a
simplicial complex, which has the following concrete description:
Its vertices are similarity classes 〈L〉 of O-lattices L ⊂ F n. Here we mean by
an O-lattice L ⊂ F n an O-submodule of F n, free of rank n over O. Two such
lattices L1, L2 are similar iff there is a ∈ F× such that aL1 = L2.

The r-simplices of this simplicial complex BT (GL n/F ) are given as
〈L0, L1, . . . , Lr〉 where the Lj (j = 0, . . . , r) are lattices such that

L0
⊂
6= L1

⊂
6= · · · ⊂

6= Lr
⊂
6= π−1L0

holds where π is some uniformizing element of O.

This leads to a contractible simplicial complex whose topological realisation is
denoted as |BT (GL n/F )|.
We call two norms ‖ ‖1 and ‖ ‖2 on F n similar iff they differ by a scaling factor
a ∈ IR, a > 0 such that

a‖ ‖1 = ‖ ‖2

holds. The set of such similarity class of norms can be made into a metric space
X by defining a distance

d(‖ ‖1; ‖ ‖2) := logc sup
v∈F d\{0}

‖v‖1

‖v‖2

· sup
v∈F d\{0}

‖v‖2

‖v‖1

between two classes of norms ‖ ‖1 and ‖ ‖2.
Here c equals |π|−1 for some uniformising element π ∈ m.
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GL n(F ) is acting on X by

‖v‖g(x) := ‖g−1(v)‖x

where ‖ ‖x ∈ X is a norm (up to similarity), g ∈ GL n(F ) and v ∈ F n. The two
maps ϕ, ψ to be constructed below give a GL n(F )-equivariant isometry between
X and the realisation |BT (GL n/F )| of the Bruhat-Tits building. This fact was
first proved in [8].
Consider a point

y ∈ |〈L0, . . . , Lr〉| ⊂ |BT (GL n(F ))|

where the r-simplex 〈L0, . . . , Lr〉 is given by the lattices

L0 ⊂ L1 ⊂ · · · ⊂ Lr ⊂ π−1L0

in F n. The point y is given inside the simplex |〈L0, . . . , Lr〉| by barycentric co-
ordinates (λ0(y), . . . , λr(y)) satisfying

λi(y) ≥ 0 (i = 0, . . . , r)

r∑
i=0

λi(y) = 1

Then the norm ϕ(y) := x ∈ X is given by interpolating

‖ ‖x :=
r∑

i=0

λi(y)‖ ‖Li
.

This obviously gives a GL n(F )-equivariant map

ϕ : |BT (GL n/F )| → X.

The inverse map
ψ : X → |BT (GL n/F )|

is obtained as follows:

If x ∈ X is given by the norm ‖ ‖x (up to similarity) we consider the set of balls

L(λ) = {v ∈ F n : ‖v‖x ≤ λ}

for λ ∈ IR>0.

These are all O-lattices satisfying

i) L(λ) ⊆ L(µ) if λ ≤ µ

ii) L(|π|λ) = πL(λ)

7



It follows easily (looking for example at an orthogonal basis of (F n; ‖ ‖x) that
the {L(λ) : λ ∈ IR>0} define an r-simplex

〈L0, . . . , Lr〉

given by the O-lattices

L0 ⊆ L1 ⊆ · · · ⊆ Lr ⊂ π−1L0

The barycentric coordinates of the point

ψ(x) = y ∈ |〈L0, . . . , Lr〉| ⊂ |BT (GL n/F )|

are computed from the equation (up to similarity ∼)

‖ ‖x ∼
r∑

i=0

λi(x)‖ ‖Li

by evaluating on an orthogonal basis {e1, . . . , en} of (F n, ‖ ‖x) which is also an
orthogonal basis of all the ‖ ‖Lj

(j = 0, . . . , r) which follows by computing the
Lj explicitly making use of the basis {e1, . . . , en} of (F n, ‖ ‖x).

C) Embedding into an abelian category

We consider in this section the category of finite dimensional seminormed F -
vector spaces and contracting morphisms and will embed it in a natural way
into an abelian category. The idea of course is to immitate the description of
a finitely generated O-module as a quotient of finitely generated free modules.
In fact we will be slightly more general and will obtain an embedding of the
category O− mod ∗ of subquotients of the O-modules isomorphic to F d, d ∈ IN.

Therefore V denotes the category of finite dimensional seminormed F -vector
spaces with contracting F -linear maps as morphisms. For V ∈ obj(V) the as-
sociated seminorm usually is denoted as ‖ ‖V or if no confusion can arise just
‖ ‖.
We consider complexes of length one in V ,

0 → V1
-∂
V0 → 0

where we assume furthermore that ∂ is injective.

We denote such a complex often as [V1 → V0] or even shorter as V., ∂ sometimes
will also be denoted by ∂V .

Morphisms f. : V.→ W. are given by a commutative diagram in V

0 - V1
-∂V. V0

- 0

?

f1

?

f0

0 - W1
-∂W. W0

- 0
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Two morphisms f., g. : V.→ W. are homotopic if one has a morphism s1 : V0 →
W1 satisfying the relations

f1 − g1 = s1 ◦ ∂V.

f0 − g0 = ∂W. ◦ s1

1.5. Remark: In fact, the first relation above is a consequence of the second
one.

Objects of our new category V∗ are complexes of V in the sense above, morphisms
are homotopy classes of morphisms of complexes in the sense above. We have
the following theorem concerning the properties of the category V∗:
1.6. Theorem:

(1) V∗ is an additive category whose Hom-groups are even O-modules.
(2) One has a natural embedding functor

V → V∗

which associates with a seminormed finite dimensional F -vector space V
the resolution of length one

0 → V1 := 0 → V0 := V → 0.

(3) One has a natural functor of the above mentioned category O − mod ∗,

O − mod∗ → V∗

given as follows:
If L1 ⊆ L0 ⊆ F d are O-submodules, then the functor maps L0/L1 to the
object

[(F · L1, ‖ ‖L1) → (F · L0, ‖ ‖L0)]

of V∗.
(4) V∗ is an abelian category.

Proof. Only (4) is not trivialy, we have to show here

i) V∗ has kernels

ii) V∗ has cokernels

iii) the canonical morphism α deduced from an arbitrary morphism

f. : V.→ W.

as
α : cok (ker(f.) → V.) → ker(W.→ cok (f))

is an isomorphism.
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Ad i) We equip the vector space W1 ×W0 V0 with the seminorm induced from
the seminormed vector space W1 × V0

∼= W1 ⊕ V0.

We will see below that

ker(f. : V.→ W.) ∼= [V1
-(f1, ∂V.) W1 ×W0 V0].

To see this we have to check

1) the morphism in V∗ obtained by composition

[V1
-(f1, ∂V.)W1 ×W0 V0] → [W1 → W0]

is the zero morphism in V∗. This can be seen immediately by using the projection
onto the first factor

s1 := pr1 : W1 ×W0 V0 → W1

as homotopy.

2) We have to show the factorisation property of the kernel. Suppose therefore
given a morphism

g. : U.→ V.

in V∗ such that the composition

f. ◦ g. = 0.

One has to find a factorisation in V∗

U0 → ker(f.) = [V1 → W1 ×W0 V0]

By definition the equation f. ◦ g. = 0 implies the existence of a homotopy

s1 : U0 → W1

satisfying the relations
s1 ◦ ∂U. = f1 ◦ g1

∂W. ◦ s1 = f0 ◦ g0

From the commutativity of the diagram

0 - U1
- U0

- 0

?

g1

s1 ?

g0

0 - V1
- V0

- 0

?

f1

?

f0

0 - W1
- W0

- 0
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it follows that one has a canonical morphism

U0 → W1 ×W0 V0.

But this is exactly the factorisation

U.→ [V1 → W1 ×W0 V0] = ker(f.).

The necessary properties are checked easily. 2

Ad ii) V∗ has cokernels:
This is not more difficult than i). For the convenience of the reader we give an
outline of the proof.

Given again a morphism
f. : V.→ W.

in V∗ represented (up to homotopy) by a diagram

0 - V1
-∂V. V0

- 0

?

f1

?

f0

0 - W1
-∂W. W0

- 0

We have a canonical map in V of the orthogonal direct sum

∂W + f0 : W1 ⊕ V0 → W0

Then ker(∂W + f0) as a subspace and coim(∂W + f0) as a quotient space of
W1 ⊕ V0 are seminormed vector spaces. One should observe that coim(∂W + f0)
is in general not a subspace of the seminormed space W0 but there is a canonical
contracting monomorphism

coim(∂W + f0) → W. .

From the composition

g1 : W1 → W1 ⊕ V0 → coim(∂W + f0)

we obtain altogether the diagram

0 - V1
-∂V. V0

- 0

?

f1

?

f0

0 - W1
- W0

- 0

?

g1

?

g0

0 - coim(∂W + f0) - W0
- 0
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from which we will show now that it represents coker(f.) in V∗.
Again we have to check the following points 1) and 2):

1) The composition g. ◦ f. : V.→ “coker(f.)” is the zero morphism:
We have the composition of morphisms

V0 → W1 ⊕ V0 → coim(∂W + f0)
v 7→ (0, v) 7→ class of (0, v) in the quotient space

It is immediate to check that this defines a homotopy of g. ◦ f. with the zero
morphism.

2) Next we assume a morphism

g̃ : W.→ U.

in V∗ such that the composition

g̃. ◦ f. : V.→ U.

is zero. We have to show that we can factorize over

“Coker(f)′′ = [coim(∂W + f0) → W0]

Because g̃ ◦ f = 0 in V∗, by definition we have a morphism in V

s1 : V0 → U1

satisfying the relevant relations for a homotopy.

We have the diagram

W1 ⊕ V0
-(∂W + f0) W0

?

∣∣∣∣∣
∣∣∣∣∣

0 → coim(∂W + f0) - W0 → 0

?

h1(to be constructed)
?

g̃0 =: h0

0 → U1
- U0 → 0

We consider
(g̃1 + s1) : W1 ⊕ V0 → U1.

One checks that g̃1+s1 vanishes on ker(∂W +f0) ⊂ W1⊕V0, therefore one obtains
a factorisation of g̃1 + s1 as

W1 ⊕ V0 → coim(∂W + f0) -=: h1 U1
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This proves 2)

It remains to check the last defining property of an abelian category [17], 4.2.
namely given a morphism

f. : V.→ W.

in V∗ then one has a canonical isomorphism

coker(ker(f.) → V.)
∼→ ker(W.→ coker(f.))

One sees easily that
i) coker(ker(f.) → V.) ∼= [W1 ×W0 V0

-pr2 V0]

ii) ker(W.) → coker(f.))V.) ∼= [W1 → coim(∂W + f0)].

Choosing a decomposition

W1 ⊕ V0
∼→ϕ (W1 ×W0 V0)⊕ coim(∂W + f0)

one has the following commutative diagram from which one will obtain all the
morphisms needed below:

0 → W1 ×W0 V0
- V0 → 0

? W1 ⊕ V0 ?

0 → W1
- coim(∂W + f0) → 0

All the morphisms coming up above are obtained from projections and embed-
dings into direct sums using f. and ϕ in an obvious sense.
The canonical morphism

coker(...) → ker(...)

to be considered in iii) is then given in the diagram

0 → W1 ×W0 V0
- V0 → 0

g1 ?

f̄1

g0 ?

f̄0

0 → W1
- coim(∂W + f0) → 0

by the morphism f̄ ., g. = (g1, g0) is obtained from the diagram above by obvious
composition.
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It remains to show in the category V∗, that is up to homotopy

g. ◦ f̄ . = id
f̄ . ◦ g. = id

For this we have to give the relevant homotopies

s1 : V0 → W1 ×W0 V0

t1 : coim(∂W + f0) → W1

which are obtained by forming appropriate compositions from diagram. The nec-
essary equations for a homotopy are checked immediately. This finishes iii) and
therefore the proof of (4) of theorem 1.6. 2

5) The category V∗ has enough projective and injective objects, its homological
dimension is one.

Proof: It is immediate to see that the injective objects are precisely the semi-
normed vector spaces (V, ‖ ‖ ≡ 0) with trivial seminorm.

The projective objects are the normed vector spaces (V, ‖ ‖). Any object has a
resolution of length one by projective objects.
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2. Generalized vector bundles and Harder-Narasimhan filtration

X is a regular, irreducible algebraic curve over the field of constants k. Changing
our notation from section 1, F = k(X) denotes from now on the field of rational
functions on X.

For any closed point x ∈ X we have the discrete valuation ring OX,x with max-
imal ideal mX,x and residue field k(x) = OX,x/mX,x. The degree of the field
extension (k(x) : k) is the residue degree of x.

For a ∈ F , a 6= 0, degx(a) denotes the order of vanishing of a at x ∈ |X|, where
|X| is the set of closed points of X.

Choosing a real number c > 1 we obtain a valuation | |x on F by

|a|x := c− degx(a)(k(x):k)

Fx is a completion of F with respect to | |x, Ox the valuation ring with maximal
ideal mx and residue field k(x). One has the product formula∏

x∈|X|
|a|x = 1

for all a ∈ F× if X is additionally complete.

2.1. Definition: A generalized vector bundle E on the algebraic curve X is
given by

i) a finite dimensional F -vector space Eη

ii) for any closed point x ∈ |X| a norm ‖ ‖x on the Fx-vector space Ex :=
Eη ⊗F Fx such that the following consistency condition is fullfilled:

iii) Given any basis {e1, . . . , en} of the F -vector space Eη, all except finitely
many of the norms ‖ ‖x on Ex are equal to the standard norms given by
the Ox-lattices

Oxe1 + · · ·+Oxen ⊂ Ex

as explained in section 1.

2.2. Definition: n := dimF (Eη) denotes the rank rk (E) of the gen. vector
bundle E.

2.3. Definition: A morphism ϕ : E1 → E2 between gen. vector bundles E1 and
E2 is an F -linear map

ϕη : E1,η → E2,η

such that the induced Fx-linear mappings

ϕx : E1,x → E2,x

are contracting for all x ∈ |X| (that is are morphisms of seminormed vector
spaces in the sense of section 1).

2.4. Definition: A gen. line bundle L on X is a gen. vector bundle of rank one.
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2.5. Remarks:
i) The gen. vector bundles and morphisms in the sense above form an ad-

ditive category where the Hom-groups are even k-vector spaces.
ii) A subbundle E1 of a gen. vector bundle E is given by

1. an F -linear subspace E1,η of Eη.

2. for all closed points x ∈ |X|, E1,x = E1,η ⊗F Fx has a norm obtained
by restricting ‖ ‖x on Ex to E1,x.

It is easy to see that in particular (E1,η;E1,x for x ∈ |X|) is itself a gen.
vector bundle

iii) in a similar way one obtains the quotient vector bundle E/E1 as the gen.
vector bundle

(Eη/E1,η;Ex/E1,x for x ∈ |X|)
where the Ex/E1,x are quotients in the sense of seminormed vector spaces.

iv) A sequence
0 → E1 → E → E2 → 0

of gen. vector bundles on X is exact iff the sequence

0 → E1,η → Eη → E2,η → 0

of F -vector spaces is exact and additionally for all closed points x ∈ |X|
E1,x is identified with a subspace of the normed vector space Ex, E2,x with
the quotient space Ex/E1,x as a normed vector space.

v) For gen. vector bundles one has the usual operations like forming the
dual bundle, direct sums, tensor products and Hom-bundles. In particu-
lar one has the determinant line bundle which for a bundle E = (E =
(Eη;Ex, ‖ ‖x for x ∈ |X|) is given by

det(E) = (det(Eη); det(Ex))

From now on, if not said otherwise, the curve X will be complete.

2.6. Definition:
i) The degree deg(L) of a gen. line bundle L on X is given by

deg(L) := −
∑

x∈|X|
logc ‖a‖x

where a ∈ Lη, a 6= 0, is a rational section of the line bundle L.
ii) The degree of a gen. vector bundle E = (Eη;Ex for x ∈ |X|) is given by

deg(E) := deg(det(E))

iii) The invariant µ(E) for a nontrivial bundle E is the quotient

µ(E) :=
deg(E)

rk (E)
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One has the following properties
(1) If

0 → E1 → E → E2 → 0

is an exact sequence of gen. vector bundles then

deg(E) = deg(E1) + deg(E2).

(2) If E = E1 ⊗ E2, then

deg(E) = deg(E1) rk (E2) + deg(E2) rk (E1)
µ(E) = µ(E1) + µ(E2).

(3) For the dual bundle E∗ of a gen. vector bundle E one has

degE∗ = − deg(E)
µ(E∗) = −µ(E)

These are proved in the same way as for vector bundles in the usual sense.

It is plausible that the argument leading to the Harder-Narasimhan-filtration go
through in this generalized situation. For the convenience of the reader we repeat
the main arguments in our context (see in particular [11], and [14]).

2.7. Definition: A gen. vector bundle E is called stable (resp. semistable) iff
for all nonzero subbundles E1 of E one has µ(E1) < µ(E) (resp. µ(E1) ≤ µ(E)).

2.8. Remarks:
i) Stability can equivalently be decribed by quotient bundles namely: E is

stable (resp. semistable) iff for all quotient bundles E/E1 one has

µ(E) > µ(E/E1)

resp.
µ(E) ≥ µ(E/E1)).

ii) The degree of subbundles is bounded above. Again we follow [11] to see
this:
We fix a flag of gen. vector bundles

0 ⊂ E1 ⊂ · · · ⊂ En = E

where Ei is a subbundle of E of rank i.
If E ′ ⊂ E is an arbitrary subbundle one considers the intersection

0 ⊂ E1 ∩ E ′ ⊂ · · · ⊂ En ∩ E ′ = E ′.

The successive quotients

Ej ∩ E ′/Ej−1 ∩ E ′

17



are either 0 or line bundles.
One has canonical morphisms

Ej ∩ E ′/Ej−1 ∩ E ′ - Ej/Ej−1,

which are obviously contracting for all x ∈ |X|.
Therefore

deg(Ej ∩ E ′/Ej−1 ∩ E ′) ≤ deg(Ej/Ej−1)

2.9. Lemma: If E1 and E2 are gen. semistable vector bundles on X and
Hom (E1, E2) 6= 0 then µ(E1) ≤ µ(E2).

Proof: Suppose, ϕ : E1 → E2 is a nonzero homomorphism. We then have the
exact sequence of gen. vector bundles

0 → ker(ϕ) → E1 → coim(ϕ) → 0.

Because E1 is semistable we have

µ(E1) ≤ µ(coim(ϕ))

Denoting Ē1 ⊂ E2 the subbundle of E2 given by the F -subspace ϕ(E1,η) ⊂ E2,η

we have the morphism
coim(ϕ) → Ē1

which gives µ(coim(ϕ)) ≤ µ(Ē1). Because E2 is semistable we obtain µ(Ē1) ≤
µ(E2). Therefore µ(E1) ≤ µ(E2). 2

2.10. Lemma:
i) Let E be a gen. vector bundle on X. Then the set

{µ(E ′) : E ′ ⊂ E a subbundle}

has a maximum which is called µmax(E).
ii) The set

{µ(E/E ′) : E ′ ⊂ E a subbundle}

of µ-values of the quotient bundles of E has a minimum which is called
µmin(E)

Proof: By 2.8. ii) the set of real numbers

{µ(E ′) : 0 6= E ′ ⊂ E}

is bounded above.
We have to show that the supremum is obtained.
We argue by induction. The case rk (E) = 1 is trivial.
For the induction step we can assume that E is not semistable, otherwise µ(E)

18



would be a maximum. Therefore we find a subbundle E1 ⊂ E such that µ(E1) >
µ(E). We can assume that there are subbundles E2 ⊂ E satisfying

µ(E2) > µ(E1) > µ(E),

otherwise µ(E1) is maximal and we are ready.
The gen. vector bundle E/E1 is not semistable for if it would be, we would obtain
the following contradiction:
Because

µ(E2) > µ(E1) > µ(E) > µ(E/E1),

by lemma 2.9. the composed morphism E2 → E/E1 must be trivial. But then
we obtain E2 ⊂ E1 and can conclude that E1 is not semistable contradicting our
assumption on E1.
Therefore E/E1 is not semistable. We can conclude from this that there exists a
nontrivial quotient bundle Ē,

E/E1 → Ē,

which is semistable itself and satisfies

µ(E/E1) > µ(Ē)

and therefore also
µ(E2) > µ(Ē).

Again applying lemma 2.9. above, we conclude that the composed morphism

E2 → Ē

must be zero. Therefore we obtain

E2 ⊂ pr−1(ker(E/E1 → Ē)) =: E ′

where pr denotes the projection morphism

pr : E → E/E1.

Because rk (E ′) < rk (E), it follows by the induction hypothesis that the set of
real numbers

{µ(E2) : 0 6= E2 ⊂ E , µ(E2) > µ(E1)}

=
{µ(E2) : 0 6= E2 ⊂ E ′, µ(E2) > µ(E1)}

has a maximum. 2

2.11. Proposition: ([11], [14]) A gen. vector bundle E on X has a unique flag
of subbundles

0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = E

satisfying the following properties (1) and (2):
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(1) Ei/Ei−1 is semistable for each possible i.
(2) µ(Ei/Ei−1) > µ(Ei+1/Ei) for each possible i.

Moreover this flag also satisfies:
(3) Ei/Ei−1 is the largest subbundle of E/Ei−1 such that µ(Ei/Ei−1) =

µmax(E/Ei−1).
(4) Ei/Ei−1 is the largest quotient bundle of Ei such that µ(Ei/Ei−1) =

µmin(Ei).

Proof: This can be taken from [11].
For the convenience of the reader we show (3) and (4) as in [11]:

Let E ′ be a subbundle of E/Ei−1 with µ(E ′) = µmax(E/Ei−1); it is enough to
show E ′ ⊂ Ei/Ei−1 because Ei/Ei−1 is semistable and therefore

µ(E ′) ≤ µ(Ei/Ei−1) ≤ µmax(E/Ei−1) = µ(E ′).

Therefore we have equality everywhere above and 3) would follow.
Clearly E ′ has to be semistable and µ(E ′) > µ(Ej/Ej−1) for all j > i. Therefore
by descending induction and Lemma 2.9. above it follows that E ′ ⊂ Ej−1/Ei−1

for all j > i. This proves (3).

4) This is just dual to 3) and can be obtained by applying (3) to the dual bundle
E∗. 2

We also have the following useful corollary from [11].

2.12. Corollary: Suppose E ′ is a subbundle of the gen. vector bundle E, assume
that E ′

1 ⊂ · · · ⊂ E ′
r is the H-N-filtration of E ′ and E1/E

′ ⊂ · · · ⊂ Es−1/E
′ is the

H-N-filtration of the bundle E/E ′. We assume furthermore

µmax(E/E
′) < µmin(E

′)

Then the H-N-filtration of E is the flag of subbundles

0 ⊂ E ′
1 ⊂ · · · ⊂ E ′

r−1 ⊂ E ′ ⊂ E1 ⊂ · · · ⊂ Es−1 ⊂ E

Proof: Immediate from the Proposition using 1) and 2). 2

The result above can be applied to study the behavior of the H-N-filtration under
continuous deformation of the norm as explained below.

We consider the following situation:
T is a topological space with a base point o ∈ T .
∞ ∈ |X| is a closed point of the algebraic curve X. {E(t) : t ∈ T} is a family of
gen. vector bundles parametrized by T such that

i) E(t)
η = E(0)

η for the underlying F -vector spaces and therefore also

E(t)
x = E(0)

x (x ∈ |X|)

for the associated Fx-vector spaces.
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ii) If ‖ ‖(t)
x is the norm on the vector space E(t)

x = E(0)
x , then

‖ ‖(t)
x = ‖ ‖(0)

x for x 6= ∞,

‖ ‖(t)
∞ depends continuously on t ∈ T in o ∈ T .

This means explicitly:

For any given real number ε > 0 there is a neighbourhood U = U(ε; o) of the
base point o in T such that for any vector v ∈ E(t)

∞ = E(0)
∞ the inequalities

(1 + ε)−1‖v‖(0)
∞ ≤ ‖v‖(t)

∞ ≤ (1 + ε)‖v‖(0)
∞

hold.
For an F∞-linear subspace Ẽ∞ ⊂ E(t)

∞ = E(0)
∞ one obtains for the volume elements

the inequalities

(1 + ε)− dimF∞ (Ẽ∞)vol ((Ẽ∞ : ‖ ‖(0)
∞ |Ẽ∞) ≤ vol (Ẽ∞; ‖ ‖(t)

∞ |Ẽ∞)

≤ (1 + ε)− dimF∞ (Ẽ∞)vol (Ẽ∞; ‖ ‖(0)
∞ |Ẽ∞)

for all t ∈ U(ε; 0). Therefore for any F -subspace

Ẽη ⊂ E(t)
η = E(0)

η

one obtains for the associated subbundles Ẽ(t) of E(t) resp. Ẽ(0) of E(0):

| deg(Ẽ(t))− deg(Ẽ(0))| < η

for all t ∈ U(ε; 0) and where

η = dimF ((Lη) logc(1 + ε)

is positive and arbitrary close to zero. These preparations suffice to prove the
following

2.13. Proposition: If a subspace of E(0) given by an F -vector subspace Ẽη ⊂
E(0)

η occurs in the H-N-filtration of E(0) then it occurs in the H-N-filtration of

all deformed gen. vector bundles E(t) in the sense above for a sufficiently small
neighborhood of o in T .

Proof: Because Ẽ(0) occurs in the H-N-filtration of E(0) it follows that

µmax(E
(0)/Ẽ(0)) < µmin(Ẽ

(0)).

We call the difference ε > 0.
By the considerations made above we can find a neighbourhood U(ε; 0) of o in
T such that

|µmax(E
(t)/Ẽ(t))− µmax(E

(0)/Ẽ(0))| < ε

2

|µmin(Ẽ
(t))− µmin(Ẽ

(0))| < ε

2

Using corollary 2.12. it follows that Ẽ(t) occurs in the H-N-filtration of E(t) for
all t ∈ U(ε; o). 2
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3. Complements

A) We first consider gen.line bundles and divisors.

L = (Lη; ‖ ‖x) denotes a gen.line bundle on X with underlying F -vector space
Lη and norms ‖ ‖x on Lx = Lη ⊗F Fx.

a ∈ Lη, a 6= 0, is a rational section of L.

3.1. Definition:
i) The IR-vectorspace of gen.divisors on X is the direct sum⊕

x∈|X|
IR · (x) =: Div∗(X)

of one dimensional spaces IR · (x).
ii) The gen. divisor associated to (L, a) is

div(a) := −
∑

x∈|X|
(logc ‖a‖x) · (x)

as an element of Div∗(X).

Conversely, given an element

D =
∑

x∈|X|
αx(x) ∈ Div∗(X)

we can associate a gen. line bundle given as L = Ox(D) = (F ; ‖ ‖x) where

‖1‖x := c−αx , where x ∈ |X|.

Denoting Pic∗(X) the gen. Picard group consisting of gen. line bundles with
group multiplication the tensor product, one easily obtains the following diagram

1 - F× - Div∗(X) - Pic∗(X) - 0

∥∥∥∥∥
6 6

1 - F× - Div(X) - Pic(X) - 0 .

Here Div(X),Pic(X) are the groups of ordinary divisors and line bundles, the
vertical maps are the obvious ones. From this we obtain the exact sequence

0 → Pic(X) → Pic∗(X) →
⊕

x∈|X|
IR/ZZ → 0

B) The next point we want to consider concerns gen. vector bundles on affine
curves. Of course these should have similar properties as finitely generated pro-
jective modules over Dedekind rings which are direct sums of rank one projective
modules.
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3.2. Proposition
i) X denotes an affine smooth curve over the field of constants k,

0 → E(1) -i E -pr
E(2) → 0

is an exact sequence of gen. vector bundles on X. Then the sequence above
splits.

ii) Any gen. vector bundle E on X is a direct sum of line bundles.

Proof. We choose an F -linear section

s : E(2)
η → Eη

such that pr ◦ s = id.

It is clear that for all except finitely many x ∈ |X| the induced morphism

s⊗ id =: sx : E(2)
x → Ex

is contracting. We call this exceptional set S. The set of all sections as above is
given by the affine space over F ,

s+ Hom F (E(2)
η , E(1)

η ).

Because for any x ∈ |X| the exact sequence of normed vector spaces

0 → E(1)
x → Ex → E(2)

x → 0

can be split, we can find in particular elements

ϕx ∈ Hom Fx(E
(2)
x , E(1)

x ) (x ∈ S)

such that the homomorphisms

s+ ϕx : E(2)
x → Ex

are contracting and split the exact sequence

0 → E(1)
x → Ex → E(2)

x → 0

for all x ∈ S.

Using strong approximation for the F -vector space Hom F (E(2)
η , E(1)η) we can

find an element
ϕ ∈ Hom F (E(2)

η , E(1)
η )

satisfying
i) ‖ϕ‖ ≤ 1 as an element of the normed vector space Hom Fx(E

(2)
x , E(1)

x ) for
x ∈ |X| \ S

ii) ‖ϕ−ϕx‖ < 1 as an element of the normed vector space Hom Fx(E
(2)
x , E(1)

x )
for x ∈ S.
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It follows that
s+ ϕ : E(2)

η → Eη

is a section which additionally satisfies ‖s+ϕ‖ ≤ 1 as an element of the normed
Fx-vector space Hom Fx(E

(2)
x , Ex) for all x ∈ |X|. This means exactly that (s+ϕ)

induces a morphism of gen. vector bundles

s+ ϕ : E(2) → E

which splits the exact sequence

0 → E(1) → E → E(2) → 0.

This proves i).

ii) is an immediate consequence of i). 2

The line bundle O is given by the zero divisor. Another description is as

O = (F, ‖ ‖x),

where
‖1‖x = 1 for all x ∈ |X|.

3.3. Lemma: Let X denote again an affine smooth curve over k, L1 and L2 two
gen. line bundles on X. Then one has an isomorphism of gen. vector bundles

L1 ⊕ L2
∼= O ⊕ (L1 ⊗ L2).

Proof. We can easily reduce to the case that L1, L2 ⊂ O and L1, L2 are coprime,
that is the canonical morphism of gen. vector bundles

L1 ⊕ L2 → O, (u1, u2) 7→ u1 + u2 for u1 ∈ L1, u2 ∈ L2,

is a surjective morphism.

By proposition 3.2. we can split and obtain a direct decomposition of vector
bundles

L1 ⊕ L2
∼= L′ ⊕O.

Comparing the determinant bundles of both sides it follows that

L1 ⊗ L2
∼= L′.

2

3.4. Proposition. Any gen. vector bundle E on an affine smooth curve X
over k of rank n is isomorphic to On−1 ⊕ det(E).

Proof. Immediate from Proposition 3.2. and lemma 3.3. 2
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C) As a further application we prove Grothendieck’s theorem for gen. vector
bundles over IP1.

3.5. Proposition: A gen. vector bundle E over the projective line IP1 over k is
a direct sum of line bundles

E =
n⊕

i=1

Li.

This decomposition is unique up to isomorphism.

Proof. Tensorizing E by the line bundle det(E)−1/n we can assume det(E) ∼= O
because the statement of the proposition is invariant against tensorisation by a
line bundle. Looking at the restriction of the gen. vector bundle E to the affine
line

A1/k = IP1/k \ {∞}

we obtain by proposition that E|A1
∼= On is the trivial bundle of rank n.

E therefore is uniquely given by a norm ‖ ‖∞ on E∞ = F n
∞.

Up to similarity this gives by section 1 a point x ∈ |BT (GL n/F∞)| which is in
the interior of a unique simplex ∆(x) of the simplicial complex BT (GL n/F∞).
Let p denote a vertex of ∆(x) which is given by an O∞-lattice L in F n

∞ up to
similarity. Conversely a point x as above determines a vector bundle on X up
to tensorisation by a gen. line bundle given by a gen. divisor on X supported at
∞ ∈ X such that E(x) = (On, ‖ ‖x).

By Grothendieck’s (and others) theorem on vector bundles (in the usual sense)
on IP1 one has for the vector bundles E(p), associated to p

E(p) =
n⊕

i=1

O(di),

a direct sum of line bundles O(di) of degree di where d1 ≥ · · · ≥ dn. Denot-
ing O(di)η = F · ei ⊂ F n (i = 1 · · ·n) for the underlying F -vector spaces the
decomposition

F n =
n⊕

i=1

F · ei

defines an appartment A in the sense of [4], [7] in the Bruhat-Tits building
BT (GL n/F∞) which contains the vertex p..

The link of p in BT (GL n/F∞) can be identified with the Tits building [7] of
the group GL n(L/π∞L). The simplex ∆(x) introduced above is uniquely given
by a simplex ∆̄ in the Tits building of GL n(L/π∞L). The appartment A above
defines an appartment Ā of the Tits building of GLn(L/π∞L) by the direct sum
decomposition

L/π∞L =
n⊕

i=1

L ∩ F∞ei/π∞(L ∩ F∞ei).

Now the automorphism group Aut E(p) of E(p) which can be easily determined
explicitely acts on the building of GL n(L/π∞L). It is immediate to see that any
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simplex of the Tits building is equivalent to a simplex of the appartment Ā under
the action of the automorphism group Aut E(p). It follows that the simplex ∆(x)
is equivalent under Aut E(p) to a simplex in the appartment A. But this means
that the point x itself is equivalent to a point x′ in A. By section 1 this means
that

F n
∞ =

n⊕
i=1

F∞ei

is also an orthogonal decomposition of F n
∞ with respect to the norm ‖ ‖x′ on F n

∞.
This implies that E(x′) is isomorphic to the direct sum of line bundles given by
the F -subspaces F · ei ⊂ E(x′)η = F n for i = 1, . . . , n.

Because E(x) and E(x′) are isomorphic by construction of E(x′) it follows that
E(x) is direct sum of gen. line bundles. 2

D) In part 3) we have used already the relation to reduction theory. The concept
is a follows:

X denotes again a smooth complete curve over k, X ′ = Spec(A) ⊂ X an open
affine subscheme, itself a smooth curve over k such that X ′ = X \ S where S is
a finite set of closed points. We consider the product

|BT (S)| :=
∏
x∈S

|BT (GL n/Fx)|

For any point p = (px)x∈S ∈ |BT (S)| we can asssociate a gen. vector bundle

E(p) := (F n; ‖ ‖x for x ∈ |X|)

where
i) ‖ ‖x for x 6∈ S is the norm on F n

x given by the lattice
n∑

i=1
Oxei in the sense

of section 1.
ii) ‖ ‖x = ‖ ‖px for x ∈ S.

Of course E(p) is determined by this only up to similarity that is more precisely
up to tensorisation by a gen. line bundle L supported by a gen. divisor contained
in S.

The group
∏

x∈S
GL n(Fx) is acting on X as explained in section 1 and the groups

GL n(A) or GL n(F ) are acting on |BT (S)| via the diagonal embedding into∏
x∈S

GL n(Fx). Two points p(1), p(2) ∈ |BT (S)| are equivalent under the action

of the group GL n(A) iff the gen. vector bundles E(p(1)), E(p(2)) are isomorphic
up to tensorisation by a gen. line bundle L =

⊗
x∈S

L(x) where L(x) is a gen. line

bundle on X given by a gen. divisor with support in x ∈ S.
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3.6. Remarks:
i) With any point p ⊂ |BT (S)| one can therefore associate a gen. vector

bundle E(p). Any F -linear subspace V ⊂ F n defines a gen. subbundle
E ′ ⊂ E(p) such that one can define functions

µ(p;V ) := µ(E ′)

depending on p ∈ |BT (S)| and V ⊂ F n.
ii) As the H-N-filtration is invariant against tensorisation, it can be defined

via the gen. vector bundles E(p) and gives a canonical flag of F -subspaces
in F n which are convenient to describe fundamental domains.

iii) If p is in the interior of a polysimplex |∆| ⊂ |BT (S)| the value of µ(p : V )
can be interpolated from the values of µ(pj : V ) where the {pj} are the
vertices of the polysimplex ∆

E) Recently K. Behrend has given in [1] a somewhat different treatment of the H-
N-filtration in the context of smooth reductive group schemesG over a curveX as
above. There he associates with G a canonical parabolic subgroup of G. Because
for a gen. vector bundle E over X the associated group scheme GL (E)/X of the
general linear group is not smooth in general, his results do not apply directly.

However it is easy to write down explicitly in our context what is done in [1].

So, E = (Eη; ‖ ‖x) is a gen. vector bundle on the complete, smooth curve X over
k.
With any flag F of subbundles

0 ⊂ E1
⊂
6= · · · ⊂

6= Er = E

one associates a degree given as

deg(F) :=
∑

∞≤〉<|≤∇
deg Hom (E|/E|−∞ , E〉/E〉−∞)

3.7. Remark: This is the degree of the unipotent radical (or better its Lie
algebra scheme) of the parabolic group scheme P = P (F) associated to the flag
F .

We consider those flags F satisfying
i) deg(F) is maximal

(ii) There is no subflag F ′ of F such that deg(F ′) = deg(F) holds.

Of course in our situation it is not a priori clear that such a flag F exists.
In any case one can show easily:

3.8. Lemma: If F is a flag satisfying i) and ii) above, it follows that
(1) all succesive quotients Ei/Ei−1 (i = 1, . . . , r) are semistable gen. vector

bundles.
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(2) For all i ∈ {1, . . . , r − 1} one has

µ(Ei+1/Ei) ≤ µ(Ei/Ei−1)

3.9. Remark: It follows therefore that F , if it exists, is exactly the H-N-flag.
Conversely it is not difficult to show that the H-N-flag satisfies the conditions i)
and ii) above.

In [1] there is also a nice geometric description of the canonical flag which gives
a good uniqueness proof of the H-N-filtration.

28



REFERENCES

1. K. Behrend, Semi-stability of reductive group schemes over curves,
Math. Ann. 301, (1995), 281-305.

2. S. Bosch, U. Gntzer, R. Remmert, Non-archimedean analysis,
Grundl. der math. Wiss. 261, Springer, Berlin 1984.

3. N. Bourbaki, Espaces vectoriels topologiques, chap. 1 et 2,
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