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Abstract. Given systems of two (inhomogeneous) quadratic equations in
four variables, it is known that the Hasse principle for integral points may
fail. Sometimes this failure can be explained by some integral Brauer-Manin
obstruction. We study the existence of a non-trivial algebraic part of the
Brauer group for a family of such systems and show that the failure of the
integral Hasse principle due to an algebraic Brauer-Manin obstruction is
rare, as for a generic choice of a system the algebraic part of the Brauer-
group is trivial. We use resolvent constructions to give quantitative upper
bounds on the number of exceptions.

1. Introduction

We consider a system of two rational quadratic forms in 5 variables given
by

Q1(x) = xtAx, Q2(x) = xtBx,

where A,B ∈ M5×5(Q) are two symmetric matrices with rational entries. For
a generic choice of A and B, the intersection

SA,B : Q1(x) = Q2(x) = 0 (1.1)

defines a del Pezzo surface of degree four in P4
Q. It is well known that the Hasse

principle and weak approximation may fail for such surfaces (see for example
[BSD]). In all known examples, for del Pezzo surfaces of degree four, the failure
of the Hasse principle can be explained by a Brauer-Manin obstruction. I.e.,
in all of these situations one has adelic points on SA,B but the Brauer-Manin
set SA,B(AQ)Br, that is the subset of adelic points that are in the kernel of the
Brauer-Manin pairing with the Brauer group Br(SA,B), is empty.

More recently, Colliot-Thélène and Xu [CX], initiated the study of integral
Brauer-Manin obstructions. In [CX], they studied integral points on homo-
geneous spaces and representation problems by integral quadratic forms. In
another direction, the concept of Brauer-Manin obstructions for affine vari-
eties has been pursued in [CW] for families of affine cubic surfaces, such as
representation problems of an integer by sums of three cubes. Moreover, see
work of Bright and Lyczak [BL] for certain log K3 surfaces and Berg [Be] on
the description of the Brauer-Manin obstruction for affine Châtelet surfaces.
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In the situation of a del Pezzo surface of degree four, one may choose a hy-
perplane H ⊂ P4

Q and consider the complement U := SA,B \H. Integral points
on an integral model U of U then essentially correspond to integer solutions
of systems of two inhomogeneous quadratic equations in four variables. When
does such a system have an integer solution? A necessary condition is that it
has real solutions and solutions in Zp for every prime p. However, these condi-
tions may not be sufficient. Again, there could be a Brauer-Manin obstruction
leading to a violation of the local-global principle. We are interested in the
question how often one should expect a violation of the local-global principle
due to a Brauer-Manin obstruction. A Brauer-Manin obstruction can only oc-
cur if there are non-constant Brauer classes in the Brauer group of the scheme
U . The Brauer classes which vanish after a base change to the algebraic clo-
sure of Q are most accessible to computations. In this article we study upper
bounds on how often the algebraic part of the Brauer-group is non-trivial for
certain families of systems of two inhomogeneous quadratic equations in four
variables. It would be very interesting to find lower bounds as well (for certain
families see [JS1]), or get a prediction of the density of such examples within
a given family.

In [JS1], the authors computed a list of the algebraic parts of the Brauer
group that can occur for such surfaces assuming that the intersection SA,B∩H
is geometrically integral. Note that these results were recently extended to del
Pezzo surfaces of degree at most 7 by M. Bright and J. Lyczak [BL]. We recall
that the list in the case of the complement of a hyperplane section in a del
Pezzo surface of degree four consists of 0,Z/2Z, (Z/2Z)2, (Z/2Z)3, (Z/2Z)4,
Z/4Z, Z/2Z×Z/4Z and (Z/2Z)2×Z/4Z. Under the assumption that H∩SA,B

is geometrically irreducible (for a more general criterion see [JS1, Lemma 4.1]),
the algebraic part of the Brauer group is given by the first Galois cohomology
group

Br1(U)/Br0(U) ∼= H1(Gal(Q̄/Q),Pic(UQ̄)).

Moreover, any hyperplane H lies in the anticanonical class and hence the
algebraic part of the Brauer group is independent of which rational hyperplane
we remove as long as we assume H ∩ SA,B to be geometrically irreducible.

In this note, we study the question how often one typically expects to find
a non-trivial algebraic part of the Brauer group Br1(U)/Br0(U), where we
vary over certain subfamilies of SA,B. We fix a matrix A ∈ M5×5(Z) with
det(A) 6= 0 and vary over integral matrices B. Note that if the intersection
in (1.1) is smooth of codimension 2 as a projective scheme in P4 then SA,B is
indeed a del Pezzo surface of degree four.

We define N2(P ) to be the number of symmetric matrices B = (bij)1≤i,j≤5 ∈
M5×5(Z) with |bij| ≤ P for all 1 ≤ i ≤ j ≤ 5, such that SA,B is smooth of
codimension 2 and Br1(U)/Br0(U) 6= 0 for any hyperplane H with H ∩ SA,B

geometrically irreducible.
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Theorem 1.1. Let A ∈ M5×5(Z) and assume that det(A) 6= 0. Then, for
every ε > 0, one has the upper bound

N2(P )�ε,A P
14+1/5+ε.

In total, there are about P 15 integer matrices B that we consider, and hence
the exceptional ones, counted by N2(P ), are sparse in this very precise sense.
In particular, for any choice of B outside of the exceptional set counted by
N2(P ), there is no algebraic Brauer-Manin obstruction to integral points for
the system

Q1(x) = Q2(x) = 0, L(x) = ±1,

where L(x) is a sufficiently general linear form in the variables x with integral
coefficients. It would be interesting to understand the transcendental part of
the Brauer group of U as well, see for example [JS1] for some discussions.

The frequency of violations of the local-global principle has recently also
been studied by Mitankin [Mi] for affine quadric surfaces. Even more is known
for a few selected examples of families of projective varieties, see for example
[JS16] and [BB2].

Our strategy of proof for Theorem 1.1 is inspired by work of Dietmann [Di].
He bounds the number of monic integer polynomials of degree n of bounded
height which have a certain Galois group strictly smaller than Sn.

Under the assumptions of Theorem 1.1, the set of matrices B, counted by
N2(P ), is a thin subset in 15-dimensional affine space (see Remark 4.1). There-
fore, sieve methods, as used in Theorem 13.1 in [Se], would lead to the bound

N2(P )� P 14+1/2 logP. (1.2)

With our methods, we improve upon the exponent in this estimate.

Acknowledgements: We would like to thank the referees for carefully
reading this paper and for their suggestions that improved the presentation of
the material.

2. Preparations

With two symmetric 5×5 matrices A and B, we associate the characteristic
polynomial

f(λ, µ;A,B) := det(λA+ µB),

which is homogeneous of degree 5 in λ, µ. Sometimes, we write f(λ, µ) for
f(λ, µ;A,B) when the matrices A and B are considered fixed. We recall that
we can read off from the polynomial f(λ, µ) whether the associated variety
SA,B is smooth of codimension 2.

Lemma 2.1 (Proposition 3.26 in [Wi]). Let A,B ∈M5×5(Q) be two symmetric
matrices and SA,B be defined as in (1.1), where Q1 and Q2 are the two quadratic
forms associated with A and B. Then SA,B is smooth over Q and pure of
codimension 2 as a variety in P4 if and only if the characteristic polynomial
f(λ, µ) is not identically zero and separable.
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Let Disc(f) be the discriminant of f(λ, µ) (see for example [Sch]). If we
fix A ∈ M5×5(Z) then Disc(f) is a polynomial in the coefficients (bij) of B.
Moreover, SA,B is smooth of codimension 2 if and only if Disc(f) 6= 0. Hence
we can trivially handle the count of matrices B of bounded height, for which
SA,B is not a del Pezzo surface of degree 4. Note that Disc(f) is not identically
zero if we assume that det(A) 6= 0. In this case, we have

]{B ∈M5×5(Z) : BT = B, |bij| ≤ P ∀1 ≤ i, j ≤ 5,Disc(f) = 0} � P 14. (2.1)

Note that in this estimate the implied constant does not depend on the ma-
trix A.

The roots of the characteristic polynomial f(λ, µ) correspond to pairs of
pencils of conics contained in SA,B. These pencils of conics generate Pic(UQ̄)
up to index two and the algebraic part of the Brauer group of U is determined
by the operation of the Galois group on these conics. Moreover, one can
already read off from the characteristic polynomial f(λ, µ) some information
about 2-torsion elements contained in Br1(U)/Br0(U). Note that, if H ∩ SA,B

is geometrically integral and SA,B is smooth of codimension 2, then U = X \H
is an open del Pezzo surface of degree four as in the language of [JS2, Definition
2.5]. As we work over the base field Q, we have an isomorphism

Br1(U)/Br0(U) ∼= H1(Gal(Q̄/Q),Pic(UQ̄)).

The latter group is analysed in detail in [JS2] for an open degree four del Pezzo
surface, and we now recall a result from that paper which forms one of the key
inputs for our estimates for N2(P ).

Theorem 2.2 (Corollary 3.11 in [JS2]). Let SA,B be a smooth del Pezzo surface
of degree 4, as defined in (1.1), and H ⊂ P4 a hyperplane such that H ∩
SA,B is geometrically integral. If Br1(U)/Br0(U) 6= 0 then the characteristic
polynomial f(λ, µ) has a rational root or splits off a factor of degree 2 over the
rationals.

For the first part of our estimates to follow, we use the following result due
to Bombieri and Pila [BP].

Theorem 2.3 (Theorem 4 in [BP]). Let G(x, y) ∈ Z[x, y] be an absolutely
irreducible polynomial of absolute degree d. Let N ≥ exp(d6) be an integer.
Then one has the bound

]{x, y ∈ ([0, N ] ∩ Z)2 : G(x, y) = 0} ≤ N1/d exp
(

12
√
d logN log logN

)
.

Note that this result is more precise than what we need, as in our application
the degree d is fixed.

3. Irreducibility results and a resolvent construction

In our proof of Theorem 1.1, we need the following result on geometric
irreducibility of fibers. It can be found in online lecture notes by B. Osserman
[Os, Proposition 2.3]. For convenience of the reader, we give our own proof
here.
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Proposition 3.1. Let A be a Noetherian ring, set X := SpecA and let
g ∈ A[x1, . . . , xn] be a polynomial of total degree d. Then there is a Zariski
closed subset Z ⊂ X with the following property.

A prime ideal p ∈ X is contained in Z if and only if there exists an alge-
braically closed field extension k of the residue field κ(p) such that g is reducible
or has degree strictly less than d when considered as a polynomial over k.

Remark 3.2. Note that the last statement in Proposition 3.1 is equivalent to
saying that for every algebraically closed extension field k of κ(p) the polyno-
mial g is reducible or has degree less than d when considered as a polynomial
over k. (See for example [Ha, Exercise II.3.15].)

Proof. Step 1: First, we consider the homogenization G(x0, . . . , xn) of the poly-
nomial g(x1, . . . , xn), defined by

G(x0, . . . , xn) := xd0g

(
x1

x0

, . . . ,
xn
x0

)
.

Then G defines a hypersurface V ⊂ Pn
A. Let p ∈ X and k some extension field

of κ(p). We note that the polynomial g is reducible or of degree strictly smaller
than d over k if and only if G is reducible over k. Moreover, G is reducible over
k if and only if the reduction of V over k is reducible or not reduced over k.

By [EGAIV, Théorème 9.7.7], the set of prime ideals p such that G is re-
ducible over k is constructible. In order to show that this set is even Zariski
closed, it is hence sufficient to show that it is closed under specialization. We
will prove the following claim.

Claim 1: Let p ⊂ P be prime ideals inA. If the image of g inQ(A/p)[x1, . . . , xn]
is of degree strictly smaller than d or becomes reducible over a finite extension
field of Q(A/p), then the image of g in Q(A/P)[x1, . . . , xn] is reducible or of
degree smaller than d after taking a finite extension field. (Here, we write
Q(B) for the quotient field of an integral domain B.)

Since we assumed A to be Noetherian, it is enough to prove the claim for the
case that there is no other prime ideal between p and P.

Step 2: If the reduction of g modulo p is of degree strictly smaller than d then
clearly the same is true for the reduction of g modulo P. We hence assume
that the image of g in Q(A/p)[x1, . . . , xn] is reducible over Q(A/p).

Step 3: In replacing the ring A by A/p, we may assume w.l.o.g. that A is an
integral domain and p = (0) and that P is a minimal prime ideal. We now
consider the localization AP, which is a Noetherian, one-dimensional, local in-
tegral domain with maximal ideal PAP. Moreover, AP/PAP = Q(A/P). It
is hence sufficient to establish the following claim.

Claim 2: Let A be a one-dimensional, Noetherian, local integral domain
with maximal ideal m and assume that g, considered as a polynomial in
Q(A)[x1, . . . , xn], is reducible over a finite extension field. Then the reduction
of g in (A/m)[x1, . . . , xn] is of degree strictly smaller than d or is reducible,
possibly over a finite extension field of A/m.
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Step 4: Assume that Q(A) ⊂ L is a finite extension field, such that g factors
over L. Let R be the integral closure of A in L. By the Going-up Theorem
[Mat, Theorem 9.4 i)], there is a prime ideal n ⊂ R of height one lying above m.
We note that R is Noetherian by the theorem of Krull-Akizuki [Mat, Theo-
rem 11.7]. Hence, Rn is a Noetherian, one-dimensional, local domain, which is
integrally closed in its fraction field. By [Mat, Theorem 11.2], Rn is a discrete
valuation ring. We have assumed that g factors over Q(Rn) = Q(R) = L.
Since Rn is a discrete valuation ring, it is a unique factorization domain and
Gauss’s lemma implies that g already factors over Rn.

Step 5: As g is reducible in the polynomial ring Rn[x1, . . . , xn], its reduction in
Rn/nRn[x1, . . . , xn] is also reducible or of strictly smaller degree. We conclude
the proof in noting that Rn/nRn = Q(R/n) and that Q(A/m) ⊂ Q(R/n) is a
finite extension field. �

In the following, we assume that both A and B are symmetric matrices and
write (bij)1≤i≤j≤5 for the coefficients determining the matrix B. Moreover, we
set b′ := (bij)1≤i≤j≤5,(i,j) 6=(1,1) for the vector consisting of all entries except for
the first one b11.

Lemma 3.3. Let A = Id5 be the identity matrix. Then there is a Zariski
closed subset Z0 ( A14

Q with the following property. If b′ ∈ A14(Q) \ Z0(Q),
then f(λ, 1; Id5, B) is absolutely irreducible of degree five as a polynomial in
the variables λ and b11.

Proof. We apply Proposition 3.1 to the ring A = Q[b12, . . . , b55] and the poly-
nomial f(λ, 1; Id5, B) ∈ A[b11, λ]. Let Z0 ⊂ A14

Q be the Zariski closed subset,
given by Proposition 3.1. It remains to show that Z0 is not equal to the whole
14-dimensional affine space. Calculations using magma show that the polyno-
mial

g(λ, b11, b12) := det

λI5 +


b11 b12 0 0 0
b12 b12 b12 0 0
0 b12 b12 b12 0
0 0 b12 b12 b12

0 0 0 b12 b12




defines an irreducible curve of genus 0 in the projective plane. Moreover, up
to height 100 we find eight regular Q-rational points. Hence, the curve is geo-
metrically irreducible and the polynomial g(λ, b11, 1) is absolutely irreducible
and of degree five. We conclude that Z0 ( A14

Q as desired. �

Since f(λ, 1; Id5, B) is homogeneous of degree five, we obtain the following
corollary.

Corollary 3.4. The polynomial f(λ, 1; Id5, B) is absolutely irreducible in the
16 variables λ and (bij)1≤i≤j≤5. �

Now we show that similar statements hold when we replace the identity
matrix I5 by some symmetric invertible matrix A ∈M5×5(Q).
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Lemma 3.5. Let A ∈ M5×5(Q) be a symmetric matrix and assume that
det(A) 6= 0. Then the polynomial f(λ, 1;A,B) is absolutely irreducible in
the 16 variables λ and (bij)1≤i≤j≤5.

Proof. As we ask for absolute irreducibility, we may work over Q̄. Let T be an
invertible matrix such that T tAT = Id5. Then we have

f(λ, 1;A,B) = det(λA+B) = det(λ(T−1)tId5T
−1 +B)

= det(T−1)2 det(λI5 + T tBT ).
(3.1)

By Corollary 3.4, the polynomial det(λI5 + B) is absolutely irreducible, con-
sidered as a polynomial in 16 variables. Hence, the polynomial on the right
hand side of (3.1) is absolutely irreducible in λ and (bij)1≤i≤j≤5, as the linear
variable substitution B 7→ T tBT does not affect absolute irreducibility. �

For the case A = Id5, Lemma 3.3 shows that the polynomial f(λ, 1; Id5, B)
is absolutely irreducible in λ and b11, for almost all b′. We now provide a
comparable statement for a general matrix A. For the proof, we use Lemma
3.5 together with a Bertini-type theorem for absolute irreducibility to deduce
that there is a curve in the corresponding family that is absolutely irreducible.
This will suffice for another application of Proposition 3.1.

Proposition 3.6. Let A ∈ M5×5(Q) be a symmetric matrix with det(A) 6= 0.
Then there exist a tuple v′ := (vij)1≤i≤j≤5,(i,j) 6=(1,1) ∈ Z14 and a Zariski closed
subset ZA ( A14

Q with the following property.

Define the polynomial

hA(λ, b11, c
′) := det

λA+


b11 c12 + v12b11 . . . c15 + v15b11

c12 + v12b11 c22 + v22b11 . . . c25 + v25b11
...

. . .
...

c15 + v15b11 c25 + v25b11 . . . c55 + v55b11


 .

Then hA(λ, b11, c
′) is absolutely irreducible as a polynomial in λ and b11, for

each c′ := (cij)1≤i≤j≤5,(i,j)6=(1,1) ∈ A14(Q̄) \ ZA(Q̄).

Proof. By Lemma 3.5, the polynomial f(λ, 1;A,B) is absolutely irreducible
in the 16 variables λ and (bij)1≤i≤j≤5. Consider the affine variety X ⊂ A16

Q ,
given by f(λ, 1;A,B) = 0, which is then geometrically integral. Define the
projection

φ12 : X → A2
Q

(λ, (bij)) 7→ (b11, b12),

and note that this is a dominant map. Then an application of [Jo, Théorème
6.3.3) and 4)] shows that the intersection

X(2) : f(λ, 1;A,B) = 0,

u12 + v12b11 + w12b12 = 0

is geometrically integral for almost all triples (u12, v12, w12) ∈ A3 in the sense
that the exceptional set is contained in a Zariski closed subset of A3. By
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homogeneity, the same holds after normalizing w12 = −1, say. Hence, there
are integers u12 and v12 such that X(2) is geometrically integral. We now apply
the same argument to to find integers u13 and v13 such that the intersection

X(3) = X(2) ∩ {b13 = u13 + v13b11}
is geometrically integral. We repeat this process in total 14 times to obtain tu-
ples (uij)1≤i≤j≤5,(i,j)6=(1,1), (vij)1≤i≤j≤5,(i,j)6=(1,1) ∈ Z14 such that the affine curve
given by

det

λA+


b11 u12 + v12b11 . . . u15 + v15b11

u12 + v12b11 u22 + v22b11 . . . u25 + v25b11
...

. . .
...

u15 + v15b11 . . . . . . u55 + v55b11


 = 0

is geometrically integral. (Note that the maps φ1j are all dominant since the
polynomial f(λ, 1;A,B) contains the term det(A)λ5 and one can therefore
always solve for λ.) Hence, hA(λ, b11,u) is absolutely irreducible as a polyno-
mial in λ and b11. An application of Proposition 3.1 provides us with a Zariski
closed subset ZA ( A14

Q with the desired property. �

The results so far are enough to deal with the case of Brauer classes that
can occur due to f(λ, µ;A,B) having a rational root in λ, µ. We now need
to provide similar irreducibility results for a resolvent that detects when the
polynomial f(λ, µ;A,B) splits off a factor of degree two. Recall that we have
defined f(λ, µ;A,B) = det(λA+ µB). We can write f(λ, µ) in the form

f(λ, µ) =
5∑

l=0

pl(A,B)µ5−lλl,

with pl(A,B) a polynomial of degree l in the coefficients of the matrix A and of
degree 5− l in the coefficients of the matrix B. Moreover, p0(A,B) = det(B)
and p5(A,B) = det(A). Assume that det(A) 6= 0 and that A and B are fixed.
We rewrite f(λ, µ) as

f(λ, µ) = det(A)
5∑

l=0

pl(A,B)

det(A)
µ5−lλl. (3.2)

Over some algebraic closure of Q, we then have

f(λ, µ) = det(A)
5∏

i=1

(λ+ αiµ). (3.3)

We now define the resolvent

Φ(z;A,B) := det(A)4
∏

1≤i<j≤5

(z + αi + αj).

Lemma 3.7. a) The resolvent Φ(z;A,B) has the form

Φ(z;A,B) =
10∑
k=0

qk(A,B)zk,
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with qk(A,B) ∈ Z[A,B] polynomials in the coefficients of the two matrices
A,B.
b) The leading coefficient satisfies q10(A,B) = det(A)4 and, for 0 ≤ k ≤ 10,
the polynomial qk(A,B) is homogeneous of degree 10 − k in the coefficients
of B and homogeneous of degree 10 + k in the coefficients of A.
c) If f(λ, µ;A,B) splits off a factor of degree two over the rationals then
Φ(z;A,B) has a rational root z ∈ Q.

Proof. Using the notation above, we can first write

Φ(z;A,B) = det(A)4

10∑
k=0

q̃k(α)zk,

with q̃k(α) polynomials in the roots αi, for 1 ≤ i ≤ 5. Note that q̃k(α) are
symmetric polynomials in the variables αi. Hence, they can be expressed in
terms of the following elementary symmetric polynomials

E1 :=
5∑

i=1

αi, E2 :=
∑
i<j

αiαj, E3 :=
∑
i<j<k

αiαjαk,

E4 :=
∑

i<j<k<l

αiαjαkαl, E5 :=
5∏

i=1

αi.

We compare equation (3.2) with equation (3.3) and obtain

det(A)
5∑

l=0

pl(A,B)

det(A)
µ5−lλl = det(A)

5∏
i=1

(λ+ αiµ).

Hence

Ei =
p5−i(A,B)

det(A)
, for 1 ≤ i ≤ 5.

By a short calculation in magma, we can express each of the polynomials q̃k(α)
in the elementary symmetric polynomials Ei, for 1 ≤ i ≤ 5. We find that they
are of total degree at most four in this representation. Consequently, all the

qk(A,B) := det(A)4q̃k(α), 0 ≤ k ≤ 10,

are polynomials in Z[A,B], where qk(A,B) is homogeneous of degree 10 − k
in the coefficients of B and homogeneous of degree 10 + k in the coefficients
of A. This completes part a) and b) of the proof of the lemma. Part c) follows
directly from the construction of the resolvent polynomial Φ(z;A,B). �

We next need an statement analogous to Lemma 3.6, for the resolvent
Φ(z;A,B). The strategy of proof is the same as that for the polynomial
f(λ, µ) itself.

Proposition 3.8. Let A ∈ M5×5(Q) be a symmetric matrix with det(A) 6= 0.
Then there exist a tuple t′ := (tij)1≤i≤j≤5,(i,j)6=(1,1) ∈ Z14 and a Zariski closed
subset VA ( A14

Q with the following property.
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The expression Φ(z;A, (b11, c
′ + b11t

′)) is absolutely irreducible as a polyno-
mial in the variables z and b11 if c′ := (cij)1≤i≤j≤5,(i,j)6=(1,1) ∈ A14(Q̄) \ VA(Q̄).

Proof. First, a short calculation using magma shows that the polynomial

Φ(z; Id5, (b11, c
′ + b11t

′))

is absolutely irreducible in z, b11, if we set t′ := 0 and cij := 1, for |i− j| ≤ 1,
and cij := 0, otherwise. Indeed, in this case, the homogenization of the poly-
nomial Φ(z; Id5, (b11, c

′ + b11t
′)) defines an irreducible curve of genus 3 with

two regular rational points of height less than 100.

Since Φ(z; Id5, (b11, c
′ + b11t

′)) is absolutely irreducible of degree 10 in z
and b11 for these special choices of c′ and t′, we deduce that Φ(z; Id5, B) is
absolutely irreducible in the 16 variables z, (bij)1≤i≤j≤5.

Now let A ∈ M5×5(Q) be an arbitrary symmetric matrix with det(A) 6= 0.
Over Q̄, we can diagonalize A with an invertible matrix C such that

CtAC = Id5.

Then we have

f(λ, µ;A,B) = det(C)−2 det(λCtAC + µCtBC)

= det(C)−2f(λ, µ; Id5, C
tBC).

For the corresponding resolvents, we hence get the relation

Φ(z;A,B) = det(C)−8Φ(z; Id5, C
tBC).

We conclude that Φ(z;A,B) is an absolutely irreducible polynomial in the 16
variables z, (bij)1≤i≤j≤5. The rest of the proof proceeds in exactly the same
way as the proof of Lemma 3.6. Note that, for A fixed with det(A) 6= 0, the
polynomial Φ(z;A,B) always has degree 10. �

4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Let A ∈ M5×5(Z) be fixed and
assume that det(A) 6= 0. Let S(1)(P ) be the number of symmetric matrices
B ∈M5×5(Z) with |bij| ≤ P , for all 1 ≤ i ≤ j ≤ 5, such that f(λ, µ;A,B) has
a rational root in λ, µ. Similarly, let S(2)(P ) be the number of such matrices
B such that Φ(z;A,B) has a rational root in z.

By Theorem 2.2, and the construction of the resolvent polynomial Φ(z;A,B),
we can bound N2(P ) by

N2(P )� S(1)(P ) + S(2)(P ). (4.1)

If f(λ, µ;A,B) has a rational root in λ, µ, then, by homogeneity, it also has
a solution λ, µ ∈ Z2 with gcd(λ, µ) = 1. Since the coefficient of λ5 in f(λ, µ) is
equal to det(A), we deduce that µ| det(A). For a divisor d| det(A), we define

S
(1)
d (P ) to be the number of symmetric matrices B ∈M5×5(Z) with coefficients
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bounded by P such that f(λ, d;A,B) has an integer root in λ. Then we can
bound

S(1)(P ) ≤
∑

d| det(A)

S
(1)
d (P ), (4.2)

where the sum over d runs over all positive and negative divisors of det(A).

Similarly, if Φ(z;A,B) has a rational root, say z = r
s
, with r, s ∈ Z2 and

gcd(r, s) = 1 then s| det(A)4. For any divisor d| det(A)4, we let S
(2)
d (P ) be

the number of symmetric matrices B ∈ M5×5(Z) with coefficients bounded
by P such that d10Φ(d−1z;A,B) (which is again a polynomial with integer
coefficients) has an integer root in z. Hence, we have the upper bound

S(2)(P ) ≤
∑

d| det(A)4

S
(2)
d (P ),

where again the sum is over all positive and negative divisors d of det(A)4.

With d| det(A) fixed, we now proceed to bound S
(1)
d (P ). We recall the

notation

f(λ, µ;A,B) =
5∑

l=0

pl(A,B)µ5−lλl,

with pl(A,B) polynomials of degree 5−l in the coefficients ofB. IfB is a matrix
with coefficients bounded by P then pl(A,B)� P 5−l. As soon as f(λ, d;A,B)
has a complex root λ0, then we deduce that there is a positive constant C0 ≥ 1
such that |λ0| ≤ C0P , by Theorem (27,3) in [Ma] (see also Lemma 1 in [Di]).
Let v′ and ZA be as in Lemma 3.6. Then f(λ, 1;A, (b11, c

′+b11v
′)) is absolutely

irreducible in λ, b11 if c′ /∈ ZA. By a linear change of variables, we deduce that

f(λ, d;A, (b11, c
′ + b11v

′)) = f(λ, 1;A, (db11, dc
′ + db11v

′))

is absolutely irreducible in the two variables λ, b11 if c′ /∈ d−1ZA. Let R
(1)
d (P )

be the number of vectors (b11, c
′) ∈ (Z ∩ [−P, P ])15 such that the polynomial

f(λ, d;A, (b11, c
′ + b11v

′)) has an integer root in λ. Then there is a positive
constant C1 such that

S
(1)
d (P ) ≤ R

(1)
d (C1P ). (4.3)

For c′ ∈ Z14, we define

T
(1)
d (c′;P ) := ]{(b11, λ) ∈ (Z ∩ [−P, P ])2 : f(λ, d;A, (b11, c

′ + b11v
′)) = 0}.

Let
E

(1)
d (P ) := ]{c′ ∈ (Z ∩ [−P, P ])14 : c′ ∈ d−1ZA}.

Then we can bound R
(1)
d (C1P ) by

R
(1)
d (C1P )�

∑
c′∈(Z∩[−C1P,C1P ])14

c′ /∈d−1ZA

T
(1)
d (c′;C2P ) + PE

(1)
d (C1P ),

for a sufficiently large constant C2. An application of Theorem 2.3 gives the
bound

T
(1)
d (c′;C2P )�ε P

1/5+ε,



12 JÖRG JAHNEL AND DAMARIS SCHINDLER

with an implied constant that is independent of c′. On the other hand, as
ZA ( A14

Q is Zariski closed, we have

E
(1)
d (C2P )� P 13.

Together these estimates lead to the bound

R
(1)
d (C1P )�ε P

14+1/5+ε,

for any ε > 0. Here, the implied constant may depend on d and C1, but is
independent of P . Since A is considered fixed, we can trivially perform the
summation in equation (4.2), and together with equation (4.3), we obtain the
bound

S(1)(P )�ε P
14+1/5+ε.

The bound for S(2)(P ) is obtained in the same way as the bound for S(1)(P ),
with Proposition 3.8 in place of Proposition 3.6. In fact, since Φ(z;A,B) is
typically irreducible of degree 10, one obtains the bound

S(2)(P )�ε P
14+1/10+ε,

for any ε > 0.

Remark 4.1. LetA be as above. As the polynomials f(λ, 1;A,B) and Φ(z;A,B)
are irreducible in Q̄(bij)1≤i≤j≤5[λ] and Q̄(bij)1≤i≤j≤5[z], respectively, the poly-
nomial interpretation of thin sets as in section 9.1 of [Se] shows that the ma-
trices B counted by N2(P ) indeed form a thin subset.

References

[Be] J. Berg, Obstructions to integral points on affine Châtelet surfaces,
arXiv:1710.07969.

[BSD] B. J. Birch and Sir Peter Swinnerton-Dyer, The Hasse problem for rational sur-
faces, in: Collection of articles dedicated to Helmut Hasse on his seventy-fifth
birthday III, J. Reine Angew. Math. 274/275 (1975), 164–174.

[BP] E. Bombieri and J. Pila, The number of integral points on arcs and ovals, Duke
Math. J. 59 (1989), 337–357.

[BCP] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system I. The user
language, J. Symbolic Comput. 24 (1997), 235–265.
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