
A HEIGHT FUNCTION ON THE PICARD GROUP OF
SINGULAR ARAKELOV VARIETIES
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For line bundles on possibly singular arithmetic varieties we construct height func-
tions using arithmetic intersection theory. In the case of a model of an algebraic
curve of genus g over a number field, for line bundles of degree g equivalence is
shown to the height on the Jacobian defined by the Θ-divisor. The behaviour
of this equivalence under change of the base field is investigated. In arbitrary
dimension a finiteness property is proven.

1 Introduction

1.1 In a previous paper17 there was given a construction for a height function
on the Picard group of a regular arithmetic variety following the philosophy
of Bost, Gillet and Soulé3 that heights should be objects in arithmetic ge-
ometry analogous to degrees in algebraic geometry. Let us shortly recall this
construction and fix notation.

Let K be a number field, OK its ring of integers and X/OK an arithmetic
variety, by which we mean a reduced scheme, projective and flat over OK ,
whose generic fiber X is geometrically connected. In the main body of the
paper we will additionally assume X to be regular in order to have the theory
of Quillen metrics available. Denote the dimension of X by d.

Further we choose a Kähler metric ω on the complex manifold X(C) asso-
ciated to X being invariant under complex conjugation F∞. This transforms
X into a so-called Arakelov variety X . Finally choose some metrized line
bundle T = (T , ‖.‖T ) ∈ P̂ic(X ).
1.2 Definition. Let L ∈ Pic (X ). We call a hermitian metric ‖.‖ on the

associated line bundle LC on the complex manifold X(C) distinguished if its
Chern form c1(LC, ‖.‖) is harmonic with respect to ω and

d̂eg (detRπ∗L, ‖.‖Q) = 0. (1)

Here π : X → Spec OK is the structural morphism and ‖.‖Q denotes the
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Quillen metric2 at the infinite places of K.
1.3 Lemma. Suppose the Euler characteristic χ(LK) is different from zero.

a) Then there exists a distinguished metric on L.
b) If ‖.‖ and ‖.‖′ are distinguished metrics on L, then ĉ1(L, ‖.‖) and ĉ1(L, ‖.‖′)
are numerically equivalent to each other.
1.4 Definition (The height). Let L ∈ Pic(X ) be a line bundle and assume
χ(LK) 6= 0. Then the height of L with respect to ω and T is the arithmetic
intersection number

hT ,ω(L) := d̂eg γ ((T , ‖.‖T ), . . . , (T , ‖.‖T ), (L, ‖.‖)) , (2)

where ‖.‖ is a distinguished metric on L. Here

γ : P̂ic (X )× P̂ic (X )× . . . × P̂ic(X )︸ ︷︷ ︸
d+1 times

→ ĈH1(Spec OK)Q (3)

is the multi-linear map defined in Lemma A.4. When X is regular, it is given
by (

U1, . . . ,Ud+1

)
7→ π∗

(
ĉ1(U1) · . . . · ĉ1(Ud+1)

)
. (4)

1.5 We note that the concept of an arithmetic variety considered here is
compatible with finite field extensions L/K in that sense that the base change
of an arithmetic variety with SpecOL → SpecOK is again an arithmetic
variety, but over OL. So one easily mimics the classical approach to heights
for L-valued points on varieties defined over K.
Definition (The normalized height). Let L ∈ Pic (X ×SpecOK SpecOL) be
some line bundle and assume χ(LL) 6= 0. Then the normalized height of L
with respect to ω and T is given by

hT ,ω(L) :=
1

[L : K]
hπ∗1T ,π∗1ω

(L), (5)

where π1 : X ×SpecOK SpecOL → X denotes the projection to the first factor.
1.6 Remark. The constructions above use the first Chern class of a hermi-

tian line bundle and the intersection product on an arithmetic variety. These
are the work of Gillet and Soulé7,8. They make extensive use of algebraic K-
Theory. On an arithmetic variety there is no moving lemma available and thus
the classical method to define the intersection product of cycles fails. Instead
Gillet and Soulé analyze the Brown-Gersten-Quillen spectral sequence

Epq1 :=
⊕

x∈X (p)

K−p−q(k(x))⇒ K−p−q(X ). (6)
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They show by investigation of the Adams operations that, after tensoring
with Q, it degenerates in the E2-term, at least on the K0-diagonal. Thus
K0(X )Q ∼=

⊕
i≥0 CHi(X )Q and this coincides with the splicing of K0(X )Q into

eigenspaces under the Adams operations. Therefore the product structure on
K0(X ) gives rise to a product, transforming

⊕
i≥0 CHi(X )Q into a graded ring

with unit.
In the appendix we will be going to discuss to some extent one point

of view on the possible intersection products when X is singular. We will
mainly follow the ideas of Fulton5 as well as Remark 2.3.1.ii of Bost, Gillet
and Soulé3.

2 Elementary Properties

2.1 Lemma (Field extensions). Let L′/L be an extension of number fields
containing K and let p : X ×SpecOK SpecOL′ → X ×SpecOK SpecOL be the
natural morphism. Then, for line bundles L ∈ Pic (X ×SpecOK SpecOL) with
χ(LL) 6= 0 one has

hT ,ω(L) = hT ,ω(p∗L). (7)

Proof. First we note that p∗‖.‖dis is a distinguished metric again. Indeed
the canonical isomorphism detRπL∗p∗L

∼=−→ p∗ detRπ∗L is isometric since
the formation of the Quillen metric commutes with arbitrary base changes.
Therefore

d̂eg (detRπL∗p
∗L, ‖.‖Q) = [L : K] d̂eg (detRπ∗L, ‖.‖Q) = 0. (8)

Consequently, one has

hT ,ω(p∗L) =
1

[L : K]
d̂eg γ (p∗(L, ‖.‖), p∗(T , ‖.‖), . . . )

= d̂eg γ ((L, ‖.‖), (T , ‖.‖), . . . ) (9)
= hT ,ω(L)

by Lemma A.4.ii). �
2.2 Proposition (Special fibers). a) Let D be an effective Cartier divisor

on X being non-trivial only in the special fiber over p ∈ SpecmOK . Then,
for L ∈ Pic (X ×SpecOK SpecOL), where L/K is a finite field extension and
χ(LL) 6= 0,

hT ,ω (L(D)) = hT ,ω(L) + log(]OK/p) ·
[
degTD − c1(TK)d · χ (L(D)/L)

χ(LL)

]
.

(10)
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Note that L(D)/L ∼= L(D)|D if on the right hand side we consider D as a
Weil divisor.
b) In particular hT ,ω(L(D)) = hT ,ω(L) if D is a complete fiber.
Proof. This is essentially contained in Proposition 2.4 of a previous
paper16. �
2.3 Remarks. i) The finiteness and comparison results we show below

assume that the line bundles under consideration have bounded degrees in
the components of the special fibers. To the contrary, the proposition above
shows the behaviour of the height under large perturbations in special fibers.

ii) In the forthcoming propositions we will study h..(L) under changes of
the initial data. The correction terms turn out to be of algebro-geometric and
complex-analytic nature, i.e. they consist of degrees and Euler characteristics.
The proofs were essentially given in a previous paper16.
2.4 Proposition (Change of defining bundle). a) Let F be a Cartier divisor

supported over p. Then for any L ∈ Pic(X ×SpecOK SpecOL) with χ(LL) 6= 0

hT (F ),ω(L) (11)

= hT ,ω(L) + d log(]OK/p) · degT L|F 1 +
d∑

k=2

(
d

k

)
log(]OK/p) · degT L|Fk ,

where F k denotes the pull back to the geometric fiber Xp of a cycle representing
F k ∈ CHk

Xp
(X )Q. Note that the right summand disappears as F = [Xp] or for

an arithmetic surface.
b) On the line bundle TC on X(C) let ‖.‖′ = eϕ · ‖.‖ be another hermitian
metric. Then for any L ∈ Pic(X ×SpecOK SpecOL) with χ(LL) 6= 0

hT ′,ω(L) = hT ,ω(L) +
1

2 [L : K]

∑
i+j=d−1

∫
XL(C)

ϕ c1(T )ic1(T ′)jH (c1(LC)) ,

(12)
where T and T ′ mean the pull-backs of these hermitian line bundles under the
natural projection XL(C) → X(C) and H denotes the harmonic projection.
In particular, when ϕ is constant

hT ′,ω(L) = hT ,ω(L) +
d

2
ϕ [K : Q] degT LL. (13)

�
2.5 Proposition (Change of Kähler metric). Let ω, ω′ be Kähler metrics

on X(C). Then for every L ∈ Pic (X ×SpecOK SpecOL) with χ(LL) 6= 0
there exists a smooth function gL on X(C), depending only on the homological
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equivalence class of LC, such that

hT ,ω′(L) = hT ,ω(L) +
1
2

∫
X(C)

gL c1(TC)d. (14)

�
2.6 Proposition (Birational morphisms). Let p : X ′ −→ X be a morphism

of arithmetic varieties inducing an isomorphism between the generic fibers.
Then, for any line bundle L ∈ Pic (X ×SpecOK SpecOL) with χ(LL) 6= 0

hp∗T ,ω(p∗L) = hT ,ω(L) (15)

− c1(TK)d

[L : K] χ(LL)

∑
p

log(]OK/p)
∑
j≥1

(−1)jχ
(
Xp, (Rjp∗OX ′)|Xp

⊗ L|Xp

)
.

Note that, if Rjp∗OX′ = 0 for all j ≥ 1, then the correction term vanishes. �
2.7 As line bundles can be defined by divisors it is natural to expect a

relation of the height of a line bundle with that of a corresponding divisor. In
general, linearly equivalent divisors will have different heights, such that the
relation can not be too simple.
Proposition (Comparison with the height of divisor). Let P/OK be a scheme
of finite type whose generic fiber is proper. On X ×SpecOK P consider a
line bundle U such that detRπ2∗U|PK ∼= OPK and χ(U|X×y) 6= 0 for each
y ∈ PK(K). Assume that for some H ∈ Pic (P) and n ∈ N the tensor power
(U ⊗ π∗2H)⊗n has a suitable section s, i.e. s|X×{y} 6= 0 for each y ∈ PK(K).
Then for every number field L and any p ∈ P(OL)

hT ,ω(U|X×p) =
1

n[L : K]
hT (div(s|X×p))−

1
[L : K]

hH(p) · c1(TL)d +O(1),

(16)
where H is equipped with any hermitian metric, while hT and hH denote
heights for cycles3. O(1) is a bounded function on⊔

L/K finite

P(OL), (17)

but the bound depends on H and s (and, of course, on the original data
X , ω, T ,P ,U).
Proof. Equip the line bundle UC on

⊔
σ:K↪→CX (C)×P(C) with a hermitian

metric ‖.‖ being invariant under F∞ and admitting a harmonic Chern form
c1(UC, ‖.‖) fiber-by-fiber. One easily sees that the function⊔

L/K finite

P(OL) −→ R

p 7→ 1
[L:K]

d̂eg (detRπ2∗U|X×p, ‖.‖Q)
(18)
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is bounded. Hence there is a distinguished metric ‖.‖dis = eC(p) ·‖.‖ on U|X×p,
where C is a bounded function on

⊔
L/K finite P(OL). Therefore

hT ,ω(U|X×p) =
1

[L : K]
d̂eg γ

(
T , . . . , T , (U|X×p, ‖.‖dis)

)
=

1
[L : K]

d̂eg γ
(
T , . . . , T , (U|X×p, ‖.‖)

)
+O(1) (19)

=
1

[L : K]
d̂eg γ

(
T , . . . , T , ((U ⊗ π∗2H)|X×p, ‖.‖)

)
− 1

[L : K]
d̂eg γ

(
T , . . . , T , π∗2H|X×p

)
+O(1).

Here the second summand is the same as

− 1
[L : K]

d̂eg γ
(
T , . . . , T , π∗H|p

)
= − 1

[L : K]
d̂eg β

(
T , . . . , T , π∗(0, 2

[L:Q]hH(p), . . . , 2
[L:Q]hH(p))

)
(20)

= − 1
[L : K][L : Q]

∫
XL(C)

hH(p) · ω∧dT

= − 1
[L : K]

hH(p) · c1(TL)d,

where we used the properties of the various intersection products shown in
the appendix. Note that the factor [L : Q] in the denominator disappears
since XL(C) has [L : Q] mutually isomorphic connected components. For the
first summand in the formula above we obtain

1
n[L : K]

d̂eg β
(
T , . . . , T , (div(s|X×p),− log ‖s|X×p‖2)

)
=

1
n[L : K]

d̂eg α
(
T , . . . , T , div(s|X×p)

)
(21)

− 1
2n[L : K]

∫
XL(C)

log ‖s|X×p‖2 · ω∧dT

=
1

n[L : K]
hT (div(s|X×p))−

1
2n[L : K]

∑
σ:L↪→C

∫
X⊗KC (C)

log ‖s|X×σ(p)‖2 · ω∧dT .

Using the work of Stoll23 one shows easily that the integral∫
X⊗KC (C)

log ‖s|X×q‖2 · ω∧dT (22)
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is a continuous function on q ∈ P(C), in particular the second part is
bounded. �

3 A Finiteness Theorem

3.1 Proposition (Models of line bundles). Let π : X → OK be an arith-
metic variety and L/K an extension of number fields. Then any line bundle
K ∈ Pic (X ) that becomes trivial under base change by Spec OL → Spec OK
is of the form K = π∗I where I ∈ Pic (Spec OK).
Proof. It is sufficient to assume L/K to be Galois.

{XOL := X ×SpecOK Spec OL → X} (23)

is a covering for the fppf-site on X . We consider the Čech spectral sequence20

Epq2 := Ȟp({XOL → X},H
q
fppf(Gm))⇒ Hp+q

fppf(X ,Gm) (24)

associated to this covering. The beginning of its lower term exact sequence
looks like this.

0→ Ȟ1({XOL → X},Gm)→ H1
fppf(X ,Gm)→ Ȟ0({XOL → X},H1

fppf(Gm))
‖

⋂
||

Pic (X ) Pic (XOL)
(25)

Therefore the line bundles under consideration are described by the Čech
cohomology group Ȟ1({XOL → X},Gm).

We remark that our assumptions make sure that π∗OX = OK , i.e. ev-
ery fiber of X is geometrically connected. So we simply deal with the first
cohomology group of the complex

0 −→ O∗L −→ (OL ⊗OK OL)∗ −→ (OL ⊗OK OL ⊗OK OL)∗ −→ . . . , (26)

which means nothing but that π induces an isomorphism

Ȟ1({Spec OL → Spec OK},Gm)
∼=−→ Ȟ1({XOL → X},Gm). (27)

On the other hand, repeating the spectral sequence argument above with
X replaced by Spec OK one sees that the group on the left hand side just
describes the line bundles on Spec OK becoming trivial under base change to
Spec OL. �
3.2 As for effective cycles one can expect finiteness results only when working

in a fixed equivalence class under the relation of algebraic equivalence.
Definition. Let K be a field and X/K a proper variety. Let L ∈ NS(X) be
an element of the Néron-Severi group, i.e. an equivalence class of line bundles
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modulo algebraic equivalence. We will call L appropriate, if the following two
conditions hold.

(∗) For some finite field extension K ′/K there is a K ′-valued point
x ∈ X(K ′) = XK′(K ′) with the property below: On XK′ × PicLK′ (XK′)
let P be the tautological line bundle with P|{x}×PicL

K′ (XK′ )
∼= OPicL

K′ . Then
(detRπ2∗P)−1 is ample on PicLK′ (XK′).

(∗∗) If L ∈ L, then χ(L) > 0.
3.3 Theorem (Finiteness). A. Let (X/OK , ω) be an Arakelov variety,

L ∈ NS(XK) an appropriate class and assume that the line bundle
T ∈ Pic (X ), defining the height, is ample. Then for every H ∈ R there
are only finitely many L ∈ Pic(X ) such that

i) L|XK ∈ L,
ii) for each p ∈ Specm OK the degree on every irreducible component X ip

of the geometric fiber Xp is bounded,

|degT L|X ip | < H, (28)
and

iii) the height is bounded above,

hT ,ω(L) < H. (29)

B. Assume in addition X/OK to be normal and suppose that sta-
bly, i.e. after any finite field extension L/K, for any special fiber
[XOL,q] ∈Div(X ×SpecOK Spec OL) the coefficients in its decomposition into
irreducible Weil divisors are relatively prime. Then for every H ∈ R there are
only finitely many L ∈ Pic (X ×SpecOK SpecOL) such that

i) L|XL ∈ LL,
ii) for each q ∈ Specm OL the degree on every irreducible component X iq

of the geometric fiber Xq is bounded,

|degT L|X iq | < H, (30)

iii) if p ∈ Specm OK splits in OL, say pOL = qα1
1 · . . . · q

αl
l , then

L|Xq1
, . . . ,L|Xql

become mutually numerically equivalent under the canonical
isomorphisms Xq1

∼= . . . ∼= Xql and
iv) the normalized height is bounded above,

hT ,ω(L) < H, (31)

where
v) L/K is an arbitrary finite field extension with [L : K] < H,

if no distinction is made between L ∈ Pic (X ×SpecOK SpecOL) and its pull
back to X ×SpecOK SpecOL′ when L′ is a finite field extension of L.
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3.4 Remarks. i) The convention in B on the pull back to a field extension
is in obvious analogy to the situation of cycles. Note that it implies auto-
matically that no distinction is made between L ∈ Pic (X ×SpecOK SpecOL)
and L⊗ π∗LI, where I ∈ Pic (SpecOL) is an element of the class group. That
identification is necessary for finiteness for trivial reasons. Indeed, for K = Q
and X = SpecZ there are infinitely many quadratic fields with non-trivial
class group.

ii) The assumption on the special fibers of the stabilization of X is fulfilled,
in particular, if every special fiber of X is geometrically reduced. Unfortu-
nately, as Example 3.5 will show, we can not get rid of an assumption like
this. In fact, the minimal assumption being necessary in this place is that
stably there exist no torsion line bundles being defined by a Cartier divisor
supported in a special fiber except those coming from the class group. Lemma
3.9 below shows this property, being the one actually used in the proof, under
our assumption.

iii) Condition B.iii) seems to be a relatively restrictive one. But note that
this restriction is only concerned with the behaviour of L in the non-smooth
fibers Xp, where p splits in OL. At least if X is regular and the irreducible
components of its fibers are geometrically irreducible, then, after a finite field
extension, every line bundle can be brought into the form required by adding
a suitably chosen divisor being supported in special fibers. See Proposition
3.10 for this.

iv) PicLK′ (XK′) denotes the scheme representing the open subfunctor
of the Picard functor assigning to each K ′-scheme T the the set of all line
bundles on XK′ × T , which are rigidified at x and belong to LK′ , the class
of the base changes of the line bundles of L, fiber-by-fiber. In order to work
with the tautological line bundle one has to extend the ground field such that
there is a K ′-valued point on X . In general there exists only a Picard scheme
representing the fppf-sheafification of the naive Picard functor and the relation
with line bundles becomes less direct.

v) Condition (∗) above is fairly independent of choices. It does not de-
pend on the choice of the K ′-valued point x. Indeed, the tautological line
bundle P ′ defined by another K ′-valued point x′ differs from P by some π∗2Z,
where Z is algebraically equivalent to zero on PicLK′ (XK′). Consequently,
(detRπ2∗P ′)−1 is algebraically equivalent to (detRπ2∗P)−1 and therefore it
is ample, too, by the Nakai-Moishezon criterion. Furthermore, (∗) does obvi-
ously still hold when K ′ is replaced by a finite field extension.

vi) Some cases where (∗) is actually fulfilled are listed in Theorem 3.6
below.

JJ: submitted to World Scientific on July 6, 1998 9



3.5 Example. Let K = Q and consider the quadric

X = Proj Z[X,Y, Z]/(X2 + Y 2 − 2Z2). (32)

One shows without difficulty that this is a regular arithmetic variety. Its fiber
over p = (2) is equal to Proj F2[X,Y, Z]/(X + Y )2. Therefore O([X(2)]red) is
a non-trivial torsion bundle. In particular, it is numerically equivalent to zero
in any fiber.

Let x := (1:1 :1) ∈ X (Z). By Théorème 2.3.1 of Raynaud22 the rigidified
Picard functor

PicX/Z : (Sch/Z) −→ (Sets) (33)

T 7→ {(L, i) | L ∈ Pic (T ×SpecZ X ), i : L|T×x
∼=−→ OT×x}

is representable as an algebraic space. Further, its subfunctor PicτX/Z collect-
ing the line bundles, which are numerically equivalent to zero in each geometric
fiber of T ×SpecZ X → T , is representable by an open group subspace PicτX/Z
being of finite type over SpecZ as shown in SGA6, Exp. XIII, Thm. 4.7.

It is easy to see that PicτX/Z can not be separated. In fact there are
two different maps i1, i2 : Spec Z → PicτX/Z that are both extensions of
i : Spec Q → PicτX/Z corresponding to the trivial line bundle on X . This
effect has serious consequences already on quadratic extensions of Q split over
(2). Namely, if (2)OL = p1p2, then in order to extend iL : Spec L→ PicτX/Z
to Spec OL we have two possibilities for the image of p1 and two possibilities
for the image of p2, thus producing two new line bundles in the sense of our
statement above. For any other choice of L there will be different ones and
we end up with infinitely many of them. Note that in order to produce this
pathology we needed extensions of the ground field.

At this point it becomes clear, what condition B.iii) is good for. PicX/OK
is not separated in general, even when PicτX/OK is. A typical case is a regular
arithmetic variety X having reducible fibers. We could therefore produce
infinitely many line bundles not being of much interest by the same procedure.
3.6 Theorem. Let K be a field and X/K be a regular, proper and geomet-

rically connected scheme. Further, let L ∈ NS(X) be an equivalence class of
line bundles modulo algebraic equivalence. Then L is appropriate, if
a) X is a curve of genus g and L consists of line bundles of degree at least g,
b) X is torsor over an abelian variety and L is an ample equivalence class,
c) (X is arbitrary), L′ ∈ NS(X) is any equivalence class and A is an ample
equivalence class, for L = L′ + nA when n� 0.
Proof. This follows directly from Theorem 1.7 in a previous paper16 and
Remark ii) above. �
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3.7 Proof of Theorem 3.3. B. 1st step. We may assume without restric-
tion that X(K) 6=∅. This is just Lemma 3.1.

2nd step. The Picard functor. Denote by x an OK-valued point of X and
consider the rigidified Picard functor as in Example 3.5. We claim that the
algebraic space PicτX/OK is separated here. In fact, by the valuative criterion
we have to consider the commutative diagram

Spec F → PicτX/OK
↓ ↗↗ ↓

Spec S → Spec OK ,
(34)

where S is a discrete valuation ring and F is fraction field. By the modular
interpretation we have two line bundles L1,L2 ∈ Pic (X ×SpecOK Spec S)
becoming isomorphic under restriction to X ×SpecOK Spec F . Lemma 3.9
shows that under our assumptions the two must be isomorphic. The claim is
proven. By Théorème 3.3.1 of Raynaud22 it follows that PicτX/OK is a scheme
already. We define PicσX/OK to be the closure of PicτX/OK,K in PicτX/OK .

A little bit extending the collection of line bundles under consideration
we look at the subfunctor PicδX/OK of PicX/OK , which collects the line bun-
dles satisfying ii) in each characteristic p geometric point of T and, instead
of i), being of the same numerical type as the bundles in LC for each C-
valued point of T , when C is a field in characteristic zero. This subfunctor
is given by numerical conditions only, therefore it is represented by an open
subspace PicδX/OK of PicX/OK . We will not be interested in line bundles on
special fibers that can not be generalized. Therefore we consider the closure
PicγX/OK of PicδX/OK,K in PicδX/OK . Proposition 3.8 shows now that we are
dealing with finitely many numerical types only, so, after a finite field exten-
sion, PicγX/OK,OL0

is the union of finitely many cosets of PicσX/OK,OL0
. In

particular, it is of finite type over Spec OK . Condition B.iii) translates into
the requirement, that we consider OL-valued points lying in one of the cosets
already.

We note that by FGA, Exp. 232, Théorème 3.1 and Exp. 236, Théorème
2.1 the scheme PicγX/OK is projective outside the fibers of finitely many primes
p1, . . . , pl ∈ SpecmOK . By enlarging the exceptional set if necessary we may
assume smoothness, i.e. PicγX/OK ×SpecOK\{p1, ... ,pl} SpecOK is a disjoint
union of finitely many abelian schemes.

3rd step. For every n ∈ N there exist C(n) ∈ N and a morphism
p′ : P ′ → PicδX/OK satisfying the conditions below.

i) P ′ is a separated scheme of finite type over OK .
ii) p′ is quasi-finite.
iii) p′ is finite outside the fibers over the primes p1, . . . , pl.
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iv) For every number field L and any i ∈ PicδX/OK (OL) lying after lift
to OLL0 in one of the cosets under PicσX/OK,OL0

there exist a field extension
L′/L with [L′ : L] ≤ C(n) and i′ ∈ P ′(OL′) lifting i.

v) For every F ∈ Pic
(
PicδX/OK,Q

)
the pull-back p′∗QF is divisible by n.

We may choose finitely many sections iα : Spec OL0 → PicγX/OK to obtain
a surjection P ′1 :=

∐
α∈APicσX/OK ,OL0

→ PicγX/OK ,OL0
→ PicγX/OK , where

the morphisms PicσX/OK ,OL0
→ PicγX/OK ,OL0

are just the multiplications
with the OL0-valued points iα. This satisfies i), ii) and iii).

For v) there is a cohomological argument. The obstruction against
F ∈ Pic ( . ) to be divisible by n is its Chern class c1(F) ∈ H2

ét( . , µn). Since
each connected component of Picδ

X/OK ,Q is an abelian variety, its second co-
homology group is generated by the first one. So we only have to annihilate
(some of) the classes in H1

ét(P
′
1,Q, µn) and this is done by an étale cover. But

this one will be given by finitely many data and therefore be nothing but the
base change of some cover P̃ → P ′1,L defined over a finite field extension L/K
already. Consider the composition P̃ → P ′1 ×SpecOK Spec OL → P ′1 being a
finite morphism in the generic fibers and define an extension P ′ of P̃ being
finite over P ′1 as the normalization of P ′1 in K(P̃ ). By construction, P fulfills
v), while i), ii) and iii) remain valid by the finiteness over P ′1.

Finally, let us show iv). It is sufficient to prove this for P ′1. In fact, P ′ is
finite over P ′1 of some degree C. By SGA1, Exp. I, Théorème 10.11 over any
L-valued point of P ′1 there is an L′-valued point with [L′ : L] ≤ C. Extend it
to an OL′-valued point. But for lifts to P ′1 the only field extension we need is
the composite with L0. Indeed, any i : Spec OL → PicδX/OK corresponds to
some line bundle L ∈ Pic (X ×SpecOK SpecOL). But the sections iα chosen
represent all the possible numerical types in the special fibers. Therefore, as
soon as L ⊇ L0, we may find α ∈ A such that i− iα is a section in PicσX/OK .
This is just the assertion.

4th step. The tautological line bundle. Let P be the rigidified tautological
line bundle on X ×SpecOK PicγX/OK . A direct application of Riemann-Roch
shows that for any Q-valued point x ↪→ PicγX/OK the Euler characteristic
χ := χ(P|X×x) is the same. We put n := χ and consider the morphism
P ′

p′→ PicγX/OK constructed in Step 3. We claim:
There is a projective morphism q : P → P ′ satisfying the following conditions.

i) q is an étale cover outside the fibers over p1, . . . , pl.
ii) There exists C ∈ N such that for any number field L and any

i ∈ P ′(OL) there exist a field extension L′/L with [L′ : L] ≤ C and a lift
i′ ∈ P (OL′) of i.
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iii) There exists E ∈ Pic(P ) such that the line bundle

detRπ2∗ ((id× p)∗P ⊗ π∗2E) (35)

is trivial on the generic fiber PK . Here p denotes the composition
p = p′q : P → PicγX/OK .

By the projection formula

detRπ2∗ ((id× p)∗P ⊗ π∗2E) = p∗ detRπ2∗P ⊗ E⊗χ. (36)

So we are looking for a morphism, the pull-back under which makes the line
bundle detRπ2∗P divisible by χ. p′ yields that on the geometric generic
fiber by the last step. Therefore it is clear that there exists a number field
L/K such that the pull-back of detRπ2∗P to P1 := P ′ ×SpecOK Spec OL will
be divisible by χ on the generic fiber. It remains to extend the quotient D
from the generic fiber P1,K to a model. For this take a Weil divisor D with
D = O(D) and consider its Zariski closure D in P1. In general it will not
define a line bundle there, but the blow-up P := BlD(P1) fulfills properties i),
ii) and iii). Note that the restriction of E to PK is an ample line bundle by
assumption (∗) and (∗∗).

5th step. Comparison with height for cycles. Put U := (id× p)∗P ⊗ π∗2E .
For the x ∈ X(K) used in the rigidification the line bundle U|{x}×PK ∼= EK
is ample. Thus, UK is ample fiber-by-fiber since all the U|{.}×P are mutu-
ally numerically equivalent (up to extension of ground field). By EGA III,
Théorème 4.7.1 it is relatively ample. But then EGA II, Proposition 4.6.13.ii
shows that there exists some H ∈ Pic(X ) such that U ⊗ π∗1H induces an am-
ple line bundle on X × PK . This implies that there is some n ∈ N such that
(U ⊗ π∗1H)⊗n|X×PK admits a suitable section s, i.e. s|X×{y} 6= 0 for every
geometric point y ↪→ PK , as worked out in a previous paper16. Multiplying
with elements of OK if necessary, we may assume that s can be extended
to X ×Spec OK P . By Lemma 2.7 we know for any number field L and any
y ∈ P (OL)

hT ,ω (U|X×y) =
1

n[L : K]
hT (div(s|X×y)) +O(1) (37)

=
1

n[L : K]
hT

(
πL∗ div(s|X×y)

)
+O(1),

where πL : X ×SpecOK P ×SpecOK SpecOL → X ×SpecOK P is the natural pro-
jection. But the cycles div(s|X×y) are pairwise different, even when restricted
to the geometric generic fiber, since they represent different line bundles there.
One easily sees that each cycle on X ×SpecOK P has only finitely many possi-
bilities to be a push-forward under one of the πL. So the proof is finished by
the finiteness result for the height for effective cycles3.
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For A we have PicγX/OK and PicσX/OK as well, but we neither know
PicσX/OK to be separated nor to be a scheme. So we have to deal carefully
with algebraic spaces. We claim:
For every n ∈ N there exist C(n) ∈ N and a morphism p′ : P ′ → PicγX/OK
satisfying the conditions below.

i) P ′ is a separated scheme of finite type over OK .
ii) Each component of P ′ is finite over its image in PicγX/OK .
iii) p′ is finite outside the fibers over the primes p1, . . . , pl.
iv) For any i ∈ PicγX/OK (OK) there are a field extension K ′/K with

[K ′ : K] ≤ C(n) and i′ ∈ P ′(OK′) lifting i.
v) For every F ∈ Pic

(
PicγX/OK,Q

)
the pull-back p′∗QF is divisible by n.

By the definition of an algebraic space there are a scheme U and an étale
covering U → PicγX/OK . As PicγX/OK is the closure of its generic fiber, we
may, not losing the property of being étale, decompose U into its components
and consider

∐
α∈A Uα → PicγX/OK , where A is a finite index set and Uα are

irreducible affine schemes. Without restriction assume A = A0 ∪ . . . ∪ Al,
where for α ∈ Ai with i ∈ {1, . . . , l} the component Uα meets the generic
fiber and among the fibers over p1, . . . , pl exactly that over pi, while it
does not meet the fibers over p1, . . . , pl for α ∈ A0. Define Uα to be
the normalization of Uα,red in the normal closure K(Uα,red)n of its function
field, considered as a finite extension of K(PicγX/OK ). Corresponding to each
σ ∈ G = Gal(K(Uα,red)n/K(PicγX/OK )) there is a birational map
jσ : Uα− → Uα making the obvious diagram of maps to PicγX/OK com-
mutative. We consider these copies of Uα as different schemes connected by a
birational map jid,σ : U id

α −→ Uσα , put jτ,σ := jσj
−1
τ : U τα −→ Uσα and claim

that all these can be glued together to give a scheme Un
α. In fact there is a

maximal open set U τ,σα , where jτ,σ is a morphism. Since Uα is normal and
quasi-finite over PicγX/OK , jτ,σ is quasi-finite and therefore an open embed-
ding by Zariski’s Main Theorem. The same argument is true for the inverse
map and the cocycle relations are trivial.

Un
α clearly fulfills i) and is quasi-finite over PicγX/OK . In order to show

it is finite over its image we need that pTα : Un
α ×Picγ

X/OK
T → T is fi-

nite as soon as it is surjective for a scheme T being étale over PicγX/OK .
As by EGA II, Corollaire 5.4.3.ii) properness descends under proper surjec-
tive base changes we may assume T to be normal (but no more étale) and
K(T ) ⊇ K(Un

α) = K(Uα,red)n. But in that case pTα splits completely into a
disjoint union of birational maps, i.e. open embeddings. As the full Galois
group G acts on Un

α ×Picγ
X/OK

T surjectivity implies that all of them must be
isomorphisms.

Now, for every l-tuple (α1, . . . , αl) ∈ A1 × . . . × Al let
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K(α1, ... ,αl) := K(Un
α1

) · . . . ·K(Un
αl

) be the composite of the corresponding
function fields. We put U i(α1, ... ,αl)

for i ∈ {1, . . . , l} to be the normalization
of Un

αi in the field extension K(α1, ... ,αl) and U0
(α1, ... ,αl)

to be the normal-
ization of O := PicγX/OK ×SpecOK (SpecOK \{p1, . . . , pl}) in K(α1, ... ,αl).
The U i(α1, ... ,αl)

can be glued together giving an integral scheme U(α1, ... ,αl)

being equipped with a map to PicγX/OK , which is finite onto its image. In-
deed, by our construction there is something to be glued only outside the the
exceptional fibers. But there Un

αi
is just an open subscheme of the normal-

ization of O in K(Uαi,red)n. Consequently, outside the exceptional fibers each
U i(α1, ... ,αl)

is nothing but an open subscheme of the normalization of O in
K(α1, ... ,αl). So there are natural identifications and the cocycle relations are
trivial. We put

P ′′ :=
∐

(α1, ... ,αl)∈A1× ...×Al

U(α1, ... ,αl). (38)

By construction P ′′ admits properties i), ii) and iii). For v) there is ex-
actly the same argument as in step B.3 giving the scheme P ′ desired. Again
to show iv) it is sufficient to consider P ′′. By the definition of an alge-
braic space a map i : Spec OK → PicγX/OK gives rise to a morphism of
schemes

∐
α∈A Vα →

∐
α∈A U

n
α. By our construction, Vα is finite over its

image in Spec OK . As we started with a covering there is necessarily
one combination (α1, . . . , αl) ∈ A1 × . . . Al giving a base change map
V(α1, ... ,αl) → U(α1, ... ,αl), where V(α1, ... ,αl) is surjective, hence necessarily fi-
nite, over Spec OK . That implies the assertion.

The proof is finished along the lines of steps B.4 and B.5. �
3.8 Proposition. Let R be a discrete valuation ring with maximal ideal m

and fraction field K. Further, let X be an integral scheme, projective and
flat over R whose generic fiber is geometrically connected. Equip it with some
ample line bundle T . Assume L ∈ Pic(X ) satisfies the following conditions.

i) Its restriction LK ∈ Pic (XK) to the generic fiber is trivial.
ii) On every component X im of the geometric fiber Xm

degT L|X im = 0. (39)

Then L|Xm is numerically equivalent to zero.
Proof. We may assume dimX ≥ 2. Let p : X ′ → X be the normalization.
Note, since p is finite, p∗T is again an ample line bundle. Thus p∗L also sat-
isfies conditions i) and ii). In fact this is trivial for i), while for ii) let X ′im be a
component of the geometric fiber X ′m. Then p∗

[
X ′im
]

= n
[
X jm
]
∈ CH0(Xm)

for some component X jm and a non-negative integer n. Therefore
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the assumption degT L|X jm = deg c1(L) · c1(T )dimX−2|
X jm

= 0 implies
degp∗T p

∗L|X ′im
= deg c1(p∗L) · c1(p∗T )dimX−2|X ′im

= 0. By Lemma 3.9 be-
low p∗L is torsion, at least after a finite unramified extension of R. But
then L|Xm is numerically equivalent to zero as for this by SGA6, Exp. XIII,
Théorème 4.6 one only has to verify that certain intersection numbers of line
bundles are 0 and this can be checked after pull-back under a finite morphism
(cp. Lemma A.4). �
3.9 Lemma. Let X be as in Proposition 3.8 and assume further it is normal

and dimX ≥ 2.
a) Let Dm be the vector space of Weil Q-divisors supported over m. Then
there is a symmetric bilinear form 〈 . , . 〉 : Dm ×Dm → Q with the properties
below.

i) 〈D, [Xm]〉 = 0 for every D ∈ Dm.
ii) If D is effective with coefficient 0 at the component [X im], then

〈D, [X im]〉 ≥ 0.
ii’) If, in addition, D is Cartier and |D| ∩ |[X im]| 6= ∅, then 〈D, [X im]〉 > 0.
iii) If D is a Cartier divisor, then 〈D,D′〉 = deg D ·c1(T )dimX−2|D′ .

b) On the vector space Cm of Cartier Q-divisors supported over m, the form
〈 . , . 〉 is negative semi-definite, whereas only rational multiples of the fiber
[Xm] have square zero. In particular, any line bundle L = O(D), where D
is supported over m, whose degree vanishes at every component of Xm, is
torsion. One even has L ∼= OX if the coefficients of the divisor [Xm] are
relatively prime.
Proof. a) Let X im and X jm be two different components of Xm. We let

X im · X jm :=
∑

x∈X (2)

l
(
OX ,x/(JX im + JX jm)OX ,x

)
· x (40)

be their naive intersection product and put

〈[X im], [X jm]〉 := deg c1(T dimX−2)|X im·X jm. (41)

This can easily be extended to a symmetric bilinear form satisfying i). But
then iii) is clear, since there are no higher Tor’s occurring when intersecting
with a Cartier divisor. ii) is trivial from the construction. For ii’) note that
by dimension theory dim |D| ∩ |[X im]| ≥ dimX − 2 as soon as they meet. For
two arbitrary Weil divisors this would be wrong in general.

b) Let [Xm] =
∑
i Ci[X im]. Then

0 = 〈[X im], [Xm]〉 = Ci〈[X im], [X im]〉+
∑
k 6=i

Ck〈[X im], [X km]〉, (42)
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hence 〈Ci[X im], Ci[X im]〉 = −
∑
k 6=i〈Ci[X im], Ck[X km]〉. With rational coefficients

bi one obtains〈∑
i

biCi[X im],
∑
i

biCi[X im]
〉

=
∑
i

b2i 〈Ci[X im], Ci[X im]〉 (43)

+
∑
j 6=k

bjbk〈Cj [X jm], Ck[X km]〉

= −1
2

∑
j 6=k

(bj − bk)2〈Cj [X jm], Ck[X km]〉.

Therefore 〈 . , . 〉 is negative semi-definite. Now assume D =
∑
i biCi[X im] to be

Q-Cartier with square zero, while not all the bi are equal. Without restriction
we may suppose some of the bi are zero, bi1 = . . . = bil = 0, and the others
are not, bj1 6= 0, . . . , bjm 6= 0. But this implies 〈Cin [X inm ], Cjo [X

jo
m ]〉 = 0 for

any n and o, therefore 〈[X inm ], D〉 = 0 for any n being a contradiction to a.ii’)
since Xm is connected. �
3.10 Proposition. Let L/K be an extension of number fields, X/OK a

regular arithmetic variety, the irreducible components of all whose fibers are
geometrically irreducible, and L ∈ Pic (X ×SpecOK Spec OL). Then there
exist some finite field extension L′/L and H ∈ Pic (X ×SpecOK Spec OL′)
being non-trivial only in non-smooth fibers such that

L′ := LOL′ ⊗H ∈ Pic (X ×SpecOK Spec OL′) (44)

admits the property that for each p ∈ Specm OK splitting in OL, say
pOL = qα1

1 · . . . · q
αl
l , the restrictions L′|Xqi

are mutually numerically equiv-
alent.
Proof. The assumption makes sure that on X×SpecOK Spec OL every vertical
Weil divisor admits a non-zero multiple which is Cartier. Therefore, on the
vector spaces Dqi/[Xqi ] of Weil Q-divisors supported over qi, there is a nega-
tive definite intersection pairing. We would be finished, if we were allowed to
use a vertical Q-divisor for H. Lemma 3.11 below completes the proof. �
3.11 Lemma. Let n be a positive integer, S be a Dedekind ring and X/S

a proper scheme whose generic fiber is smooth. Denote its open subscheme
consisting of all the smooth fibers by X (s). Consider L ∈ Pic (X ) such that
L|X (s) ∼= OX (s). Then there exists a finite flat morphism p : Spec T → Spec S
of spectra of Dedekind rings such that p∗XL ∈ Pic (X ×SpecS Spec T ) is di-
visible by n in that sense that there exists Q ∈ Pic (X ×SpecR Spec T ) with
Q|X (s) ∼= OX (s) and Q⊗n ∼= p∗XL.
Proof. The question is local in the base. We may even assume S to be a
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strictly henselian discrete valuation ring. We note that, if the residue charac-
teristic is l > 0, then pull-back under Frobenius of any line bundle is divisible
by l. So assume from now on n to be prime to the residue characteristic.

Let (S, s) → (T, t) be a totally ramified homomorphism of degree n be-
tween strictly henselian discrete valuation rings and denote the associated
morphism of affine schmes by p.. The only obstruction against L ∈ Pic (X )
to be divisible by n in the sense above is

c1(L) ∈ H2
ét,Xs(X , µn) = H0

ét,s(Spec S, R2π∗µn). (45)

On the other hand

H2
ét,(XT )t

(X ×SpecS Spec T, µn) = H0
ét,t(Spec T,R2πT ∗p

∗
Xµn) (46)

= H0
ét,s(Spec S,R2π∗(pX ∗p

∗
Xµn))

as pX : X ×SpecS Spec T → X is acyclic being a finite morphism. We have to
study the canonical map between these two spaces. i.e. the map between the
stalks of the direct image sheaves occurring. By proper base change this is a
map H2

ét(Xs, µn)→ H2
ét(Xs, pXs∗p∗Xsµn). But one easily sees pXs∗p

∗
Xsµn

∼= µn.
We claim the map is multiplication by deg pXs , hence zero. It comes from the
pull-back p∗Xs : H2

ét(Xs, µn)→ H2
ét(Xs ×SpecS Spec T, p∗Xsµn). But there is an

isomorphism of topoi (pXs∗, p
∗
Xs) : (Xs ×SpecS Spec T )ét → (Xs)ét. Finally,

note that pXs∗p
∗
Xss = deg pXs · s for any class in étale cohomology. �

4 The Case of an Arithmetic Surface

4.1 Conventions. An arithmetic surface is an arithmetic variety of dimen-
sion 2. Note that this is exactly the case d = 1 in the notation introduced
in the beginning of the paper. An Arakelov surface is an Arakelov variety of
dimension 2, i.e. an arithmetic surface X equipped with a Kähler metric ω
being invariant under complex conjugation.
4.2 Proposition. Let X/OK be an arithmetic surface. Then there exists
C ∈ R with the property below: Let L′/L/K be finite field extensions and

p : X̃ → X ×SpecOK Spec OL′ → X ×SpecOK Spec OL (47)

the composition of a proper birational morphism with a base extension. Then
for each T ∈ P̂ic(X ), each Kähler metric ω on X(C) being invariant under
F∞ and every L ∈ Pic (X ×SpecOK Spec OL) with χ(LL) 6= 0

|hp∗T ,p∗ω(p∗L)− hT ,ω(L)| ≤ C · deg(TK). (48)

Proof. We put C := c1(TK)d ·
∑

p log(]OK/p) C(p), where the C(p) come
from Lemma 4.3 below. In the case that L = K Proposition 2.6 gives the
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assertion directly, since Rjp∗OX ′ = 0 for j ≥ 2 and the Euler characteristic
breaks down to the length of the space of global sections. For arbitrary L
note that X ×SpecOK Spec OL → X is acyclic for coherent sheaves. �
4.3 Lemma. Let X/OK be an arithmetic surface. Then, there exists some

function C : Specm OK → R such that
i) Only finitely many values of C are different from zero.
ii) For any composition p : X̃ → X ×SpecOK Spec OL → X of a birational

morphism and a base extension one has

l (R1p∗O eX |Xp) ≤ C(p) · [L : K]. (49)

Proof. First note, if X1
p1→ X2

p2→ X3 is any composition of proper birational
maps of surfaces, then the lower term sequence associated to the Leray spectral
sequence for OX1 reads 0→R1p2∗OX2→R1(p2p1)∗OX1→ p2∗R

1p1∗OX1→ 0.
So in order to show an estimate for p2 it is sufficient to prove it for p2p1.

For arithmetic surfaces there exists a semi-stable reduction, i.e.
there is some field extension L0 and a birational desingularization
p′ : X ′ → X ×Spec OK Spec OL0 → X such that X ′ is semi-stable19. We
put C(p) := l (R1p′∗OX ′|Xp)/[L0 : K]. Note that R1p′∗OX ′ is a coherent sheaf
supported in finitely many points.

To prove the assertion for X̃ → X ×SpecOK Spec OL → X we may as-
sume by flat base change that L ⊇ L0. Further, it is sufficient to consider
X ′ ×(X×Spec OKSpec OL0) X̃ instead of X̃ and we may even regard its desin-
gularization X̃ ′. So everything we need is that X̃ ′ → X ′ ×Spec OL0

Spec OL
is acyclic for the structure sheaf, i.e. that X ′ ×Spec OL0

Spec OL has only
rational singularities.

But X ′ ×Spec OL0
Spec OL is regular in codimension 1 as X ′ is smooth

in codimension 1 and Cohen-Macaulay as it is flat of relative dimension zero
over X ′. So it is normal. In formal coordinates its singularities are given by
Spf ÔL0,p[[X,Y ]]/(XY − pn) for some positive integer n. Therefore they are
toroidal embeddings in the sense of Section IV.3 of Kempf, Knudsen, Mumford
and Saint-Donat19, in particular they are rational. �
4.4 Theorem. Let (X/OK , ω) be an Arakelov surface whose generic fiber

is of genus g. Assume x ∈ X (K) is a K-valued point such that O(x)
can be extended to some T ∈ Pic (X ), which we suppose to be equipped
with a hermitian metric. Transfer the Θ-divisor to Picg(XK) via the map
Picg−1(XK) → Picg(XK) defined by x. Then there exists a function
C = CX ,ω,T : R → R with the property below: For each finite field extension
L/K and each L ∈ Pic(X ×Spec OK Spec OL) of degree g on XL satisfying

| degL|X ip | < H (50)
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for every component X ip of the geometric fibers Xp, the inequality∣∣∣∣hT ,ω(L)− 1
[L : K]

hΘ([LK ])
∣∣∣∣ < C(H) (51)

is true, where hΘ is the height on Picg(XK) defined by Θ.
Proof. By the existence of semi-stable reduction and Proposition 4.2 we may
assume X to be semi-stable. In that situation the statement of Lemma 3.9
is known for a long time. But then, using Proposition 3.10 and Proposition
2.2 one easily sees that it is sufficient to assume that over any p ∈ Specm OK
that splits in OL, the restrictions of L to the corresponding geometric fibers
are mutually numerically equivalent. By Proposition 3.8 we deal with finitely
numerical types only. We may consider them separately. Exactly the same
argument as in 3.7, step B.ii), yields a separated scheme PicσX/OK being of
finite type over OK . We are forced to work with a coset P ↪→ PicX/OK of it,
whose generic fiber is PicgX/K .

Consider the line bundle

O((π1×π21)∗∆ + . . . + (π1×π2g)∗∆) ∈ Pic (X ×Xg), (52)

where ∆ denotes the diagonal in X ×X . It defines a morphism

c : Xg → PicgX/K . (53)

Let P ′ denote the normalization of P in K(Xg). It is equipped with a proper
morphism p : P ′ → P such that P ′ ×SpecOK Spec K ∼= Xg and p goes
over into c under this isomorphism. By functoriality there is a line bundle
V ∈ Pic (X ×P ′) such that V|X×Xg ∼= O((π1×π21)∗∆ + . . . + (π1×π2g)∗∆).
We claim that D := detRπ2∗V|Xg ∼= c∗O(−Θ)⊗

⊗g
i=1 π

∗
iO(x). In fact, there

is an exact sequence

0→ V ′|X×Xg → V|X×Xg → V|{x}×Xg → 0, (54)

where V ′ := V ⊗ π∗1T −1 ∈ Pic (X × P ′). Consequently,

detRπ2∗V|Xg ∼= detRπ2∗(V|X×Xg ) (55)
∼= detRπ2∗(V ′|X×Xg )⊗O(π∗1(x) + . . . + π∗g(x)).

But by Faltings4 or Moret-Bailly21 one has detRπ2∗(V ′|X×Xg ) ∼= c∗O(−Θ).
We are in the situation of Proposition 2.7 with n = 1, U := V ⊗ π∗2D−1

and H := D. Therefore

hT ,ω

(
V|X×(p1, ... ,pg)

)
(56)

=
1

[L : K]
hT

(
(p1) + . . . + (pg)

)
− 1

[L : K]
hD

(
(p1, . . . , pg)

)
+O(1).
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The statement follows easily from Lemma 4.5 below. �
4.5 Lemma. Let g be a positive integer and X/OK be an arithmetic

variety equipped with T ∈ P̂ic(X ). Let P/OK be a separated scheme of
finite type whose generic fiber is Xg and let G ∈ P̂ic(P) be such that
G|Xg ∼=

⊗g
i=1 π

∗
i T |Xg . Then, for any number field L/K and any

p1, . . . , pg ∈ X(L)

hT ((p1) + . . . + (pg)) = hG

(
(p1, . . . , pg)

)
+ [L : K] ·O(1) (57)

as soon as (p1, . . . , pg) ∈ Xg(L) can be extended to some (p1, . . . , pg) ∈ P(OL).
Here O(1) is a bounded function on

⊔
L/K finite X

g(L), but the bound depends
on T and G.
Proof. Consider X g instead of P first. By Lemma A.2 one has

hT ((p1) + . . . + (pg)) =
g∑
i=1

hπ∗i T

(
(p1, . . . , pg)

)
= h gN

i=1
π∗i T

(
(p1, . . . , pg)

)
.

(58)
But there is a scheme P ′ equipped with birational morphisms X g q← P ′ p→ P ,
where p is proper. Indeed let P ′ be the closure of the diagonal in X g×SpecOKP .
Then hG

(
(p1, . . . , pg)

)
= hp∗G

(
(p1, . . . , pg)

)
and

h gN

i=1
π∗i T

(
(p1, . . . , pg)

)
= h

q∗
gN

i=1
π∗i T

(
(p1, . . . , pg)

)
. (59)

The difference of the two terms on the right hand side is bounded as there
are changes only in the special fibers (and the metric). �
4.6 Remark (Asymptotic behaviour). If E ,M ∈ Pic (X ×SpecOK Spec OL)

are equipped with distinguished metrics, then there is a formula for
hT ,ω(E ⊗ Mn) in terms of arithmetic intersection numbers17. In particu-
lar, if deg(EL) = g, deg(ML) = 0 and deg(TL) = 1, then the dominating term
for n→∞ is

−1
2

d̂eg γ
(
M,M

)
· n2. (60)

By Theorem 4.4 we recover the formulas hNT,Θ([MK ]) = − 1
2 d̂eg γ

(
M,M

)
and

hNT,Θ+Θ−([MK ]) = − d̂eg γ
(
M,M

)
(61)

for the Néron-Tate, which are due to Faltings and Hriljac.
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Appendix

A Some Facts Concerning Intersection Theory on Singular
Arithmetic Varieties

A.1 Remark. It is a well-known phenomenon that there is no good intersec-
tion product available for arbitrary cycles on singular varieties. Nevertheless it
is possible to intersect cycles with Chern classes of vector bundles. The same
situation occurs in arithmetic intersection theory. It seems that the right con-
text to describe possible intersection products is arithmetic K-Theory9 more
than arithmetic Chow theory.
A.2 Lemma. A. For any projective arithmetic variety X/OK , whose

generic fiber X is regular, any natural number r and any partition (r1, . . . , rs)
of r there is a unique multi-linear map

αr1, ... ,rs : K̂0(X )× . . . × K̂0(X )︸ ︷︷ ︸
s times

× Zr(X ) −→ ĈH1(Spec OK)Q, (62)

called restriction product, satisfying the following conditions.
i) If X is regular, then αr1, ... ,rs coincides with the product(

ĉhr1(.) · . . . · ĉhrs(.)
∣∣∣ . ) (63)

defined by Bost, Gillet and Soulé3.
ii) For any morphism f : X → X ′ there is a projection formula

αr1, ... ,rs (v1, . . . , vs, f∗(Z)) = αr1, ... ,rs (f∗(v1), . . . , f∗(vs), Z) . (64)

B. If (r1, . . . , rs) = (1, . . . , 1), the specialized product

α : P̂ic (X )× . . . × P̂ic(X )︸ ︷︷ ︸
r times

× Zr(X ) −→ ĈH1(Spec OK)Q (65)

exists without the assumption on X to be regular and fulfills i) and ii) below.
i) If X is regular, then α coincides with the product ( ĉ1(.) · . . . · ĉ1(.) | . ) .
ii) For any morphism f : X → X ′ there is a projection formula

α
(
U1, . . . ,Ur, f∗(Z)

)
= α

(
f∗(U1), . . . , f∗(Ur), Z

)
. (66)

Proof. We will show A only. If V1, . . . ,Vs are hermitian vector bundles
on X , then there are a morphism ι : X → P , where P is projective and
smooth over Spec OK , and vector bundles V1,P , . . . ,Vr,P on P such that
ι∗(Vj,P ) = Vj . One may even choose ι such that the hermitian metric on Vj is
a pullback of one on Vj,P and any differential form on X(C) extends to P (C).

ι∗(vj,P ) = vj (67)

JJ: submitted to World Scientific on July 6, 1998 22



Then for an r-dimensional cycle Z in X define

αr1, ... ,rs (v1, . . . , vs, Z) :=
(
ĉhr1(v1,P ) · . . . · ĉhrs(vs,P )

∣∣∣ ι∗(Z)
)
, (68)

where (.|.) denotes the restriction product ĈHr(P )×Zr(P )→ ĈH1(Spec OK)Q.
In their remark after Proposition 3.2.1 Bost, Gillet and Soulé3 have shown
independence of the ι chosen. Uniqueness of αr1, ... ,rs is clear. �
A.3 Lemma. a) For any projective arithmetic variety π : X → OK , whose

generic fiber X is regular, any natural number r and any partition (r1, . . . , rs)
of r, there is a unique multi-linear map

βr1, ... ,rs : K̂0(X )× . . . × K̂0(X )︸ ︷︷ ︸
s times

× ĈHr(X ) −→ ĈH1(Spec OK)Q, (69)

called intersection product, satisfying the following condition.
If y ∈ ĈHr(X ) is represented by a cycle (Y, gY ), where gY is a differential

form with logarithmic singularities along |Y |, then

βr1, ... ,rs (v1, . . . , vs, y) := αr1, ... ,rs (v1, . . . , vs, Y ) (70)

+
(

0,
( ∫
X (C)

gY ωcchr1(v1)
· . . . · ωcchrs (vs)

)
σ:K↪→C

)
.

b) In particular, if (r1, . . . , rs) = (1, . . . , 1), there is a specialized product

β : P̂ic(X ) × . . . × P̂ic(X )︸ ︷︷ ︸
r times

× ĈHr(X ) −→ ĈH1(Spec OK)Q (71)

c) If X is regular, then βr1, ... ,rs coincides with π∗
[
ĉhr1(.) · . . . · ĉhrs(.) · .

]
.

d) For any morphism f : X → X ′ of projective arithmetic varieties having
regular generic fibers such that fK is smooth, there is the projection formula

βr1, ... ,rs (f∗(v1), . . . , f∗(vs), y) = βr1, ... ,rs (v1, . . . , vs, f∗(y)) . (72)

e) If f : X → X ′ is a proper and flat morphism such that fK is étale, then

βr1, ... ,rs (f∗(v1), . . . , f∗(vs), f∗(z)) = deg f · βr1, ... ,rs (v1, . . . , vs, z) . (73)

Proof. a) Take the property given as a definition. The integral over X (C)
converges because of the logarithmic singularities of gY . Independence of the
cycle chosen immediately carries over from the regular case. Indeed, assume
(Y, gY ) is an arithmetic r-cycle, rationally equivalent to zero. If ι : X → P is
a closed embedding into a regular arithmetic variety, then (ι∗Y, ι∗gY ) is also
an arithmetic r-cycle, rationally equivalent to zero.
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b) and c) are trivial now and d) follows from the projection formula for
αr1, ... ,rs and the same argument for the integrals as in the regular case.

e) If f : X → X ′ is flat inducing an étale covering on generic fibers,
then there is a pull-back homomorphism f∗ : ĈHd(X ′) → ĈHd(X ) satisfying
f∗f
∗z = deg f · z. �

A.4 Lemma. A. a) For any projective arithmetic variety π : X → OK ,
whose generic fiber X is regular and equidimensional of dimension d, and any
partition (d1, . . . , ds) of d+ 1 there is a unique multi-linear map

γd1, ... ,ds : K̂0(X )× K̂0(X )× . . . × K̂0(X )︸ ︷︷ ︸
s times

−→ ĈH1(Spec OK)Q (74)

satisfying the following conditions.
i) If X is regular, then

γd1, ... ,ds (v1, . . . , vs) = π∗

[
ĉhd1(v1) · . . . · ĉhds(vs)

]
. (75)

ii) If f : X ′ → X is an alteration, i.e. a surjective and generically finite
morphism, then

γd1, ... ,ds (f∗(v1), . . . , f∗(vs)) = deg f · γd1, ... ,ds (v1, . . . , vs) . (76)

b) γ . ( . ) is compatible with the natural action of the symmetric group.
c) One has

γd1, ... ,ds (v1, . . . , vs) = αd1, ... ,ds (v1, . . . , vs, [X ]) , (77)

where [X ] denotes the fundamental class of X .
d) If ds = 1 and X is regular, then

γd1, ... ,ds−1, 1 (v1, . . . , vs−1, vs) = βd1, ... ,ds−1 (v1, . . . , vs−1, ĉ1(vs)) . (78)

B. If (d1, . . . , ds) = (1, . . . , 1), then the specialized product

γ : P̂ic(X ) × P̂ic(X ) × . . . × P̂ic (X )︸ ︷︷ ︸
d+1 times

−→ ĈH1(Spec OK)Q (79)

exists without assuming X to be regular. It has the properties below.
i) If X is regular, then

γ
(
U1, . . . , Ud+1

)
= π∗

[
ĉ1(U1) · . . . · ĉ1(Ud+1)

]
. (80)

ii) If f : X ′ → X is an alteration, i.e. a surjective and generically finite
morphism, then

γ
(
f∗(U1), . . . , f∗(Ud+1)

)
= deg f · γ

(
U1, . . . , Ud+1

)
. (81)
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iii) γ is symmetric.
iv) One has

γ
(
U1, . . . , Ud+1

)
= α

(
U1, . . . , Ud+1, [X ]

)
, (82)

where [X ] denotes the fundamental class of X .
v) If the generic fiber X of X is regular, then

γ
(
U1, . . . , Ud, Ud+1

)
= β

(
U1, . . . , Ud, ĉ1(Ud+1)

)
. (83)

Proof. Again we show A only. By de Jong18 for every X there is a resolution
of singularities by alterations, so let p : X ′ → X be surjective and generically
finite with X ′ regular and put

γd1, ... ,ds (v1, . . . , vs) :=
1

deg p
(πp)∗

[
ĉhd1(p∗v1) · . . . · ĉhds(p∗vs)

]
. (84)

As ii) is true for X regular, this definition is independent of the choice of p.
Property i) is trivial, ii) and b) immediately carry over from the regular case.

c) Lemma A.2.A.ii) implies

αd1, ... ,ds (v1, . . . , vs, [X ]) =
1

deg p
αd1, ... ,ds (v1, . . . , vs, p∗[X ′]) (85)

=
1

deg p

(
ĉhd1(p∗v1) · . . . · ĉhds(p∗vs)

∣∣∣X ′)
being equal to our formula for γd1, ... ,ds (v1, . . . , vs) above.

d) Assume without loss of generality that vs is given by a hermitian line
bundle U and there is some section 0 6= s ∈ Γ(X ,Ud+1). Then, by definition,

βd1, ... ,ds−1,1

(
v1, . . . , vs−1, ĉ1(U)

)
(86)

= αd1, ... ,ds−1,1 (v1, . . . , vs−1, div(s))

+
(

0,
( ∫
X (C)

− log ‖s‖2 ωcchd1(v1)
· . . . · ωcchds−1(vs−1)

)
σ:K↪→C

)
.

On the other hand, we have p∗(div(p∗s)) = deg p · div(s). This is clear in the
case when X is normal, as then p is flat over some X \ Y with codim Y ≥ 2.
If p is the normalization of X , then it follows from Example 1.2.3 in Fulton’s
book6. Consequently,

αd1, ... ,ds−1,1 (v1, . . . , vs−1, div(s)) (87)

=
1

deg p
αd1, ... ,ds−1,1 (p∗(v1), . . . , p∗(vs−1), div(p∗s)) .
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Finally, it is obvious that∫
X (C)

− log ‖s‖2 ωcchd1(v1)
· . . . · ωcchds−1(vs−1)

(88)

=
1

deg p

∫
X ′(C)

− log ‖p∗s‖2 ωcchd1 (p∗v1)
· . . . · ωcchds−1(p∗vs−1)

.
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pinceaux arithmétiques: La conjecture de Mordell, Asterisque 127(1985)
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