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Abstract

We present a method to construct examples of K3 surfaces of geometric Picard rank 1.

Our approach is a refinement of that of R. van Luijk. It is based on an analysis of the

Galois module structure on étale cohomology. This allows us to abandon the original

limitation to cases of Picard rank 2 after reduction modulo p. Furthermore, the use of Ga-

lois data enables us to construct examples that require significantly less computation time.

1. Introduction

1·1. The Picard group Pic(S) of a K3 surface S is a highly interesting invariant.

When the base field is of characteristic zero, Pic(S) ∼= Zn for some n = 1, . . . , 20.

The first explicit examples of K3 surfaces over Q with geometric Picard rank 1 were

constructed by R. van Luijk [12]. His method is based on reduction modulo p. It works

as follows.

i) At a place p of good reduction, the Picard group Pic(SQ) of the surface injects into the

Picard group Pic(SFp
) of its reduction modulo p.

ii) Furthermore, Pic(SFp
) injects into the second étale cohomology group H2

ét(SFp
,Ql(1)).

iii) Only roots of unity can arise as eigenvalues of the geometric Frobenius Frob on the

image of Pic(SFp
) in H2

ét(SFp
,Ql(1)). The number of eigenvalues of this form, counted with

multiplicities, is therefore an upper bound for the Picard rank of SFp
. One can compute the

eigenvalues of Frob by counting the points on S, defined over Fp and some finite extensions.

Doing this for one prime, one obtains an upper bound for rkPic(SFp
), which is always even.

The Tate conjecture asserts that this bound is actually sharp.

‡ The first author was partially supported by the Deutsche Forschungsgemeinschaft (DFG)
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Therefore, the best that could happen is to find a prime that yields an upper bound of 2

for rkPic(SQ).

iv) In this case, the assumption that the surface would have Picard rank 2 over Q implies

that the discriminants of both Picard groups, Pic(SQ) and Pic(SFp
), belong to the same

square class. Note here that reduction modulo p respects the intersection product.

v) When one combines information from two primes, it may happen that one gets the

rank bound 2 at both places but that different square classes for the discriminant arise.

Then, these data are incompatible with Picard rank 2 over Q.

On the other hand, there is a non-trivial divisor known explicitly. Altogether, rank 1

is proven.

Remark 1·2. This method has been applied by several authors in order to construct

K3 surfaces with prescribed Picard rank [12, 9, 4].

1·3. The refinement. In this note, we will refine van Luijk’s method. Our idea is the fol-

lowing. We do not look at the ranks, only. We analyze the Galois module structures on

the Picard groups, too. The point here is that a Galois module typically has submodules

by far not of every rank.

As an example, we will construct K3 surfaces of geometric Picard rank 1 such that the

reduction modulo 3 has geometric Picard rank 4 and the reduction modulo 5 has geometric

Picard rank 14.

Remark 1·4. This work continues our investigations on Galois module structures on

the Picard group. In [5, 6, 7], we constructed cubic surfaces S over Q with prescribed

Galois module structure on Pic(S).

2. The Picard group as a Galois module, Global case

2·1. Let K be a field and S an algebraic surface defined over K. Denote by V theQ-vector space Pic(SK)⊗ZQ. On V , there is a natural Gal(K/K)-operation. The kernel

of this representation is a normal subgroup of finite index. It corresponds to a finite Galois

extension L of K. In fact, we have a Gal(L/K)-representation.
The group Gal(K/L) acts trivially on Pic(SK). I.e.,

Pic(SK) = Pic(SK)Gal(K/L) .

Within this, Pic(SL) is, in general, a subgroup of finite index. Equality is true under the

hypothesis that S(L) 6= ∅.

2·2. Now suppose that K is a number field and p is a prime ideal of K. We will denote

the residue class field by k. Further, let S be a K3 surface over K having good reduction

at p.

In this situation, there is the specialization homomorphism from Pic(SK) to Pic(Sk).

As intersection products are respected by specialization, the standard argument from [1,

Proposition VIII.3.6.i)] shows that this is an injection. Taking the tensor product, it yields

an inclusion of Q-vector spaces

sp: Pic(SK)⊗ZQ →֒ Pic(Sk)⊗ZQ .

Here, both spaces are equipped with a Galois operation. On Pic(SK)⊗ZQ, we have

a Gal(L/K)-action. On Pic(Sk)⊗ZQ, only Gal(k/k) = 〈Frob〉 operates.
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Lemma 2·3. The field extension L/K is unramified at p.

Proof. Assume the contrary. Then, there are a prime q lying above p and some element

σ 6= id of the decomposition group Gq ⊆ Gal(L/K) that operates trivially on the residue

field OL/q.

As Gal(K/L) is the exact kernel of the Galois representation V , there is some

D ∈ Pic(SL) that is not fixed by σ. Let D ∈ Div(SL) be a corresponding divisor. By good

reduction, D extends to a divisor on a smooth model S over the integer ring OL. In par-

ticular, we have the reduction Dq of D on the special fiber Sq.

By assumption, the divisor Dσ
q
−Dq is linearly equivalent to zero. The injectivity of the

restriction homomorphism Pic(SK) → Pic(Sk) implies that Dσ − D is linearly equivalent

to zero, too. This is a contradiction. �

2·4. There is a Frobenius lift to L, which is unique up to conjugation. When we choose

a particular prime q, lying above p, we fix a concrete Frobenius lift. Then, Pic(SK)⊗ZQ
becomes a Gal(k/k)-submodule of Pic(Sk)⊗ZQ.

3. The Picard group as a Galois module, Local case

3·1. To describe Pic(Sk)⊗ZQ as a Gal(k/k) = 〈Frob〉-module, it is sufficient to know

the characteristic polynomial χFrob of Frob. As a certain power of Frob acts as the identity,

χFrob is a product of cyclotomic polynomials.

3·2. Computability of the Galois representation. The simplest way to understand the

Gal(k/k)-representation on Pic(Sk)⊗ZQ in a concrete situation is to use étale cohomology.

Counting the numbers of points that S has over finite extensions of k, one may compute the

characteristic polynomial Φ of Frobenius on H2
ét(Sk,Ql(1)). This is actually a polynomial

with coefficients in Q and independent of the choice of l 6= p [3, Théorème 1.6].

Via the Chern class homomorphism, Pic(Sk) ⊗Z Ql is a Gal(k/k)-submodule of

H2
ét(Sk,Ql(1)). Hence, the polynomial χFrob divides Φ. According to Tate, it is expected

to be maximal product Φcycl of cyclotomic polynomials dividing Φ.

3·3. Denote by VTate the largest subspace of H2
ét(Sk,Ql(1)), on which all eigenvalues

of Frobenius are roots of unity. On the other hand, let Pexpl be a subgroup of Pic(Sk)

generated by the conjugates of some divisors that are explicitly known.

Then, we have the following chain of Gal(k/k)-invariant Ql-vector spaces,

H2
ét(Sk,Ql(1)) ⊇ VTate ⊇ Pic(Sk)⊗ZQl ⊇ Pexpl⊗ZQl .

In an optimal situation, the quotient space VTate/(Pexpl ⊗Z Ql) has only finitely many

Gal(k/k)-submodules.

Remarks 3·4. i) This finiteness condition generalizes the codimension one condition,

applied in van Luijk’s method, step v).

ii) A sufficient criterion for a vector space V with a Gal(k/k)-operation to have only

finitely many Gal(k/k)-invariant subspaces is that the characteristic polynomial χV of Frob

has only simple roots. Then, the invariant subspaces are in bijection with the monic

polynomials dividing χV .

3·5. Our main strategy to prove rk Pic(SQ) = 1 for a K3 surface S over Q will now be

as follows.
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i) Choose distinct prime numbers p1, . . . , pn of good reduction. Typically, n = 2 should suf-

fice. For each of these primes, execute step ii).

ii) Take as Pexpl the group generated by the hyperplane section. Verify that the

characteristic polynomial χ of Frob on VTate/(Pexpl ⊗Z Ql) has no multiple roots.

Then, (Pic(Sk)⊗ZQ)/(Pexpl⊗ZQ) has only finitely many Gal(k/k)-invariant subvec-

tor spaces. Each of them corresponds to a monic polynomial p ∈ Q[T ] dividing χ.

iii) Verify Pic(SQ)⊗ZQ = Pexpl⊗ZQ by excluding all other options. Observe here that

(Pic(SQ)⊗ZQ)/(Pexpl⊗ZQ) ⊆ (Pic(Sk)⊗ZQ)/(Pexpl⊗ZQ)

is a Gal(k/k)-invariant subvector space for k = Fp1
, . . . ,Fpn

. Thus, we have an n-tuple

(P1, . . . , Pn) of such subspaces that are compatible concerning dimensions and intersec-

tion forms. It has to be shown that (0, . . . , 0) is the only such n-tuple.

Remark 3·6. Our method is inspired by the classical van der Waerden criterion [15,

Proposition 2.9.35]. This means to use reduction modulo p in order to obtain information

about a permutation representation ι : Gal(Q/Q) → Sn. A typical reasoning is as follows.

Suppose ι(Frobp) is a product of disjoint cycles of lengths l1, . . . , lk. Then, a subset

M ⊂ {1, . . . , n} of size k may be ι-invariant only when k is a sum of some of the li.

Combining information from several primes, it might be possible to establish properties

of ι such as transitivity or surjectivity.

Our kind of argument is very similar except that we work with endomorphism (matrix)

representations instead of permutation representations.

4. Discriminants, The Artin-Tate formula

4·1. The Picard group of a smooth, proper surface is equipped with a Z-valued sym-

metric bilinear form, the intersection form. For K3 surfaces, this form is known to be non-

degenerate [1, Proposition VIII.3.5)]. Therefore, associated with Pic(Sk), we have its dis-

criminant, an integer different from zero. The same applies to every subgroup of Pic(Sk).

For a Q-vector space contained in Pic(Sk) ⊗Z Q, the discriminant is an element

of Q∗/(Q∗)2. We will typically choose a representative being an integer and speak of

its square class.

4·2. Let us recall the Artin-Tate conjecture in the special case of a K3 surface.

Conjecture (Artin-Tate). Let Y be a K3 surface over Fq. Denote by ρ the rank and

by ∆ the discriminant of the Picard group Pic(Y ), defined over Fq. Then,

|∆| =
q · lim

T→1

Φ(T )
(T−1)ρ

#Br(Y )
.

Here, Φ is the characteristic polynomial of Frobenius on H2
ét(YFq

,Ql(1)). Finally, Br(Y )

denotes the Brauer group of Y .

Remarks 4·3. a) The Artin-Tate formula allows to compute the square class of the

discriminant of the Picard group over a finite field without any knowledge of explicit gen-

erators.

b) Observe that #Br(Y ) is always a perfect square [11].
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c) The Artin-Tate formula is proven for most K3 surfaces. Most notably, the Tate con-

jecture implies the Artin-Tate formula [14]. We will use the Artin-Tate formula only in

situations where the Tate conjecture is true. Thus, our final result will not depend on

unproven statements.

d) The Artin-Tate formula has been used before by R. Kloosterman [9] in his investigations

on elliptic K3 surfaces.

5. An example

5·1. Formulation

Example 5·1·1. Let S : w2 = f6(x, y, z) be a K3 surface of degree 2 overQ. Assume the

congruences

f6 ≡ y6 + x4y2 + 3x2y4 + 2x5z + 3xz5 + z6 (mod 5)

and

f6 ≡ 2x6 + x4y2 + 2x3y2z + x2y2z2 + x2yz3 + 2x2z4

+ xy4z + xy3z2 + xy2z3 + 2xz5 + 2y6 + y4z2 + y3z3 (mod 3) .

Then, S has geometric Picard rank 1.

5·2. Explicit divisors

Notation 5·2·1. We will write pr : S → P
2 for the canonical projection. On S, there

is the ample divisor H := π∗L for L a line on P
2.

5·2·2. Let C be any irreducible divisor on S. Then, D := π(C) is a curve in P
2.

We denote its degree by d. The projection from C to D is generically 2:1 or 1:1. In the

case it is 2:1, we have C = π∗D ∼ dH .

Thus, to generate a Picard group of rank >1, divisors are needed that are generically

1:1 over their projections. This means, π∗D must be reducible into two components which

we call the splittings of D.

A divisor D has a split pull-back if and only if f6 is a perfect square on (the normalization

of) D. A necessary condition is that the intersection of D with the ramification locus given

by f6 = 0 is a 0-cycle divisible by 2.

5·3. The modulo 3 information

5·3·1. The sextic curve in P
2F3

given by f6 = 0 has three conjugate conics, each being

tangent in six points. Indeed, note that, for

f3 := x3 + 2x2y + x2z + 2xy2 + xyz + xz2 + y3 + y2z + 2yz2 + 2z3,

the term f6 − f2
3 factors into three quadratic forms over F27. Consequently, we have three

divisors on P
2F27

, the pull-backs of which split.

5·3·2. Counting the points on S over F3n for n = 1, . . . , 11 yields the numbers

(−2), (−8), 28, 100, 388, 2 458, 964, (−692), 26 650, (−20 528), and (−464 444) for the traces

of the iterated Frobenius on H2
ét(SF3

,Ql). Taking into account the fact that 1 is a root,

these data uniquely determine the characteristic polynomial Φ of Frob on H2
ét(SF3

,Ql(1)),

Φ(t) = t22 + 2
3 t21 + 2

3 t20 − 1
3 t18 − 2

3 t17 − t16 − 2
3 t15 − 1

3 t14 + 1
3 t12 + 2

3 t11

+ 1
3 t10 − 1

3 t8 − 2
3 t7 − t6 − 2

3 t5 − 1
3 t4 + 2

3 t2 + 2
3 t + 1 .
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The functional equation holds with the plus sign. We factorize and obtain

Φ(t) = (t − 1)2(t2 + t + 1)

(t18 + 5
3 t17 + 7

3 t16 + 10
3 t15 + 11

3 t14 + 11
3 t13 + 11

3 t12 + 10
3 t11 + 3t10

+ 3t9 + 3t8 + 10
3 t7 + 11

3 t6 + 11
3 t5 + 11

3 t4 + 10
3 t3 + 7

3 t2 + 5
3 t + 1) .

5·3·3. The first two factors are cyclotomic polynomials while the last one is not. In the

notation of section 3, VTate is a Ql-vector space of dimension four. On the other hand,

Pexpl is generated by H . As H corresponds to one of the factors (t− 1), the characteristic

polynomial of Frobenius on VTate/(Pexpl⊗ZQl) is

(t − 1)(t2 + t + 1) .

It has only simple roots.

Consequently, for each of the dimensions 1, 2, 3, and 4, there is at most one Gal(F3/F3)-

invariant subvector space in Pic(SF3
)⊗ZQ containing the Chern class of H . The existence

of these subspaces would be assured by the Tate conjecture.

5·3·4. Let us discuss the corresponding discriminants.

i) The one-dimensional invariant subspace has discriminant 2.

ii) As Φ has a double zero at 1, the conjectural two dimensional invariant subspace is

necessarily equal to Pic(SF3
)⊗ZQ. We may compute the square class of the corresponding

discriminant according to the Artin-Tate formula. The result is (−489).

Remark 5·3·5. The Tate conjecture predicts Picard rank 2 for SF3
. The absolute value

of the discriminant is rather large. The implications of this are annoying.

i) Let C be an irreducible divisor on SF3
, linearly independent of H . Then, C is a splitting

of a curve D of degree d ≥ 23. Indeed, H is a genus-2 curve. Hence, H2 = 2. For the

discriminant, we find −489 ≥ 2C2 − d2. As C2 ≥ −2, the assertion follows.

ii) Further, D must be highly singular on the ramification locus. In fact, we have

C2 ≤ d2−489
2 and D2 = d2. Hence, going from D to C lowers the arithmetic genus by at

least d2+489
4 .

As a consequence of these calculations, we are afraid that there is no way to find a second

generator of Pic(SF3
), explicitly.

5·3·6. iii) It turns out that the divisors given by splitting the conics that are six times

tangent to the ramification sextic generate a rank three submodule of Pic(SF3
). Its dis-

criminant is

det





−2 6 0

6 −2 4

0 4 −2



 = 96 .

Hence, for the three-dimensional invariant subspace, the discriminant is in the square class

of 6.

iv) For the conjectural invariant subspace of dimension four, the Artin-Tate formula yields

a discriminant of (−163).

Remark 5·3·7. We will not need the discriminants of the invariant subspaces of di-

mensions 3 and 4.
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5·4. The modulo 5 information

5·4·1. The sextic curve in P
2F5

given by f6 = 0 has six tritangent lines. These are given

by La : t 7→ [1 : t : a] where a is a zero of a6 + 3a5 + 2a. The pull-back of each of these

lines splits on the K3 surface SF5
.

5·4·2. On the other hand, counting points yields the following traces of the iterated

Frobenius on H2
ét(SF5

,Ql),

15, 95, (−75), 2 075, (−1 250), (−14 875), 523 125, 741 875, 853 125, 11 293 750 .

This leads to the characteristic polynomial

Φ(t) = t22 − 3t21 + 13
5 t20 + 7

5 t19 − 24
5 t18 + 21

5 t17 − 2
5 t16 − 22

5 t15 + 34
5 t14

− 17
5 t13 − 17

5 t12 + 34
5 t11 − 17

5 t10 − 17
5 t9 + 34

5 t8 − 22
5 t7 − 2

5 t6 + 21
5 t5

− 24
5 t4 + 7

5 t3 + 13
5 t2 − 3t + 1

= (t − 1)2(t4 + t3 + t2 + t + 1)(t8 − t7 + t5 − t4 + t3 − t + 1)

(t8 − t7 − 2
5 t6 + 3

5 t5 − 1
5 t4 + 3

5 t3 − 2
5 t2 − t + 1) .

Observe here that the first two factors correspond to the part of the Picard group that is

generated by the splittings of the six tritangent lines.

Indeed, the intersection matrix of these divisors turns out to be of rank six. One could

have selected six linearly independent elements from Pic(SF5
) and determined these two

factors directly.

Remark 5·4·3. The knowledge of these two factors allows to compute the characteristic

polynomial Φ from only the numbers of points over F5, . . . ,F58 . Counting them takes

approximately five minutes when one uses the method described in [4, Algorithm 15].

5·4·4. Here, VTate is a Ql-vector space of dimension 14. Again, Pexpl is generated by H .

The characteristic polynomial of Frobenius on VTate/(Pexpl⊗ZQl) is

(t − 1)(t4 + t3 + t2 + t + 1)(t8 − t7 + t5 − t4 + t3 − t + 1) ,

which has only simple roots.

This shows that, for each of the dimensions 1, 2, 5, 6, 9, 10, 13, and 14, there is at most

one Gal(F5/F5)-invariant subvector space in Pic(SF5
)⊗ZQ containing the Chern class

of H . Again, the existence of these subspaces would be assured by the Tate conjecture.

5·4·5. For the cases of low dimension, let us compute the square classes of the discrim-

inants.

i) The one-dimensional invariant subspace has discriminant 2.

ii) For the two-dimensional invariant subspace, recall that we know six tritangent lines of

the ramification locus. One of them, L0, is defined over F5. Splitting π∗L0 already yields

a rank-two sublattice. For its discriminant, we find

det

(

−2 3

3 −2

)

= −5 .

Remark 5·4·6. Using the Artin-Tate conjecture, we may compute conditional values

for the square classes of the discriminants for the 6- and 14-dimensional subspaces. Both are

actually equal to (−1).
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5·5. The situation over Q
Now we can put everything together and show that the K3 surfaces described in Ex-

ample 5·1·1 indeed have geometric Picard rank 1.

5·5·1. Proof of 5·1·1. The vector space Pic(SQ)⊗ZQ injects as a Gal(Fp/Fp)-invariantQ-subvector space into Pic(SFp
)⊗ZQ for p = 3 and 5. The modulo 3 data show that this

vector space has dimension 1, 2, 3, or 4. The reduction modulo 5 allows the dimensions

1, 2, 5, 6, 9, 10, 13, and 14. Consequently, rkPic(SQ) is either 1 or 2.

To exclude the possibility of rank 2, we compare the discriminants. The reduction mod-

ulo 3 enforces discriminant (−489) while the reduction modulo 5 yields discriminant (−5).

As these integers are not in the same square class, this is a contradiction. �
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